Webrelaunch 2020

Der Modellansatz: Modell229 - Gruppenentscheidungen

modellansatz.de/gruppenentscheidungen

Bei genauem Hinsehen finden wir die Naturwissenschaft und besonders Mathematik überall in unserem Leben, vom Wasserhahn über die automatischen Temporegelungen an Autobahnen, in der Medizintechnik bis hin zum Mobiltelefon. Woran die Forscher, Absolventen und Lehrenden in Karlsruhe gerade tüfteln, erfahren wir im Modellansatz Podcast aus erster Hand.

Der Modellansatz: Gruppenentscheidungen, Diagramm: S.Gassama, L.Harms, D.Schneiderhan , Komposition: S. Ritterbusch




In den nächsten Wochen bis zum 20.2.2020 möchte Anna Hein, Studentin der Wissenschaftskommunikation am KIT, eine Studie im Rahmen ihrer Masterarbeit über den Podcast Modellansatz durchführen. Dazu möchte sie gerne einige Interviews mit Ihnen, den Hörerinnen und Hörern des Podcast Modellansatz führen, um herauszufinden, wer den Podcast hört und wie und wofür er genutzt wird. Die Interviews werden anonymisiert und werden jeweils circa 15 Minuten in Anspruch nehmen. Für die Teilnahme an der Studie können Sie sich bis zum 20.2.2020 unter der Emailadresse studie.modellansatz@web.de bei Anna Hein melden. Wir würden uns sehr freuen, wenn sich viele Interessenten melden würden.




Gudrun sprach im Januar 2020 mit drei Studenten ihrer Vorlesung Mathematical Modelling and Simulation: Samory Gassama, Lennart Harms und David Schneiderhan. Sie hatten in ihrem Projekt Gruppenentscheidungen modelliert. In dem Gespräch geht es darum, wie man hierfür mathematische Modelle findet, ob man Wahlsysteme fair gestalten kann und was sie aus den von ihnen gewählten Beispielen gelernt haben.

Wie lassen sich Entscheidungen von Wählergruppen fair in demokratische Willensbildung einbringen? Mit diesem Thema beschäftigt sich u.a. auch die Volkswirtschaftslehre. Die dafür benutzten Modelle sollten einige Eigenschaften haben. Ein grundlegendes Kriterium wäre beispielsweise: Wenn alle der gleichen Meinung sind, sollte diese Meinung auch immer die Gruppenentscheidung sein. Ein weiteres Kriterum könnte verlangen, dass das Ergebnis Pareto-optimal ist, es also kein anderes Ergebnis gibt, mit dem jedes Gruppenmitglied zufriedener wäre.

Um die Präferenz der Gruppe auszudrücken, führen die Studenten die Wohlfahrtsfunktion ein. Das ist eine Abbildung, welche als Input die Präferenzen der einzelnen Wähler verknüpft. Das Wahlverfahren wird sozusagen in dieser Abbildung modelliert. Man wünscht sich

  • Anonymität: Jede Stimme sollte gleich gewertet werden.
  • Neutralität: Wenn die Relationen im Input invertiert werden, bewirkt dies das Selbe beim Output.
  • Monotonie: Falls eine Relation aus dem Input, welche nicht den Präferenzen des Outputs entspricht, sich zur Präferenzrelation des Outputs ändert, bleibt dieser gleich.

Verfahren wie Rangaddition und Condorcet-Methode sind klassisch und erfüllen leider nicht alle diese Bedingungen.

Die Studenten fügen eine weitere Entscheidungsebene im Modell hinzu. Man nennt dies geschachtelte Wahl. Als Beispiele dienen die US Präsidentschaftswahl 2016 und der Eurovision Song Contest 2019.

Bei den Präsidentschaftswahlen in den VereinigtenStaaten von Amerika, wird der Präsident von den Wahlleuten der Bundesstaaten für eine Amtszeit bestimmt. Jeder Bundesstaat hat unterschiedlich viele Wahlleute. Die Wahlberechtigten legen unmittelbar nur die Wahlleute fest. Deshalb ist das Modell der US Präsidentschaftswahlen ist ein geschachteltes Modell. Im ersten Schritt, werden in allen 52 Staaten die Wahlen, mit den US Bürgern des jeweiligen Staates als Wähler, mithilfe des Condorcet Modells durchgeführt. Im zweiten Schritt bilden eben jene 52 Staaten die neue Wählermenge, welche dann über eine gewichtete Rangaddition den endgültigen Präsidenten bestimmt.

Die Studenten haben im Projekt zwei Datensätze verwendet, um die Präsidentschaftswahlen 2016 in den USA zwischen Donald Trump und Hillary Clinton zu simulieren. Sie geben die Anzahl der Stimmen für Donald Trump und Hillary Clinton in den verschiedenen Wahlbezirken der USA an. Um die Simulation durchzuführen, wurde Google Colab verwendet. Die benutzte Programmiersprache ist Python. Die Wahl wurde folgendermaßen simuliert: Man summiert die Anzahl der Stimmen für alle Kandidaten in jedem Staat. Anschließend vergleicht man die Anzahl der Stimmen für Trump und Clinton in jedem Bundesstaat. Dem Gewinner eines Staates werden die Anzahl der Wahlleute dieses Bundesstaates in das Endergebnis addiert. Zum Schluss werden die Anzahl der Wahlleute, welche für die Kandidaten gestimmt haben verglichen.

Trump gewinnt die Wahlen in 30 Bundesstaaten und Clinton in 20 Bundesstaaten, genauer gesagt erhält Trump 304 Wahlleute und Clinton 227. Somit wäre gewinnt Trump gegen Clinton.

Alternativ zum geschachtelten Modell, wird anschließend die Abstimmungsmethode direkt auf alle Wahlstimmen angewandt. Dabei erhält Trump 62.984.828 Stimmen, während Clinton 65.853.514 bekommt. Bei diesem Verfahren gewinnt Clinton gegen Trump.

Im Gespräch wird besprochen, dass es ein Problem ist, wenn bei recht knappem Wahlausgang pro Bundesstaat eine "Rundung" auf Wahlleute erfolgt und diese dann addiert wird. Im Vergleich hierzu kann es bei vielen Parteien auch durch Instrumente wie die 5%-Hürde, die wir in Deutschland implementiert haben, zu unfairen Effekten kommen.

Die Regeln beim Eurovision Song Contest sind wie folgt: Aus den Televoting-Ergebnissen und den Jurywertungen jedes einzelnen Landes setzt sich das Gesamtergebnis für alle Teilnehmenden zusammen. Die besten zehn Titel werden mit eins, zwei, drei, vier, fünf, sechs, sieben, acht, zehn und zwölf Punkten bewertet. Dabei werden die Jury- und Zuschauerwertungen seit 2016 voneinander getrennt. Jedes Land kann einem Teilnehmenden also bis zu 24 Punkte geben - zwölf durch die Jury, zwölf durch die Zuschauer. Wenn zwei Songs auf die gleiche Punktzahl kommen, bekommt das Land die höhere Punktzahl, das vom Publikum höher bewertet wurde.

Abgesehen davon, dass es sich auch hierbei wieder um ein geschachteltes Modell handelt, werden hierbei auch noch die gewichtete Rangaddition und ein externes Diktator Modell verwendet.




Podcasts




Diese Podcast-Episode zitieren