ERRATUM: INVERSE PROBLEMS FOR ABSTRACT EVOLUTION EQUATIONS II: HIGHER ORDER DIFFERENTIABILITY FOR VISCOELASTICITY∗

ANDREAS KIRSCH† AND ANDREAS RIEDER†

Key words. full waveform seismic inversion, viscoelastic wave equation, adjoint state method, nonlinear inverse and ill-posed problem, higher order Fréchet derivative

AMS subject classifications. 35F10, 35R30, 86A22

We need to announce the following corrections to our paper [1]:

1. In equations (2c) and (5c) there is wrongly a factor \(L \) in both arguments of the Hooke tensor \(C \). The other affected results can be straightforwardly corrected. For instance, in (6), (21), (23), (26c), (27c), and (34) the factors \(L \) or \(1/L \) have to be canceled. There are further wrong appearances of \(L \) and \(1/L \) in no-numbered equations.

2. Some of the tensors introduced and used in Theorem 4.10 need corrections:

\[
\begin{align*}
\Psi_0^o &= \frac{\mu \tilde{\pi} - \tilde{\mu} \pi}{\mu(3\pi - 4\mu)} \varphi_0 + \frac{\tau_0 \mu \tilde{\pi} - \tau_0 \mu \pi}{\tau_0 \mu(3\tau_0 \pi - 4\tau_0 \mu)} \Sigma,
\Psi_t^o &= \left(\frac{\tilde{\rho}}{3\pi - 4\mu} - \frac{1}{(3\pi - 4\mu)^2} \right) \varphi_0 + \tau_t \left(\frac{\tilde{\rho}}{3\tau_t \pi - 4\tau_t \mu} + \frac{1}{(3\tau_t \pi - 4\tau_t \mu)^2} \right) \varphi_0,
\Psi_t^c &= -\alpha \left(\frac{\tilde{\rho}}{3\pi - 4\mu} - \frac{1}{(3\pi - 4\mu)^2} \right) \varphi_0 + \frac{1}{3\pi - 4\mu} \left(\frac{\tilde{\rho}}{3\pi - 4\mu} + \frac{1}{(3\pi - 4\mu)^2} \right) \Sigma.
\end{align*}
\]

These errors result from wrong expressions for \(S_0 \) and \(S_l \), \(l = 1, \ldots, L \), given in the proof of Theorem 4.10 (see top of page 2659). The true versions are

\[
\begin{align*}
S_0 &= \tilde{\rho}_2 \left(\frac{\tilde{\rho}_1}{\rho^2} + \frac{\tilde{\mu}_1}{\rho \mu} \right) \varepsilon(v) : \varphi_0 + \frac{1}{\rho} \left(\frac{\tilde{\pi}_1}{3\pi - 4\mu} - \frac{\tilde{\mu}_1 \pi}{\mu(3\pi - 4\mu)} \right) \text{div } v \text{ tr}(\varphi_0)
+ \tilde{\mu}_2 \left(\frac{\tilde{\rho}_1}{\rho \mu} + \frac{2\tilde{\mu}_1}{\mu^2} \right) \varepsilon(v) : \varphi_0
+ \left(\frac{2}{\rho^2} \frac{3\tilde{\mu}_1 \pi^2 - 4\tilde{\pi}_1 \mu^2}{\mu^2(3\pi - 4\mu)^2} - \frac{\tilde{\rho}_1}{\rho} \frac{\pi}{\mu(3\pi - 4\mu)} \right) \text{div } v \text{ tr}(\varphi_0)
\end{align*}
\]

∗October 7, 2020

Funding: This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Project-ID 258734477 SFB 1173.

†Department of Mathematics, Karlsruhe Institute of Technology (KIT), D-76128 Karlsruhe, Germany (andreas.kirsch@kit.edu, andreas.rieder@kit.edu).
\[+ \tilde{\pi}_2 \left(\tilde{\rho}_1 \rho - 4 \tilde{\mu}_1 \rho \right) \left(3 \tau^2 \pi - 4 \tau \mu \right) + 2 \left(3 \tilde{\pi}_1 - 4 \tilde{\mu}_1 \right) \text{div } v \text{ tr}(\varphi_0) \]

and, for \(l = 1, \ldots, L, \)

\[S_l = \tilde{\mu}_2 \left(\tilde{\rho}_1 \rho \tau s \mu + 2 \tilde{\rho}_1 \tau s^2 \mu^2 \right) \text{div } v \text{ tr}(\varphi_l) \]

3. Analogous corrections apply to Theorem A.3 and its proof resulting in

\[\Upsilon^\rho \rho = \tilde{\pi}_2 \mu - \tilde{\mu}_2 \mu \rho \left(2 \tau s \mu (\tau^2 \pi - 4 \tau \mu) \right) \]

4. Finally, we take the opportunity to fix a typo. On page 2640 we omitted a derivative icon. Here it is

\[\mathcal{H}(p) \hat{p} = \Phi(p)^* \Phi(p) \hat{p} - \Phi(p)^* \Phi(p) \cdot \cdot \cdot (y - \Phi(p)). \]

REFERENCES