LOCAL INVERSION OF THE SONAR TRANSFORM
REGULARIZED BY THE APPROXIMATE INVERSE

ERIC TODD QUINTO, ANDREAS RIEDER, AND THOMAS SCHUSTER

Abstract. A new reconstruction method is given for the spherical mean transform with centers on a plane in \mathbb{R}^3 which is also called Sonar transform. Standard inversion formulas require data over all spheres, but typically, the data are limited in the sense that the centers and radii are in a compact set. Our reconstruction operator is local because, to reconstruct at x, one needs only spheres that pass near x, and the operator reconstructs singularities, such as object boundaries. The microlocal properties of the reconstruction operator, including its symbol as a pseudodifferential operator, are given. The method is implemented using the approximate inverse, and reconstructions are given. They are evaluated in light of the microlocal properties of the reconstruction operator.

A version of this preprint containing only gray scale figures for better results on a monochrome printer can be downloaded under www.math.kit.edu/ianm3/~rieder/media/local_sonarBW.pdf.

1. Introduction

In this article, we develop a novel local reconstruction method for the spherical Radon transform with centers on a plane. As this transform is one model for Sonar under the Born approximation, that is, under the assumption there are not multiple scattering events, it is also called Sonar transform.

Let $u(t;x)$ be the acoustic pressure field at $x \in \mathbb{R}^3$ at time $t \geq 0$. Then, u satisfies the acoustic wave equation

$$
\Delta_x u - \frac{1}{\nu^2} \partial_t^2 u = -\delta(x-z)\delta(t)
$$

where $\nu = \nu(x)$ is the speed of sound and $z \in P = \{x \in \mathbb{R}^3 | x_3 = 0\}$ is the excitation point on the ocean surface. The inverse problem in Sonar is to recover ν from the backscattered (reflected) field u_h observed at P for all times $t > 0$.

Cohen and Bleistein [3] made the ansatz

$$
\frac{1}{\nu^2(x)} = \frac{1 + n(x)}{c^2}
$$

where c is a constant background velocity. Then,

$$
\frac{1}{4\pi} \frac{1}{c^2\tau^2} \int_{S(y, \tau)} n(x) dS(x) = -c^2 \int_0^\tau \langle \tau - t \rangle u_h(t,y) dt + \text{higher order terms in } n
$$

Date: January 5, 2011.
1991 Mathematics Subject Classification. Primary: 44A12, 65R20.
The first author was supported in part by NSF Grant DMS 0908015 (and DMS 0456858 for preliminary work) and the Alexander von Humboldt Stiftung.
where $S(y, r)$ is the sphere centered at $y \in \mathbb{R}^3$ and of radius r and τ is the observation period. Under the assumption that $n \ll 1$ (i.e. the Born approximation), the higher order terms are set to zero and the right-hand side of (1.2) becomes an integral from 0 to τ of the solution to the wave equation. Thus, (1.2) reduces to recovering $n(x)$ from integrals of n over spheres centered on the plane P where the right hand side in (1.2) is known from the measured data $u(t, y)$.

Since we are interested in spheres with centers on the plane $x_3 = 0$, we define our spheres in terms of $z \in \mathbb{R}^2$ and $r > 0$

\begin{equation}
S(z, r) = \{x \in \mathbb{R}^3 | |x - (z, 0)| = r\}, \quad Y = \{(z, r) | z \in \mathbb{R}^2, r > 0\}.
\end{equation}

We define the spherical Radon transform for $(z, r) \in Y$ to be the spherical mean over $S(z, r)$:

\begin{equation}
Rn(z, r) = \frac{1}{4\pi r^2} \int_{S(z, r)} n(x) dS(x).
\end{equation}

Our goal is to use this spherical mean data to reconstruct a picture of n showing region boundaries. Since the null space of R is the set of odd functions [4], R is not injective for arbitrary functions on \mathbb{R}^3. This null space characterization implies R is injective for functions supported in $x_3 > 0$. We let

\begin{equation}
\mathbb{R}^3_+ = \{x \in \mathbb{R}^3 | x_3 > 0\}
\end{equation}

and we will consider only functions supported in \mathbb{R}^3_+. This is a realistic assumption for functions in the ocean when we assume $x_3 > 0$ points down to the ocean floor.

We define the backprojection operator R^* for compactly supported functions $g(z, r)$ as

\begin{equation}
R^*g(x) = \int_{\mathbb{R}^2} g(z, |x - (z, 0)|) dz.
\end{equation}

Note that

$$|x - (z, 0)| = \sqrt{|x' - z|^2 + x_3^2},$$

where $x' = (x_1, x_2, x_3)' := (x_1, x_2)$. The operator R^* is used in [2, 6] and it is the dual operator to R if the measure on \mathbb{R}^3_+ is dx and the measure on Y is $4\pi r^3 d\tau dz$. The problem is that one cannot define R^* on the range of R even for compactly supported functions f because Rf is not necessarily compactly supported even if f is. Therefore we will need to include a cutoff function, see (2.2) below, in the definition of our reconstruction operator.

Inversion algorithms for this problem exist if data are known over all spheres with center on a plane [17, 2, 6, 13]. For the two-dimensional problem, Palamodov [18] analyzed the visible and invisible singularities, providing seminorm strength estimates for each, and Denisjuk [5] developed inversion algorithms. Schuster and Quinto [25] adapted the approximate inverse to distributions and used it to develop an inversion algorithm for the two-dimensional problem. This model, integration over spheres, also comes up in thermoacoustic and photoacoustic tomography, but in this case the centers are constrained to lie on a sphere or other surface that encloses the region to be imaged ([1, 11, 14, 27] provide references and background).

Our reconstruction operator is local in the sense that to reconstruct at a point x, one needs only spheres that are near x, and the operator is easily restricted to the data that are given in practice. Typical data are limited since one can acquire data only over a compact set in Y, and the authors know of no reconstruction method from this limited data in \mathbb{R}^3. Our reconstruction operator will detect singularities such as boundaries of the object rather than finding reflectivity values, and as shown in Sect. 5, the operator can image objects clearly. Furthermore, our algorithm is easy
to adapt to different data acquisition geometries, such as when \(z \) lies on an arbitrary \(C^\infty \) surface rather than a plane.

In Section 2 we define our reconstruction operator and give its basic properties. To understand why and how our algorithm detects singularities we will analyze its (principal) symbol as a pseudo-differential operator (PDO) (Section 3). In Section 4 we use the approximate inverse to regularize our inversion operator. To this end we analytically compute a reconstruction kernel from a given mollifier (Theorem 4.1). Finally, we present several fully 3D numerical experiments in Section 5 and analyze the resulting reconstructions in the light of the microlocal results we developed in Section 3. The technical proof of Theorem 4.1 is given in the appendix.

2. Our Local Reconstruction Operator

In contrast to the planar Radon transform that integrates over planes, the spherical Radon transform \(R \) cannot be formulated as bounded operator neither between appropriate \(L^2 \)-, nor Sobolev spaces. Moreover Andersson [2] proves that \(R \) acts as a bounded mapping between suitable chosen spaces of tempered distributions. Let

\[
S_c(\mathbb{R}^3) := \{ f \in S(\mathbb{R}^3) \mid f(x', -x_3) = f(x', x_3) \}
\]

be the space of rapidly decreasing functions that are even in \(x_3 \) and let

\[
S_c(\mathbb{R}^2 \times \mathbb{R}^3) = \{ f \in S(\mathbb{R}^3) \mid f(z, w) = \tilde{f}(z, \|w\|) \text{ for a function } \tilde{f} \in S_c(\mathbb{R}^3) \}
\]

be the space of rapidly decreasing functions in \(\mathbb{R}^5 \) that are radially symmetric in the last three components. The dual spaces \(S_c'(\mathbb{R}^3) \) and \(S_c'(\mathbb{R}^2 \times \mathbb{R}^3) \) of \(S_c(\mathbb{R}^3) \) and \(S_c(\mathbb{R}^2 \times \mathbb{R}^3) \), respectively, consist of tempered distributions. In general \(f \in S_c(\mathbb{R}^3) \) does not imply that \(Rf \in S_c(\mathbb{R}^2 \times \mathbb{R}^3) \), but it is easy to show that \(Rf \in S_c(\mathbb{R}^2 \times \mathbb{R}^3)' \). By a density argument we derive that \(R \) maps \(S_c(\mathbb{R}^3)' \) to \(S_c(\mathbb{R}^2 \times \mathbb{R}^3)' \) and Andersson [2, Th. 2.1] proved that this gives a bounded operator whose dual operator maps \(S_c(\mathbb{R}^2 \times \mathbb{R}^3) \) to \(S_c(\mathbb{R}^3) \),

\[
R^*: S_c(\mathbb{R}^2 \times \mathbb{R}^3) \to S_c(\mathbb{R}^3),
\]

and has dense range. As a consequence we see that the composition \(R^* R \) is not meaningfully defined in general and this is the reason for introducing a cutoff function \(\phi \) in (2.2) below to obtain \(\phi Rf \in S_c(\mathbb{R}^2 \times \mathbb{R}^3) \).

We use the following notation. Let \(\Delta \) be the Laplacian in \(\mathbb{R}^3 \). We let \(H_{x_3} \) be the Hilbert transform in \(x_3 \) (the Fourier multiplier with symbol \(-i\text{sgn}(\xi_3) [26]\)), and we let \(\partial_{x_3} = \partial / \partial x_3 \).

Our local algorithm starts from an exact formula of Klein [13] that is based on work of Andersson [2] and Fawcett [6]. The formula of Klein involves a modified dual operator that includes derivatives with respect to \(x \) of the data. He proves that the addition of the derivative allows one to compose the dual operator with \(R \) for functions in the range of \(R \) [13]. Klein’s formula in \(\mathbb{R}^3 \) is

\[
f = \frac{1}{2\pi} H_{x_3}(-\Delta)^{1/2} \int_{\mathbb{R}^2} \left(\partial_{x_3} Rf(z, r) \bigg|_{r = |x - (x, 0)|} \right) \, dz.
\]

The integral in (2.1) is the \(R^* \) integral but with a \(\partial_{x_3} \) inside the integral. Fawcett [6] and Andersson [2, p. 223] have a similar formula to (2.1), but they use the notation \(\Delta \) for the negative Laplacian (see e.g., [2] in particular the formula for the Fourier transform at the bottom of p. 222 and the inversion formula using \(\Delta \) at the top of p. 223).
Now we make (2.1) local. We replace $\frac{1}{2\pi}H_{x_3}$ (a pseudodifferential operator of order zero) by the identity, and we replace the non-local operator $(-\Delta)^{1/2}$ by $(-\Delta)$. The replacement of $(-\Delta)^{1/2}$ by $(-\Delta)$ increases the order of the operator from order zero (the order of the identity) to order one. Finally, we specify constants $0 < T' < T$ and $0 < \delta < \delta' < M' < M$ and choose a C^∞ cutoff in z and in r

$$\phi : \mathbb{R}^2 \times [0, \infty) \rightarrow [0, 1], \text{ supp}(\phi) = [-T, T]^2 \times [\delta, M],$$

(2.2)

$$\phi(z, r) > 0 \ (z, r) \in (-T, T)^2 \times (\delta, M),$$

$$\phi(z, r) = 1 \ (z, r) \in [-T', T']^2 \times [\delta', M'].$$

Including ϕ allows us to compose R^* and R even when the data Rf is not compactly supported. Multiplying by $\phi(z, r)$ before using ∂_{x_3} allows us to bring the derivative ∂_{x_3} outside the R^* integral to get our reconstruction operator for $x \in \mathbb{R}^3$:

$$\Lambda f(x) := -\Delta_{x_3} R^* (\phi(z, r) Rf(z, r))(x).$$

This operator is a natural generalization of the Lambda tomography operator [7] since it is of order one as we will claim in Theorem 3.2 and it is local in the following sense. To reconstruct $\Lambda f(x)$ one needs only spheres near x to calculate the derivatives and to evaluate R^*.

3. The microlocal properties of Λ and its symbol as a ΨDO

In this section, we give the microlocal properties of R. We prove Λ is a ΨDO on \mathbb{R}^3_+ and we give its symbol and where it is elliptic. This will show how much Λ emphasizes singularities in different directions. In order to understand what R and Λ do to singularities, we must first understand what singularities are and this will be framed in terms of the wavefront set.

For $f \in L^1(\mathbb{R}^n)$ we define the Fourier transform of f to be

$$\mathcal{F}f(\xi) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} f(x) \exp(-i\xi \cdot x)dx$$

and we note that $\mathcal{F}^{-1}f(x) = \mathcal{F}f(-x)$. If $\mathcal{F}f$ is rapidly decreasing at ∞ (decreasing faster than any power of $1/|\xi|$ at ∞) then f and all its derivatives are continuous; that is $f \in C^\infty(\mathbb{R}^n)$. This is the motivation for the definition of wavefront set: we can understand smoothness of f by understanding where a localized Fourier transform of f is rapidly decreasing at ∞. We note that a cutoff function at x_0 will be any C^∞ compactly supported function $\varphi : \mathbb{R}^n \rightarrow [0, \infty)$ such that $\varphi(x_0) \neq 0$.

Definition 3.1. Let f be a distribution in \mathbb{R}^n and let $x_0 \in \mathbb{R}^n$ and $\xi_0 \in \mathbb{R}^n \setminus 0$. Then f is smooth at x_0 in direction ξ_0 if for some cutoff function φ at x_0 and some open conic neighborhood V of ξ_0, $\mathcal{F}(\varphi f)$ is rapidly decreasing at ∞ for $\xi \in V$.

If f is not smooth at x_0 in direction ξ_0 then we say $(x_0, \xi_0) \in \text{WF}(f)$.

Definition 3.1 is given in [19, p. 146] and it is equivalent to the one in the seminal article [12]. Using our next definition, we can evaluate qualitative strength of singularities using Sobolev weights.

Definition 3.2 ([19, p. 258]). Let f be a distribution in \mathbb{R}^n and let $x_0 \in \mathbb{R}^n$ and $\xi_0 \in \mathbb{R}^n \setminus 0$. Then f is in H^s at x_0 in direction ξ_0 if for some cutoff function φ at x_0 and some open conic
neighborhood V of ξ_0, the microlocal Sobolev seminorm

$$
\|\varphi f\|_{H^s,V} = \sqrt{\int_V |\mathcal{F}(\varphi f)(\xi)|^2(1 + |\xi|^2)^s d\xi}
$$

is finite.

If f is not in H^s at x_0 in direction ξ_0 then we say $(x_0, \xi_0) \in \text{WF}^s(f)$.

In general, the wavefront set and Sobolev wavefront sets are defined as subsets of the cotangent bundle, $T^*(\mathbb{R}^n)$, because this allows one to define the wavefront set invariantly on manifolds. However, we will consider the wavefront of f as a subset of $\mathbb{R}^n \times \mathbb{R}^n \setminus 0$, since we will not consider manifolds besides \mathbb{R}^n (except in the technical parts of the proof of Theorem 3.2 and Remark 3.3, where we will use cotangent bundles).

Note that if f is smooth on \mathbb{R}^n then $\text{WF}(f) = \emptyset$. If f is the characteristic function χ_Ω of a domain Ω with C^∞ boundary then $\text{WF}(\chi_\Omega)$ is the set of normal vectors to the boundary

$$
\text{N}(\partial(\Omega)) = \{(x, \xi) \mid x \in \partial(\Omega), \xi \in \mathbb{R}^n \setminus 0, \xi \perp \partial(\Omega) \text{ at } x\} = \text{WF}(\chi_\Omega).
$$

This is also true for $\text{WF}^s(f)$ for $s \geq 1/2$.

Radon transforms detect singularities perpendicular to the set being integrated over and so R will detect singularities of f normal to the sphere being integrated over. This is made clear in the following theorem, a more precise version was given in [16] and was proven for manifolds in arbitrary dimensions in [21].

Theorem 3.1. Let R be the spherical Radon transform in \mathbb{R}^3 with centers on the plane $x_3 = 0$. Then, R is an elliptic Fourier integral operator for functions supported in \mathbb{R}^3_+. Let f be a locally integrable function on \mathbb{R}^3_+ and $z \in \mathbb{R}^2$ and $r > 0$. $\text{WF}(f) \cap \text{N}(S(z,r)) = \emptyset$ if and only if Rf is C^∞ in some neighborhood of (z,r).

In [21] a precise relationship is given between the wavefront set of f and that of Rf, and the simple version given here explains that R “sees” singularities only if they are normal to the sphere $S(z,r)$

Example 3.1. To illustrate our theorem, we give a basic example. Let f be the characteristic function of a domain $\Omega \subset \mathbb{R}^3_+$ with C^∞ boundary. According to Theorem 3.1, a singularity of f will be visible in Rf near (z,r) if and only if the sphere $S(z,r)$ is tangent to $\partial(\Omega)$ (so normals to the boundary are normal to the sphere). Our reconstructions in section 5 are from a limited set of spheres, and the only singularities that are visible in those reconstructions are ones normal to spheres in the data set. Palamodov referred to the wavefront directions normal to $S(z,r)$ as audible, and he proved elegant estimates for singularities in the audible zone (and inaudible zone) for the circle transform in \mathbb{R}^2 [18].

Now that we have discussed the microlocal properties of R, we consider Λ. We first prove that Λ is a ΨDO and we give its symbol and then we discuss what the symbol means for the algorithm.

Theorem 3.2. Let Λ be the operator (2.3) with C^∞ cutoff function ϕ (2.2). Then, Λ is a pseudo-differential operator of order one on $\mathcal{E}'(\mathbb{R}^3_+)$. Furthermore the top-order symbol of Λ is

$$
\sigma(\Lambda) = 2\pi i \phi\left(\frac{x_3}{\xi_3}, \frac{x_3|\xi|}{\xi_3}|\xi|\right)
$$

where $(y_1, y_2, y_3)' = (y_1, y_2)$.

Note that the argument of ϕ is not defined if $\xi_3 = 0$, but we define the symbol to be zero there since for each $x \in \mathbb{R}^3_+$, the symbol is zero for ξ_3 close to 0. Before we prove the theorem we make some observations about what this means for our problem.

Note that our domain is \mathbb{R}^3_+ and so x_3 is always positive. The operator Λ is not elliptic since $\sigma(\Lambda)$ can be zero as ϕ can be zero. For $x \in \mathbb{R}^3_+$, let

$$\tag{3.3} C(x) = \left\{ \xi \in \mathbb{R}^3 | \xi_3 \neq 0, \left(x - \frac{x_3}{\xi_3} \right)' \in (-T,T)^2, x_3 |\xi|/|\xi_3| \in (\delta, M) \right\}.$$

The symbol of Λ is zero on the complement of $\text{Cl}(C(x))$. Where the symbol is zero tells where the operator Λ smooths, so Λf will not show any wavefront of f at (x, ξ) if $\xi \notin C(x)$ (see Remark 3.3 below).

Since the symbol $\sigma(\Lambda)$ is nonzero on $C(x)$ and homogeneous of degree one in ξ, if $\xi \in C(x)$, then Λ is elliptic of order one at (x, ξ) [19]. Therefore, if $\xi \in C(x)$, then $(x, \xi) \in \text{WF}(\Lambda f)$ if and only if $(x, \xi) \in \text{WF}(f)$. Thus wavefront of f for $\xi \in C(x)$ will, in some sense, be visible in Λf. Since Λ has degree one and is elliptic on $C(x)$, singularities of Λf will be one degree less smooth in Sobolev scale than those of f. Of course wavefront directions near $\text{bd}(C(x))$ might be reconstructed more weakly than those corresponding to $\phi = 1$. This discussion proves the following corollary.

Corollary 3.1. Let Λ be the operator (2.3) with C^∞ cutoff function ϕ (2.2). Let $x \in \mathbb{R}^3_+$ and let $\xi \in C(x)$. Then,

$$\tag{3.4} (x, \xi) \in \text{WF}^s(f) \text{ if and only if } (x, \xi) \in \text{WF}^{s-1}(\Lambda f).$$

Finally, we should emphasize that Theorem 3.2 and Corollary 3.1 are valid because we are considering only functions supported on one side of the plane $x_3 = 0$. Since the null space of R is the set of odd functions about $x_3 = 0$, R cannot distinguish singularities above (x', x_3) from those above $(x', -x_3)$. However, for functions supported in \mathbb{R}^3_+, this is not a problem.

Proof of Theorem 3.2. We will give an easy to understand explanation of the result and then we outline the proof.

For purposes of this heuristic discussion, we assume we can compose R^* and R and write $R^* \partial_{x_3} = \partial_{x_3} R^*$ without having the cutoff ϕ. These assumptions are wrong in general, but this calculation shows what result we should expect, and it will allow us to skip one step in the rigorous calculation. By Klein’s formula, $Id = \frac{1}{2\pi} H_{x_3}(-\Delta)^{1/2} \partial_{x_3} R^* R$, and the symbol of Id is 1. Recall that $\sigma(H_{x_3}) = -i \text{sgn}(\xi_3) = -i \xi_3/|\xi_3|$ and $H_{x_3}^{-1} = -H_{x_3}$ [26]. Our operator Λ without the cutoff ϕ is then $2\pi (\Lambda - \Delta)^{1/2} Id$ and therefore the symbol of Λ without the cutoff is $2\pi i \xi_3/|\xi_3|$ which corresponds to (3.2) without the ϕ.

Because we will be using manifolds besides \mathbb{R}^n in this proof, we will use the invariant conventions for wavefront sets and canonical relations and consider them as subsets of cotangent bundles. We will denote covectors as follows: for $\xi = (\xi_1, \xi_2, \xi_3)$ we denote $\xi dx = \xi_1 dx_1 + \xi_2 dx_2 + \xi_3 dx_3$ and for $\eta = (\eta_1, \eta_2)$, $\eta dz = \eta_1 dz_1 + \eta_2 dz_2$.

To prove the theorem rigorously, we add the cutoff ϕ and we calculate the symbol of the composition of the Fourier integral operators that make up Λ. This starts with the canonical relation of R. Then the canonical relation of R is [21]

$$\tag{3.5} C = \{ (z, r, x; \alpha ((x' - z) dz + r dr - (x - (z, 0)) dx) \} | x \in \mathbb{R}^3_Y, (z, r) \in Y, \alpha \neq 0 \}. n\footnote{Note that in formula (4.7) of [21], $r dr$ should be $2r dr$.}
Since \(x \in \mathbb{R}^3_+ \) we can specify global coordinates on \(C \) where we let \(S^2_+ = \{ \omega \in S^2 \mid \omega_3 > 0 \} \)
\[
S^2_+ \times \mathbb{R}^2 \times (0, \infty) \times (\mathbb{R} \setminus 0) \ni (\omega, z, r, \alpha) \rightarrow (z, r, z + r\omega; \alpha (\omega' dz + dr - \omega dx))
\]
after factoring. Using these coordinates it is easy to show that the projection \(\Pi_L: C \rightarrow T^* Y \setminus 0 \) is an injective immersion. This is the Bolker Assumption (e.g., [20, equation (9)]) and it implies that \(R^* \phi R \) is a pseudodifferential operator [10, 9]. Note that if we considered \(x \in \mathbb{R}^3 \) we would need to enlarge \(C \) so that in coordinates (3.6), we would need to include \(\omega \in S^2_0 = \{ t \in S^2 \mid \tau_3 = 0 \} \) and \(\Pi_L \) is not an immersion above such points.

Using (3.5) one sees that the projection to \(T^* \mathbb{R}^3_+ \setminus 0 \), \(\Pi_R: C \rightarrow T^* \mathbb{R}^3_+ \setminus 0 \), is also injective and for \((x, \xi dx) \in T^* \mathbb{R}^3_+ \setminus 0 \), \(\xi_3 \neq 0 \), we have
\[
(3.7) \quad \Pi_R^{-1}(x, \xi dx) = (z(x, \xi), r(x, \xi), x; \alpha(\xi) (\omega' \xi dz + dr - \omega(\xi) dx)),
\]
\[
(3.8) \quad z(x, \xi) = \left(x - \frac{x_3}{\xi_3} \right)\!
\]
\[
(3.9) \quad r(x, \xi) = \frac{x_3}{|\xi_3|},
\]
\[
(3.10) \quad \alpha(\xi) = -\frac{\xi_3}{|\xi_3|}, \quad \omega(\xi) = \frac{\xi_3}{|\xi_3|} \xi \in S^2_+.
\]
Since \(\xi \) must be normal to the sphere \(S(z, r) \), \(\xi \) must be parallel \(x - (z, 0) \). This explains (3.8). A calculation using (3.8) and the fact \(x_3 > 0 \) justifies (3.9). Finally, because \(\xi_3 \neq 0 \) and \(\omega_3(\xi) \) must be positive (if we require \(\omega \in S^2_+ \)), (3.8) and (3.9) are used to prove (3.10).

To calculate the symbol of \(\Lambda \) one follows the outline in [20]. We let \(Z = \{ (z, r, x) \mid (z, 0) - x \} = r \) be the incidence relation of all spheres and points such that the point \(x \) is on the sphere \(S(z, r) \). We have already chosen measure \(d\mu = dx \) on \(\mathbb{R}^3_+ \) and \(d\nu = 4\pi r dr dx dz d\omega \). We choose measure on \(Z \) to be \(d\mu = \sqrt{\phi(z, r)} r^2 dr dz d\omega \). As done by Guillemin [8] one uses these measures to define measures for the Radon transform and its dual. This gives measure on \(S(z, r) \) as \(\frac{d\mu}{d\nu} = \frac{\sqrt{\phi(z, r)}}{4\pi} d\omega \) and the measure for the backprojection is \(\frac{d\mu}{d\nu} = \sqrt{\phi(z, r)} dz \) and so the Radon transform defined by this theory is \(R' = \sqrt{\phi} R \) and the dual transform is \((R')^* = R^* \sqrt{\phi} \). Therefore, \((R')^* R' = R^* \phi R \), and this justifies our choices of \(dx, dn \), and \(d\mu \).

The next part of the calculation is to write \(I_Z \), integration over \(Z \), as a Fourier integral distribution. To do this one chooses coordinates so that \(Z \) is locally defined by \(w = 0 \) where coordinates on \(Z \) are \((\tilde{z}, w) \). One then follows the mathematics on p. 337 [20] to calculate the symbol of \(I_Z \) as a Fourier integral distribution as in the calculation of (15) in that article. One calculates that it is
\[
(3.11) \quad \sigma(I_Z) = \frac{(2\pi)^2 \phi(z, r) dr dz d\eta}{(4\pi)^2 \Pi_R^* (|\sigma_R|^3/2) \Pi_L^* (|\sigma_Y|^3/2)} (\Pi^{-1}_R(x, \xi dx))
\]
where \(\sigma_R \) and \(\sigma_Y \) are the canonical symplectic forms on \(T^* \mathbb{R}^3 \) and \(T^* Y \). To calculate the pullbacks in (3.11) one lets \(\lambda = \Pi_R^{-1}(x, \xi dx) \) as given in (3.8)-(3.10) and one chooses a basis of \(T \mathbb{R} C \) using the coordinates (3.6). Then, using (3.11) and this calculation of the pullbacks, we get
\[
(3.12) \quad \sigma(R^* \phi R)(x, \xi) = \frac{2\pi \phi \left((x - \frac{x_3}{\xi_3} \xi', \frac{\xi_3}{|\xi_3|} \right)}{|\xi_3| |\xi|}
\]
and composing with \(\partial_{x_3}(-\Delta) \), which has symbol \(\xi_3 |\xi|^2 \) gives us the final result (3.2). Finally, one should note that there is a Maslov symbol ([12] which is discussed in the first full paragraph in [20,
p. 338]) but it must be constant because the naively calculated symbol at the start of the proof can be defined as a function (see also the discussion on [20, p. 338]). Note that different conventions for the definition of symbol can result in different constants in (3.2), but our conventions are chosen so as to agree with the naive calculations at the start of this proof.

Remark 3.3. We will now use the symbol calculation in the proof of Theorem 3.2 to explain why \(\Lambda \) is smoothing off of the set \(C(x) \) (3.3). It is clear from the definition of \(C(x) \) that the symbol \(\sigma(\Lambda) \) is zero off of \(C(x) \), but since \(\sigma(\Lambda) \) is the top order symbol, this implies only that \(\Lambda \) smooths one degree more off of \(C(x) \) than on \(C(x) \) not that it is \(C^\infty \) smoothing.

We will use the following notation [12]: \(C^t \) is \(C \) but with the \(T^*\mathbb{R}^3 \) and \(T^*Y \) coordinates reversed, and for \(A \subset T^*\mathbb{R}^3 \),

\[
C \circ A = \{ (z, r, \eta) \in T^*Y \mid \exists (x, \tau) \in A, \text{ with } (z, r, x; \eta, \tau) \in C \}.
\]

We now show that \(\Lambda \) is smoothing off of \(C(x) \). Let \(x \in \mathbb{R}^3_+ \) and \(\xi \notin C(x) \). First assume \(\xi_3 \neq 0 \). In this case one can see using (3.7)-(3.10) that \(\Pi_L \left(\Pi_R^{-1}(x, \xi dx) \right) = (z, r, \eta) \) for some \((z, r) \in Y \) and some \(\eta \in T^*_{(x,r)}Y \). However, since \(\xi \notin C(x) \), by (3.8)-(3.10), \(\phi \) is zero in a neighborhood of \((z, r) \). Therefore, \(\phi RF \) is \(C^\infty \) in a neighborhood of \((z, r) \) and so \((z, r, \eta) \notin WF(\phi RF) \). This shows that

\[
(\mathbf{x}, \xi dx) = \Pi_R \left(\Pi_L^{-1} \left(\Pi_R^{-1}(x, \xi dx) \right) \right) = \Pi_R(\Pi_L^{-1}(z, r, \eta))
\]

is not in \(WF(\Pi^* (\phi RF)) \). Here we are using the following: \(\Pi_L \) and \(\Pi_R \) are injective; for \(A \subset T^*\mathbb{R}^3_+ \setminus \emptyset \), \(C \circ A = \Pi_L \left(\Pi_R^{-1}(A) \right) \) and for \(B \subset T^*Y \), \(C^t \circ B = \Pi_R \left(\Pi_L^{-1}(B) \right) \); and finally the composition calculus for Fourier integral operators [12]: \(WF(\Lambda(f)) \subset C^t \circ (C \circ WF(f)) \). Therefore, \(\Lambda \) is smoothing in codirection \((\mathbf{x}, \xi dx) \).

If \(\xi_3 = 0 \) then by inspecting the expression for \(C \), (3.5), \(\Pi_R^{-1}(x, \xi dx) = \emptyset \) since \(x_3 \neq 0 \). Therefore, for this \(\xi \), \(C^t \circ C \circ \{ (x, \xi dx) \} = \emptyset \) and \(\Lambda \) is smoothing in codirection \((\mathbf{x}, \xi dx) \).

4. The Approximate Inverse: Mollifier \(e_{p,s,k} \) and Reconstruction Kernel \(\psi_{p,s,k} \)

For an implementation of our local reconstruction operator \(\Lambda \) we need to stabilize its numerical evaluation. Several approaches are possible. We follow ideas of the approximate inverse [15] as it provides a general and well-developed framework for the stable solution of operator equations of the first kind, see e.g. [22, 23, 24].

Instead of computing \(\Lambda f(p) \) for \(p \in \mathbb{R}^3_+ \) directly, we recover the smoothed version

\[
(\Lambda f, e_{p,s,k})_{L^2(\mathbb{R}^3)}
\]

where

\[
e_{p,s,k}(x) = C_{k,s} \left\{ \begin{array}{ll}
(s^2 - d^2)^k & : d < s, \\
0 & : d \geq s,
\end{array} \right. \quad d = |x - p|,
\]

serves as mollifier with \(s, k > 0 \) and

\[
C_{k,s} = \left(\int_{B_s(p)} (s^2 - d^2)^k \, dV \right)^{-1} \frac{\Gamma(k + 5/2)}{\pi^{3/2} \Gamma(k + 1) s^{3+2k}}.
\]

Observe that

\[
\int_{\mathbb{R}^3} e_{p,s,k}(x) \, dx = 1 \quad \text{and} \quad \text{supp} \, e_{p,s,k} = B_s(p).
\]
Further, the inner product (4.1) can be expressed as a convolution integral:
\[\Lambda f * e_{0,s,k}(p) = (\Lambda f, e_{p,s,k})_{L^2(\mathbb{R}^3)}. \]
The parameter \(s > 0 \) scales the mollifier and plays the role of a regularization parameter: the larger \(s \) the smoother the reconstruction. In the sequel we implicitly assume \(s < p_3 \) yielding \(\text{supp}\ e_{p,s,k} \subset \mathbb{R}^3_+ \) for \(p \in \mathbb{R}^3_+ \). Note that \(k \) is merely a design parameter.

In the following theorem we give analytically a so-called reconstruction kernel allowing the computation of \((\Lambda f, e_{p,s,k})_{L^2(\mathbb{R}^3)} \) from the spherical means of \(f \).

Theorem 4.1. We have that
\begin{align*}
(4.2) \quad (\Lambda f, e_{p,s,k})_{L^2(\mathbb{R}^3)} &= (Rf, \psi_{p,s,k})_{L^2(\mathbb{R}^2 \times [0,\infty], r^2 dr dz)} \\
\text{with reconstruction kernel} \quad \psi_{p,s,k}(z,r) &= \phi(z,r) \frac{C_{k,s} k p_3 A^{k-2}}{L} \left[\frac{1}{Lk} \left(k - 2 + \frac{B}{2rL} \right) - \frac{1}{r} \right] \\
&\quad + 2(k-1)s^2 \left[\frac{1}{r} - \frac{1}{L(k-1)} \left(k - 3 + \frac{B}{2rL} \right) \right]
\end{align*}
for \(r \in [L-s, L+s] \) where
\[L = |(z,0) - p|, \quad A = s^2 - (L-r)^2 \text{ and } B = (r+L)^2 - s^2. \]
For \(r \not\in [L-s, L+s] \): \(\psi_{p,s,k}(z,r) = 0 \).

The proof of the theorem can be found in Appendix A.

5. Reconstructions

In this section we give numerical reconstructions using the approximate inverse. We will also interpret the results in terms of the microlocal properties of \(R \) and \(\Lambda \) that were given in Section 3.

We want to approximate
\begin{align*}
(5.1) \quad \Lambda f(p) &\approx (\Lambda f, e_{p,s,k})_{L^2(\mathbb{R}^3)} = (Rf, \psi_{p,s,k})_{L^2(\mathbb{R}^2 \times [0,\infty], r^2 dr dz)} \\
\text{from the discrete data} \quad g(i,j,k) &= Rf(z_{i,j}, r_k), \quad i,j = 1,\ldots,N_z, \quad k = 1,\ldots,N_r, \\
(5.2) \quad \{z_{i,j}\} &\subset [-z_{\text{max}}, z_{\text{max}}]^2 \text{ and } \{r_k\} \subset (0, r_{\text{max}}]
\end{align*}
are Cartesian grids with uniform step sizes \(h_z \) and \(h_r \), respectively. A straightforward discretization of the triple integral on the right of (5.1) yields
\begin{align*}
\Lambda f(p) &\approx \tilde{\Lambda} f(p) := h_z^2 h_r \sum_{i=1}^{N_z} \sum_{j=1}^{N_z} \sum_{k=1}^{N_r} g(i,j,k) \psi_{p,s,k}(z_{i,j}, r_k) r_k^2 \\
&\quad = h_z^2 h_r \sum_{i=1}^{N_z} \sum_{j=1}^{N_z} \sum_{r_k \in E_{i,j}(p)} g(i,j,k) \psi_{p,s,k}(z_{i,j}, r_k) r_k^2
\end{align*}
with \(\mathcal{L}_{i,j}(p) = [L - s, L + s] \) and \(L = |(z_{i,j}, 0) - p| \). Thus, the numerical effort for computing \(\hat{f}(p) \) takes \(O(sN^2) \) floating point operations when neglecting the evaluation of the kernel \(\psi_{p,s,k} \) at \((z_{i,j}, r_k) \). Note that the computation of \(\hat{f} \) at different reconstruction points can be done in parallel.

For our numerical computations presented in this section we have chosen the following cutoff function \(\phi \) (2.2). Given \(0 < \delta < M \) and \(T > 0 \) we define
\[
\phi(z, r) = \alpha(z) \beta(r)
\]
where
\[
\beta(r) = \begin{cases}
0 & : r \leq \delta \text{ or } r \geq M + 1, \\
1 & : 2\delta \leq r \leq M, \\
p(r, M) & : M < r < M + 1, \\
q(r, \delta) & : \delta < r < 2\delta,
\end{cases}
\]
with
\[
p(r, M) = \frac{u(M + 1 - r)}{u(M + 1 - r) + u(r - M - 1/2)}, \quad q(r, \delta) = \frac{u(r/\delta - 1)}{u(r/\delta - 1) + u(2 - r/\delta)},
\]
and
\[
u(x) = \begin{cases}
\exp(-1/x) & : x > 0, \\
0 & : x \leq 0.
\end{cases}
\]
Further,
\[
\alpha(z) = \tilde{\alpha}(z_1)\tilde{\alpha}(z_2) \quad \text{and} \quad \tilde{\alpha}(x) = \begin{cases}
1 & : |x| < T, \\
p(|x|, T) & : T \leq |x| \leq T + 1, \\
0 & : |x| > T + 1.
\end{cases}
\]
Thus,
\[
\phi \in C^{\infty}(\mathbb{R}^3), \quad \text{supp} \phi \subset [-T - 1, T + 1]^2 \times \delta, M + 1], \quad \text{and} \quad \phi|_{[-T, T]^2 \times \delta, M} = 1.
\]
We always set \(M := r_{\max} - 1, \delta := 0.01, \) and \(T = z_{\max} - 1 \).

The function \(f: \mathbb{R}_+^3 \to \mathbb{R} \) to be reconstructed is a superposition of three indicator functions given by
\[
(5.4) \quad f = \chi_{B_1(0,0,3)} - \chi_{B_{0.5}(0.25,1,4)} + 0.3\chi_{x_3 \geq 6}
\]
whose Sonar transform can be calculated analytically. The rightmost indicator function models a flat ocean floor at \(x_3 = 6 \), see Figure 1 for a visualization.

In our first set of experiments we will demonstrate which singularities of \(f \) can be detected depending on the available data. To this end we note that the wavefront set of \(f \) (compare (3.1)) is
\[
WF(f) = \{ (x, \xi) | x \in \partial B_1(0,0,3), \xi = \lambda(x - (0,0,3)), \lambda \neq 0 \} \\
\cup \{ (x, \xi) | x \in \partial B_{0.25}(0.25,1,4), \xi = \lambda(x - (0.25,1,4)), \lambda \neq 0 \} \\
\cup \{ (x, \xi) | x_3 = 6, \xi_1 = \xi_2 = 0, \xi_3 \neq 0 \},
\]
that is, the wavefront set consists of all pairs \((x, \xi) \) where \(x \) is on the boundary of either one of the two balls or of the ocean floor and \(\xi \) is normal to the boundary at this point.\footnote{The two boundary spheres intersect in a small circle. At each intersection point are two “singularity directions” corresponding to normals to the two spheres.}
Figure 1. Visualization of the function (5.4) to be reconstructed. The two balls slightly intersect.

Figure 2 displays cross sections $\tilde{\Lambda}f(0.25, \cdot, \cdot)$ for three different sets of limited data: $z_{\text{max}} = 3$ (top left), $z_{\text{max}} = 6$ (top right), and $z_{\text{max}} = 12$ (bottom). Further, $r_{\text{max}} = 10$ in all three settings. All cross sections have been computed from $N^2 N_i = 30!^2 \cdot 250 = 22650250$ spherical means.

To understand the extent to which our results from section 3 are reflected in our reconstructions, we inspect the set $C(x)$ (3.3) on which Λ is elliptic of order one. The wavefront $(x, \xi) \in \text{WF}(f)$ will be visible in Λf (or $\tilde{\Lambda} f$) if $\xi \in C(x)$, that is, $\xi_3 \neq 0$ and

$$\frac{x_i - z_{\text{max}}}{x_3} < \frac{\xi_i}{\xi_3} < \frac{x_i + z_{\text{max}}}{x_3}, \quad i = 1, 2, \quad \text{and} \quad \frac{\delta}{x_3} < \left| \frac{\xi}{\xi_3} \right| < \frac{r_{\text{max}}}{x_3}.$$

Thus, wavefronts for which ξ has dominant horizontal components ($|\xi_3|$ is small compared to $|\xi|$) will not be recovered. The visible wavefronts have dominant vertical components and the smaller z_{max} and r_{max} are and the larger x_3 is, the more dominant the vertical components have to be to be visible.

This fact is illustrated by the reconstructions shown in Figures 2. With increasing z_{max} (top left, top right, bottom) more and more singularities of f are recovered. In the bottom reconstruction only the singularities with almost horizontal directions are missing. The ocean floor $\{(x, \xi)|x_3 = 6, \xi_1 = \xi_2 = 0, \xi_3 \neq 0\}$ is visible because we have

$$\frac{x_i - z_{\text{max}}}{6} < 0 < \frac{x_i + z_{\text{max}}}{6} \quad (\Leftrightarrow -z_{\text{max}} < x_i < z_{\text{max}}) \quad \text{and} \quad \frac{0.01}{6} < 1 < \frac{10}{6}.$$

In Figure 3 we again display $\tilde{\Lambda}f(0.25, \cdot, \cdot)$ with $z_{\text{max}} = 3$, however, with clearly reduced maximal radii: $r_{\text{max}} = 4.5$ and $r_{\text{max}} = 5.5$. The ocean floor is not recovered by either reconstruction. For $r_{\text{max}} = 4.5$ even the bottom hemisphere of the smaller ball is missing and a strong artefact corrupts the reconstruction.
We have realized the evaluation of $\tilde{\Lambda}f$ in a subroutine written in the C programming language and compiled by the \texttt{mex}-command under MATLAB 7.8 (R2009a). Within this MATLAB environment each of the reconstructions from Figure 2 required about 12h30min CPU-time on an AMD Athlon\texttrademark{} 64 Processor 3800+ with 2.5GHz and 1GB RAM where $\tilde{\Lambda}f(0.25, \cdot, \cdot)$ has been computed on a 200×400 grid. Most of the CPU-time was consumed by evaluating the reconstruction kernel. Precomputing the kernel together with a clever interpolation scheme might reduce run time considerably.
Figure 2. Reconstructions \(\tilde{\Lambda} f(0.25, \cdot, \cdot) \), \(f \) from (5.4), where \(r_{\text{max}} = 10 \) and \(z_{\text{max}} = 3 \) (top left), \(z_{\text{max}} = 6 \) (top right), and \(z_{\text{max}} = 12 \) (bottom) with \(N_z = 301 \) and \(N_r = 250 \), see (5.2) and (5.3). The parameters used for the reconstruction kernel are \(s = 0.8 \) and \(k = 3 \). The dashed black lines in the bottom reconstruction indicate the singular support of \(f \) and are not part of the reconstruction.
Figure 3. Cross sections $\tilde{A} f(0.25, \cdot, \cdot)$, f from (5.4), where $r_{\text{max}} = 4.5$ (left) and $r_{\text{max}} = 5.5$ (right). Further, $z_{\text{max}} = 3$, $N_z = 301$ and $N_r = 200$, see (5.2) and (5.3). The parameters used for the reconstruction kernel are $s = 0.8$ and $k = 3$. The dashed black lines in the left reconstruction indicate the singular support of f and are not part of the reconstruction.
To prove that we really perform fully 3D reconstructions we display several cross sections \(\tilde{\Lambda} f(x_1, \cdot, \cdot) \) for \(x_1 = -1 + 0.25i, i = 0, \ldots, 8 \), in Figure 4. Here we like to emphasize the following observation: the boundaries of the two balls in the different cross sections are reconstructed with different intensity (note the different color scale). The reason for this fact is that the 3D-direction of the corresponding wavefront does not agree with the 2D-normal on the ball in the displayed cross section.\(^3\) The more the wavefront direction differs from the 2D-normal in the cross section the less pronounced is the singularity in the respective cross section.

We finish the numerics section by demonstrating how the algorithm performs with noisy data. To this end we perturb the exact data \(g \) (5.2) according to
\[
g^\varepsilon(i, j, k) = g(i, j, k) + \varepsilon \|g\| \frac{\text{noise}(i, j, k)}{\|\text{noise}\|}, \quad \varepsilon > 0,
\]
where \text{noise} is an \(N_z \times N_z \times N_r \) array of uniformly distributed random numbers\(^4\) with values in \([-1, 1]\) and where the discrete norm
\[
\|g\|^2 := h_z^2 h_r \sum_{i=1}^{N_z} \sum_{j=1}^{N_z} \sum_{k=1}^{N_r} |g(i, j, k)|^2 r_k^2
\]
approximates the norm in \(L^2([-z_{\text{max}}, z_{\text{max}}]^2 \times [0, r_{\text{max}}], r^2 dz dr) \). We have that
\[
\frac{\|g - g^\varepsilon\|}{\|g\|} \leq \varepsilon.
\]
Thus, \(\varepsilon \) measures the relative noise. In all experiments below we worked with \(\varepsilon = 3\% \).

First, the smoothing or regularizing effect of the scaling parameter \(s \) is illustrated. Figure 5 contains reconstructions of a cross section \((x_1 = 0.25) \) from the same perturbed data for 4 different scaling parameters. As \(s \) increases the noise gets reduced at the price of blurred and fuzzy contours.

Finally, in Figure 6 we present the same cross sections of \(\tilde{\Lambda} f \) as in Figure 4, however, reconstructed from noisy data with scaling parameter \(s = 1.6 \).

At the moment we lack a rigorous theory for selecting the regularization parameter \(s \) as a function of the discretization step sizes \(h_z \) and \(h_r \) and on the noise level \(\varepsilon \). The asymptotic theory developed in [22] cannot straightforwardly extended to the present situation. Therefore, in our numerical experiments we have chosen \(s \) by trial and error inspecting the reconstructions visually. Such a selected parameter \(s \) for a certain configuration \(h_z, h_r, \varepsilon, \) noise characteristic, and \(f \) is anticipated to deliver decent reconstructions also for different \(f \) that are of the same smoothness class. We propose this modus operandi in real applications.

\(^3\)We have two exceptions: for \(x_1 = 0 \) the 2D-normals on the large ball in the cross section agree with the corresponding directions of the wavefronts. The same holds true for the small ball at \(x_1 = 0.25 \).

\(^4\)In all computations we used the same \text{noise} array.
Figure 4. Cross sections $\tilde{\Lambda} f(x_1, \cdot, \cdot)$, f from (5.4), for several x_1’s. Here, $r_{\text{max}} = 10$, $z_{\text{max}} = 12$, $N_z = 301$ and $N_t = 250$, see (5.2) and (5.3). The parameters used for the reconstruction kernel are $s = 0.8$ and $k = 3$. Please note the different color scales for each reconstruction.
Figure 5. Reconstructions $\tilde{\Lambda}f(0.25, \cdot, \cdot)$, f from (5.4), under 3% relative noise for different scaling parameter: $s = 1.1$ (top left), $s = 1.5$ (top right), $s = 2$ (bottom left), and $s = 2.5$ (bottom right). Further, $r_{\text{max}} = 10$, $z_{\text{max}} = 12$, $N_z = 301$, $N_r = 250$, see (5.2) and (5.3), and $k = 3$. The dashed black lines in the bottom left reconstruction indicate the singular support of f and are not part of the reconstruction.
Figure 6. Cross sections $\tilde{\Lambda f}(x_1, \cdot, \cdot)$, f from (5.4), for several x_1’s under 3% relative noise. Here, $r_{\text{max}} = 10$, $z_{\text{max}} = 12$, $N_z = 301$ and $N_r = 250$, see (5.2) and (5.3). The parameters used of the reconstruction kernel are $s = 1.6$ and $k = 3$. Please note the different color scales for each reconstruction.
To find $\psi_{p,s,k}$, we start from (4.2) and by duality, we must have
\[\psi_{p,s,k}(z,r) = \phi(z,r) R(\partial_{x_3} \Delta \tilde{\epsilon}_{p,s,k})(z,r). \] (A.1)
So as not to deal with too many constants, we consider an unnormalized version of $\epsilon_{p,s,k}$ and define
\[\tilde{\epsilon}_{p,s,k} = \epsilon_{p,s,k}/C_{k,s}. \]
Now we state the pieces we need to prove the expression for $\psi_{p,s,k}$ in Theorem 4.1, and we use (A.1).

Lemma A.1. Let $k \in \mathbb{N}$, $k \geq 3$. Then,
\[R(\partial_{x_3} \Delta \tilde{\epsilon}_{p,s,k})(z,r) = \left[4k(2k+1)(k-1) \right] \left[R(x_3 \tilde{\epsilon}_{p,s,k-2}) - p_3 R(\tilde{\epsilon}_{p,s,k-2}) \right] \]
\[+ 8k(k-1)(k-2)s^2 \left[p_3 R(\tilde{\epsilon}_{p,s,k-3}) - R(x_3 \tilde{\epsilon}_{p,s,k-3}) \right]. \] (A.2)
For ℓ a nonnegative integer
\[R\tilde{\epsilon}_{p,s,\ell}(z,r) = \frac{4\ell+1}{4(\ell+1)\pi L} \quad r \in (L-s, L+s) \] (A.3)
and
\[R(x_3 \tilde{\epsilon}_{p,s,\ell})(z,r) = \frac{p_3 A^{\ell+1}}{4L^2(\ell+1)(\ell+2)} \left(\ell + \frac{B}{2rL} \right) \quad r \in (L-s, L+s). \] (A.4)
where $L = |(z,0) - p|$, $A = s^2 - (L-r)^2$, and $B = (r + L)^2 - s^2$ and where $r \in (L-s, L+s)$ and the functions in (A.3) and (A.4) are zero outside this interval.

The proof of (A.2) follows by a calculation and for $k = 3$ noting that the derivatives are distributional derivatives (since $\tilde{\epsilon}_{p,s,0}$ is not continuous). Using (A.3) and (A.4) for various values of ℓ in (A.2), one proves (4.3) in Theorem 4.1.

To prove the lemma, first recall that p is the center of the mollifier $\tilde{\epsilon}_{p,s,\ell}$. We assume the sphere we are integrating over has radius r and is centered at $z = (z_1, z_2)$ on the $x_1 x_2$-plane. Furthermore, we denote the distance from z to p by
\[L := |(z,0) - p|. \]
The condition for the integral to be nonzero is $r \in (L-s, L+s)$, so assume r is in this interval. Also, $L \geq p_3$ since z is on the $x_1 x_2$-plane and $p_3 > 0$.

The calculation of $R(\partial_{x_3} \Delta \tilde{\epsilon}_{p,s,k})$ reduces to expressions involving $R(\tilde{\epsilon}_{p,s,\ell})$ and $R(x_3 \tilde{\epsilon}_{p,s,\ell})$ for $\ell = k-3, k-2, k-1$ if one uses that $\tilde{\epsilon}_{p,s,k}$ is radial about p, and one uses the radial form of the Laplacian, $\Delta = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r}$ where $d = |x - p|$. One uses this observation, to calculate (A.2).

We now prove (A.4) by rotating and translating the picture and then using spherical coordinates. The proof of (A.3) uses similar arguments but is simpler. If we take a point v on $S(z, r)$ then the x_3 coordinate of v is simply $v \cdot e_3$. This is the same as
\[x_3 = v \cdot e_3 = (v - z) \cdot e_3 \]
since z is on the $x_1 x_2$-plane.

Let $\alpha \in (0, \pi/2]$ be the angle between the vectors $((p',0) - z)$ and $(p - z)$. Note that
\[\sin \alpha = \frac{p_3}{L}. \] (A.5)
We make a rigid motion of \mathbb{R}^3 so that $(z,0)$ is mapped to the origin, p to $(0,0,L)$ and $(p',0)$ to the point in the x_1x_3-plane $(0,0,L) + p_3(\cos \alpha, 0, -\sin \alpha)$.

Under this transformation, e_3 is mapped to the unit vector in the direction from $(0,0,L) - x_3(\cos \alpha, 0, -\sin \alpha)$ to $(0,0,L)$. That is,

$$e_3 \mapsto (- \cos \alpha, 0, \sin \alpha).$$

If $v \in S(z,r)$ let \tilde{v} be the point on $S(0,r)$ to which it is mapped under this rotation. Then the x_3-coordinate of v is

$$x_3 = v \cdot e_3 = (v - (z,0)) \cdot e_3 = (\tilde{v} - (0,0,0)) \cdot (- \cos \alpha, 0, \sin \alpha)$$

since the dot product does not change under rigid motion and because under this rigid motion e_3 gets mapped to the vector in (A.6).

We can use spherical coordinates about the x_3-axis to integrate so an arbitrary point on the sphere of radius r centered at the origin is

$$(\theta, \phi) \mapsto \tilde{v} = r(\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi).$$

Using (A.7), we see that, in these new coordinates, x_3 is

$$x_3 = r(\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi) \cdot (- \cos \alpha, 0, \sin \alpha) = -r \cos \alpha \sin \phi \cos \theta + r \cos \phi \sin \alpha.$$

When we put this into the integral of the spherical mean, we get

$$R(x_3 \tilde{e}_{p,s,\ell})(z,r) = \frac{1}{4\pi} \int_0^\Phi \int_0^{2\pi} (s^2 - d^2)^\ell [-r \cos \alpha \sin \phi \cos \theta + r \cos \phi \sin \alpha] \sin \phi \, d\theta \, d\phi,$$

where Φ is the upper limit of integration. Since Φ is the angle at the origin of the triangle with vertices the origin and $(0,0,L)$, and with sides r, L s, the law of cosines shows that

$$s^2 = r^2 + L^2 - 2rL \cos \Phi,$$

$$\cos \Phi = \frac{L^2 + r^2 - s^2}{2rL}.$$

Now, we do some simple calculations. First, recall that in the integral (A.8), ϕ is the angle of inclination from the x_3-axis to the point being integrated, so $d^2 = r^2 + L^2 - 2rL \cos \phi$ and using (A.9) we see

$$s^2 - d^2 = 2rL(\cos \phi - \cos \Phi)$$

and integral (A.8) becomes

$$R(x_3 \tilde{e}_{p,s,\ell})(z,r) = \frac{(2rL)^\ell}{4\pi} \int_0^\Phi \int_0^{2\pi} [-r \cos \alpha \sin \phi \cos \theta + r \cos \phi \sin \alpha][\cos \phi - \cos \Phi]^{\ell} \sin \phi \, d\theta \, d\phi.$$

First, note that after we integrate in θ, the first term in brackets drops out, so we are left with

$$R(x_3 \tilde{e}_{p,s,\ell})(z,r) = \frac{r(2rL)^\ell}{2} \int_0^\Phi [\cos \phi \sin \alpha][\cos \phi - \cos \Phi]^{\ell} \sin \phi d\phi.$$

Now, if we make the substitution $u = \cos \phi - \cos \Phi$ (and $\cos \phi = u + \cos \Phi$) and use the expression (A.5) for $\sin \alpha$, then we get (A.4).

If one goes through a calculation using the same steps but without the factor of x_3, then one gets (A.3). In both (A.3) and (A.4), it helps to simplify $1 - \cos \Phi$ and $1 + \cos \Phi$ using (A.9).
Acknowledgements: The first author thanks Karlsruher Institut für Technologie (formerly Universität Karlsruhe) for its hospitality while this work was begun. The authors thank both referees for very helpful comments. They thank one of the referees for pointing out that (2.1) needed \((-\Delta)^{1/2}\) rather than \(\Delta^{1/2}\). This error was due to a nonstandard convention for the Laplacian in [6] and [2].

References

Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), D-76128 Karlsruhe, Germany

E-mail address: andreas.rieder@kit.edu

Fakultät V, Institut für Mathematik, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany

E-mail address: thomas.schuster@uni-oldenburg.de