Problem 9 (Martingales)
Show that each of the following processes is a continuous martingale with respect to the standard Brownian filtration. Here, \(\{W_t : t \in [0, T]\} \) is a standard Wiener process.

(a) \(W_t \)
(b) \(W_t^2 - t \)
(c) \(\exp(\alpha W_t - \frac{\alpha^2}{2} t) \)

Solution proposal:
Throughout this solution we use further properties of the conditional expectation:

1. If a random variable \(X \) is \(G \)-measurable, \(\mathbb{E}(X | G) = X \).
2. If a random variable \(X \) is independent of \(G \), then \(\mathbb{E}(X | G) = \mathbb{E}(X) \).
3. Factorization property: If \(Y \) is \(G \)-measurable, then \(\mathbb{E}(YX | G) = Y \mathbb{E}(X | G) \).

(a) We compute \(\mathbb{E}[W_t | \mathcal{F}_s] \) for \(0 \leq s < t \):
 \[
 \mathbb{E}[W_t | \mathcal{F}_s] = \mathbb{E}[W_t - W_s + W_s | \mathcal{F}_s] = \mathbb{E}[W_t - W_s | \mathcal{F}_s] + \mathbb{E}[W_s | \mathcal{F}_s] = W_s.
 \]
 Here we have used that \(W_t - W_s \) is independent of \(\mathcal{F}_s \) and that its mean is 0. The equation \(\mathbb{E}[W_s | \mathcal{F}_s] = W_s \) follows from the fact that \(W_s \) is \(\mathcal{F}_s \)-measurable.

(b) We first compute \(\mathbb{E}[W_t^2 | \mathcal{F}_s] \) for \(0 \leq s < t \):
 \[
 \mathbb{E}[W_t^2 | \mathcal{F}_s] = \mathbb{E}[(W_t - W_s + W_s)^2 | \mathcal{F}_s] = \mathbb{E}[(W_t - W_s)^2 | \mathcal{F}_s] - 2 \mathbb{E}[(W_t - W_s)W_s | \mathcal{F}_s] + \mathbb{E}[W_s^2 | \mathcal{F}_s].
 \]
 We have (now using all of the three properties 1. – 3. from above)
 1. \(\mathbb{E}[(W_t - W_s)^2 | \mathcal{F}_s] = \mathbb{E}[(W_t - W_s)^2] = t - s \),
 2. \(\mathbb{E}[W_s^2 | \mathcal{F}_s] = W_s^2 \),
 3. \(\mathbb{E}[(W_t - W_s)W_s | \mathcal{F}_s] = W_s \mathbb{E}[W_t - W_s | \mathcal{F}_s] = 0 \),
 and hence \(\mathbb{E}[W_t^2 - t] = W_s^2 - s \).

 Remark: We have also shown that \(\mathbb{E}[W_t^2 | \mathcal{F}_s] = W_s^2 + t - s \). Therefore, \(W_t^2 \) is not a martingale with respect to the standard Brownian filtration.

(c) For \(s < t \), we start with
 \[
 \mathbb{E}[\alpha W_t - \frac{\alpha^2}{2} t | \mathcal{F}_s] = \mathbb{E}[\alpha W_t - \frac{\alpha^2}{2} t - e^{\frac{\alpha^2}{2} t} W_s | \mathcal{F}_s] = e^{\alpha W_s - \frac{\alpha^2}{2} t} \mathbb{E}[\alpha W_t - \frac{\alpha^2}{2} t | \mathcal{F}_s].
 \]
 Then we use the identity
 \[
 -\frac{(x - \alpha(t - s))^2}{2(t - s)} = -\frac{x^2}{2(t - s)} + \alpha x - \frac{\alpha^2(t - s)}{2}
 \]
 and \(W_t - W_s \sim \mathcal{N}(0, t - s) \) to compute
 \[
 \mathbb{E}[e^{\alpha(W_t - W_s)}] = \frac{1}{\sqrt{2\pi(t - s)}} \int_{-\infty}^{\infty} e^{\alpha x - \frac{x^2}{2(t - s)}} dx
 = e^{\frac{\alpha^2}{2}(t - s)} \cdot \frac{1}{\sqrt{2\pi(t - s)}} \int_{-\infty}^{\infty} e^{-\frac{(x - \alpha(t - s))^2}{2(t - s)}} dx
 = e^{\frac{\alpha^2}{2}(t - s)}.
 \]
 Hence,
 \[
 \mathbb{E}[e^{\alpha W_t - \frac{\alpha^2}{2} t} | \mathcal{F}_s] = e^{\alpha W_s - \frac{\alpha^2}{2} t} \mathbb{E}[e^{\alpha W_t - \frac{\alpha^2}{2} t} | \mathcal{F}_s] = e^{\alpha W_t - \frac{\alpha^2}{2} t} e^{\frac{\alpha^2}{2}(t - s)} = e^{\alpha W_t - \frac{\alpha^2}{2} s}.\]