Der Modellansatz: Modell076 - Qwirkle-Gruppe
modellansatz.de/qwirkle-gruppe
Bei genauem Hinsehen finden wir die Naturwissenschaft und besonders Mathematik überall in unserem Leben, vom Wasserhahn über die automatischen Temporegelungen an Autobahnen, in der Medizintechnik bis hin zum Mobiltelefon. Woran die Forscher, Absolventen und Lehrenden in Karlsruhe gerade tüfteln, erfahren wir im Modellansatz Podcast aus erster Hand.
In vielen Spielen steckt Mathematik, seien es Minecraft, Wasserraketen oder Tiptoi. Lisa Mirlina und Felix Dehnen haben sich Qwirkle (ein Spiel der Schmidt Spiele von Susan McKinley Ross) einmal ganz genau angesehen.
Die beiden konnten als Teilnehmer des Hector-Seminar an einem Kooperationsprojekt mit der Fakultät für Mathematik am Karlsruher Institut für Technologie (KIT) teilnehmen. Hier betreute sie Prof. Dr. Frank Herrlich in dem Projekt auf der Suche nach der perfekten Qwirkle-Lösung- wofür die beiden ihm ganz herzlich danken.
Das Legespiel war 2011 Spiel des Jahres und besteht aus 108 Spielsteinen aus sechs verschiedenen Farben und sechs verschiedenen Formen- jede Kombination kommt dabei dreimal vor. Jeder Spielteilnehmer versucht aus seinen eigenen sechs nachzuziehenden Spielsteinen gleiche Formen oder gleiche Farben auf dem Tisch in Reihen zusammenzulegen. Wie bei Scrabble gibt es für jedes Anlegen Punkte- es müssen aber alle entstehende Reihen korrekt sein- von Farbe oder Form, wie bei Mau-Mau oder Domino. Das Spielziel ist eine möglichst hohe Anzahl von Punkten zu erreichen.
Den mathematischen Hintergrund zum Spiel fanden die beiden in der Topologie: Auf einem Tisch kann man höchstens 36 Steine perfekt anordnen- auf einer anderen topologischen Struktur eventuell mehr.
Mit Hilfe von Verklebungen kann man zu Flächen wie beispielsweise auf einem Torus gelangen- wenn man die jeweils die gegenüberliegenden Seiten miteinander verklebt:
Auf einem Torus haben wirklich alle Steine vier Nachbarn- und nicht nur die Steine im Inneren. Die Frage ist nun, ob es möglich ist, eine Fläche zu finden, wo jeder der 108 Steine in genau zwei perfekten Qwirkle-Reihen- also jeder Form oder Farbe- liegen kann.
Neben einem Torus kann man durch Verkleben aus einem Quadrat oder Rechteck auch die Sphäre, das Möbiusband, die Projektive Ebene oder die Kleinsche Flasche erzeugen. Dabei sind das Möbiusband, die projektive Ebene und die Kleinsche Flasche nicht mehr orientierbar, da man keinen Normalenvektor angeben kann. Die projektive Fläche hat in ihrer Darstellung durch homogene Koordinaten eine wichtige Anwendung in der Computergrafik, da Verschiebungen auch als lineare Abbildungen umgesetzt werden können und die gesamte Berechnung deutlich erleichtert.
Auch frühere Folgen zu Teichmüllerkurven (Modell042) und wilden Singularitäten (Modell060) haben im Modellansatz Podcast Topologie und Verklebungen behandelt.
Die Topologie ist dabei überhaupt nicht so theoretisch, wie sie zunächst erscheint- denn da wir nicht auf einer Ebene oder flachen Erde leben, können wir einmal um die Erde herumgehen, und nach langem Weg wieder an dem gleichen Ort wieder ankommen. Wir können auch andere Winkelsummen von Dreiecken bestimmen. Diese Experimente können wir beim Universum leider nicht leicht durchführen, und so ist die Forschung nach der Topologie des Universums sehr aktuell: Der Omega Tau Podcast 191 zur String Theory zeigt den Blick aus der theoretischen Physik auf dieses Thema.
In der Topologie können Flächen bzw. zwei topologische Räume als äquivalent angesehen werden, wenn sie durch eine Homöomorphie, also durch eine stetige und stetig umkehrbare Abbildung in einander überführt werden können. So ist eine Tasse (mit einem Henkel) zu einem Torus homöomorph- nicht jedoch zu einem Becher ohne Henkel.
Dies führt auf das interessante Gebiet der topologischen Klassifikation der Flächen, denn man kann durch eine genügend feine Unterteilung der Fläche in beispielsweise Dreiecke, einer Triangulierung, zusammen mit einigen Regeln die Art der Fläche bestimmen.
Dies führt auf den verallgemeinerten Satz von Euler für orientierbare Flächen, wo die Zahl der Ecken, die Zahl der Flächen, die Zahl der Kanten und das Geschlecht bezeichnet:
Das Drei Häuser-Problem ist ein Knobelrätsel zu diesem Satz, da das Problem auf einer Ebene oder eine Sphäre nicht lösbar ist, jedoch auf dem Torus eine Lösung besitzt.
Für das Qwirkle-Spiel liefert der Dreifach-Torus (oder eine Brezel) eine Lösung für 8 Steine, wo jeweils zwei Steine doppelt sind und daher auf einem Tisch nicht so anzuordnen wären:
Für 18 Steine haben sie eine unsymmetrische Lösung gefunden, die sich nicht so leicht auf mehr Steine erweitern ließ:
Mit der Treppenstruktur wie bei 8 Steinen mit einer 9er Struktur kann man aber eine Lösung aus 108 Steinen konstruieren:
Nach dem Satz von Euler ist diese Lösung auf einer Fläche, die einem Fünf-Torus entspricht- oder einer Brezel mit zwei Löchern zu viel.
Dies ist aber nicht die einzige Lösung für 108 Steine- mit Gruppentheorie kann man nach weiteren Lösungen suchen: Denn so, wie die Steine sich nach Verklebung in einer Richtung wiederholen, so können auch Gruppen genau diese Wiederholungen darstellen.
Ein sehr einfaches Beispiel ist die zyklische Gruppe aus drei Elementen 0, 1, 2, die man mit der Addition verknüpft, und bei Ergebnissen über 2 wieder drei abzieht, wie man in dieser Verknüpfungstafel ablesen kann:
+ | 0 | 1 | 2 |
0 | 0 | 1 | 2 |
1 | 1 | 2 | 0 |
2 | 2 | 0 | 1 |
Auf drei Elementen kann man aber auch die Symmetrische oder Permutations-Gruppe definieren: In dieser sind alle möglichen sechs Vertauschungen bzw. Permutationen von den drei Elementen enthalten. Ein anderer Ansatz ist es, die drei Elemente als Ecken eines gleichseitigen Dreiecks zu sehen und alle Rotationen oder Spiegelungen zur Dieder- oder Symmetriegruppe definieren. Im speziellen Fall von drei Elementen stimmen die beiden Gruppen mit je sechs Abbildungen überein, d.h. :
Durch das direkte Produkt von drei Symmetriegruppen erhält man eine Gruppe mit 216 Elementen, unter Festhalten des Signums (bzw. Vorzeichen), kann man durch Faktorisierung eine Untergruppe mit 108 Elementen bestimmen- die Qwirkle-Gruppe.
Aus dieser Gruppe kann man nun wieder eine Fläche erzeugen, die das perfekte Qwirkle-Spiel mit 108 Steinen mit vollkommen symmetrischen Aufbau ermöglicht:
Die Fläche dieser Lösung hat das Geschlecht 37, ist also äquivalent zu einer Tasse mit 37 Henkeln.
Mit diesem Projekt starteten Lisa Mirlina und Felix Dehnen bei Jugend forscht- zunächst beim Regionalentscheid, dann beim Landesentscheid und schließlich dem Bundeswettbewerb. Sie gewannen den Preis der Deutschen Mathematiker-Vereinigung (DMV) für besonders kreativen Einsatz der Mathematik. Und dann ging es als Delegation nach Japan.
Literatur und Zusatzinformationen
- L. Mirlina, F. Dehnen: Qwirkle, Abschlussbericht im Hector-Seminar, 2014.
- J. Stillwell: Classical topology and combinatorial group theory, Vol. 72. Springer Science & Business Media, 2012.
Podcasts
- W. Lück: Topologie, Gespräch mit G. Thäter im Modellansatz Podcast, Folge 40, Fakultät für Mathematik, Karlsruher Institut für Technologie (KIT), 2014.
- A. Westphal: String Theory, Gespräch mit M. Völter im Omega Tau Podcast, Folge 191, 2015.
- D. Lütgehetmann, J. A. Meister: Topologische Abenteuer. Vertikalität und Donut-Planeten, Afterhour #16 in der Kulturwelle, Institut für Kulturwissenschaft, Humboldt-Universität zu Berlin, 2017.
- P. Gräbel: Topologie, Episode 33, Nussschale Podcast, 2017.
Diese Podcast-Episode zitieren