
JProf. Dr. Roland Maier
-
by appointment
-
Kollegiengebäude Mathematik (20.30)
3.009
+49 721 608 46954
+49 721 608 43767
-
roland.maier@kit.edu
-
Karlsruhe Institute of Technology (KIT)
Institute for Applied and Numerical Mathematics
Englerstr. 2
76131 Karlsruhe
Germany
Welcome on my webpage. Since July 2023, I am junior professor at the Institute for Applied and Numerical Mathematics and leader of the junior research group Numerics of PDEs. Moreover, I am member of the Collaborative Research Center 1173 Wave Phenomena and PI of the project A15. I mainly work on numerical homogenization methods for multiscale problems and on specifically designed time stepping techniques for coupled PDEs. Moreover, I am very interested in the combination of machine learning techniques and classical numerical methods.
In the summer term 2025, I will give the lecture Analytical and Numerical Homogenization. The lecture gives an introduction into special methods to efficiently treat multiscale phenomena. Moreover, I will offer a seminar on special topics in the context of the finite element method. In the winter term 2025/26, I will once again give the lecture Numerical Analysis of Neural Networks.
If you are interested in writing a Bachelor or Master thesis in the area of Numerical Mathematics, feel free to talk to me or write me an informal email.
Semester | Titel | Typ |
---|---|---|
Summer Semester 2025 | Analytical and Numerical Homogenization | Lecture |
Selected Topics on Finite Elements | Seminar | |
Winter Semester 2024/25 | Finite Element Methods | Lecture |
Summer Semester 2024 | Numerical Analysis of Neural Networks | Lecture |
Winter Semester 2023/24 | Analytical and Numerical Homogenization | Lecture |
Ringvorlesung Wavephenomena | Lecture |
Upcoming Events
Research Interests
- Multiscale Methods
- Numerical Homogenization
- Semi-explicit methods for coupled PDEs
- Discretization of (time-dependent) PDEs
Short CV
- since JUL 2023: Junior Professor for Numerics of Partial Differential Equations, Karlsruhe Institute of Technology
- OCT 2021 - JUN 2023: Junior Professor for Numerical Analysis, Friedrich Schiller University Jena, Germany
- SEP 2020 - SEP 2021: PostDoc, Chalmers University of Technology and University of Gothenburg, Sweden
- APR 2020 - AUG 2020: PostDoc, University of Augsburg, Germany
- APR 2017 - MAR 2020: Doctoral student, University of Augsburg, Germany
- SEP 2012 - MAR 2017: Bachelor and Master studies, University of Bonn, Germany
Awards and Prizes
- Winner of the ECCOMAS PhD Olympiad 2021
- Dr.-Klaus-Körper prize of the GAMM 2021
- Kulturpreis Bayern 2020, dissertation prize
- Appointed member of the GAMM Juniors (2020-2022)
Publications
Submitted Articles
- M. Elasmi, F. Krumbiegel, and R. Maier. Neural numerical homogenization based on deep Ritz corrections. ArXiv Preprint, 2024.
- Z.-S. Liu, R. Maier, and A. Rupp. Numerical homogenization by continuous super-resolution. ArXiv Preprint, 2024.
- M. Hauck, R. Maier, and A. Målqvist. An algebraic multiscale method for spatial network models. ArXiv Preprint, 2023.
- P. Lu, R. Maier, and A. Rupp. A localized orthogonal decomposition strategy for hybrid discontinuous Galerkin methods. ArXiv Preprint, 2023.
Refereed Articles
- F. Krumbiegel and R. Maier. A higher-order multiscale method for the wave equation. Accepted for publication in IMA J. Numer. Anal., 2024.
- D. Gallistl and R. Maier. Localized implicit time stepping for the wave equation. SIAM J. Numer. Anal., 62(4):1589-1608, 2024.
- R. Altmann, R. Maier, and B. Unger. Semi-explicit integration of second order for weakly coupled poroelasticity. BIT Numer. Math., 64, Article No. 20, 2024.
- F. Kröpfl, R. Maier, and D. Peterseim. Neural network approximation of coarse-scale surrogates in numerical homogenization. Multiscale Model. Simul., 21(4):1457-1485, 2023.
- Z. Dong, M. Hauck, and R. Maier. An improved high-order method for elliptic multiscale problems. SIAM J. Numer. Anal., 61(4):1918-1937, 2023.
- S. Geevers and R. Maier. Fast mass lumped multiscale wave propagation modelling. IMA J. Numer. Anal., 43(1):44-72, 2023.
- R. Maier, P. Morgenstern, and T. Takacs. Adaptive refinement for unstructured T-splines with linear complexity. Comput. Aided Geom. Design, 96:102117, 2022.
- F. Kröpfl, R. Maier, and D. Peterseim. Operator compression with deep neural networks. Adv. Cont. Discr. Mod., 2022, Paper No. 29, 2022.
- P. Ljung, R. Maier, and A. Målqvist. A space-time multiscale method for parabolic problems. Multiscale Model. Simul., 20(2):714-740, 2022.
- R. Maier and B. Verfürth. Multiscale scattering in nonlinear Kerr-type media. Math. Comp., 91(336):1655-1685, 2022.
- R. Altmann and R. Maier. A decoupling and linearizing discretization for weakly coupled poroelasticity with nonlinear permeability. SIAM J. Sci. Comput., 44(3):B457-B478, 2022.
- R. Maier. A high-order approach to elliptic multiscale problems with general unstructured coefficients. SIAM J. Numer. Anal., 59(2):1067-1089, 2021.
- R. Altmann, R. Maier, and B. Unger. Semi-explicit discretization schemes for weakly-coupled elliptic-parabolic problems. Math. Comp., 90(329):1089-1118, 2021.
- A. Caiazzo, R. Maier, and D. Peterseim. Reconstruction of quasi-local numerical effective models from low-resolution measurements. J. Sci. Comput., 85(1), Article No. 10, 2020.
- R. Altmann, E. Chung, R. Maier, D. Peterseim, and S.-M. Pun. Computational multiscale methods for linear heterogeneous poroelasticity. J. Comput. Math., 38(1):41-57, 2020.
- P. Hennig, R. Maier, D. Peterseim, D. Schillinger, B. Verfürth, and M. Kästner. A diffuse modeling approach for embedded interfaces in linear elasticity. GAMM-Mitteilungen, 43(1):e202000001, 2020.
- S. Fu, R. Altmann, E. Chung, R. Maier, D. Peterseim, and S.-M. Pun. Computational multiscale methods for linear poroelasticity with high contrast. J. Comput. Phys., 395:286-297, 2019.
- R. Maier and D. Peterseim. Explicit computational wave propagation in micro-heterogeneous media. BIT Numer. Math., 59(2):443-462, 2019.
- C. Paulus, R. Maier, D. Peterseim, and S. Cotin. An immersed boundary method for detail-preserving soft tissue simulation from medical images. In: P. Nielsen, A. Wittek, K. Miller, B. Doyle, G. Joldes, and M. Nash, editors, Computational Biomechanics for Medicine, MICCAI 2017, pp. 55-67. Springer, Cham, 2019.
Articles in Collections
- P. Hennig, M. Kästner, R. Maier, P. Morgenstern, and D. Peterseim. Adaptive isogeometric phase-field modeling of weak and strong discontinuities. In: J. Schröder and P. Wriggers, editors, Non-standard Discretisation Methods in Solid Mechanics, volume 98 of Lecture Notes in Applied and Computational Mechanics, pp. 243-282. Springer, Cham, 2022.
Articles in Proceedings
- R. Altmann, R. Maier, and B. Unger. A semi-explicit integration scheme for weakly-coupled poroelasticity with nonlinear permeability. Proc. Appl. Math. Mech., 20(1):e202000061, 2021.
- A. Caiazzo, R. Maier, and D. Peterseim. Reconstruction of quasi-local numerical effective models from low-resolution measurements. Oberwolfach Reports, 16(3):2149-2152, 2019.
- R. Maier and D. Peterseim. Fast time-explicit micro-heterogeneous wave propagation. Proc. Appl. Math. Mech., 18(1):e201800294, 2018.
Theses
- R. Maier. Computational Multiscale Methods in Unstructured Heterogeneous Media. Doctoral Thesis, University of Augsburg, 2020.
- R. Maier. Simulation of Elastic Deformation by the Immersed Boundary Method. Master Thesis, University of Bonn, 2017.
- R. Maier. Die Space-Time-DG-Methode: Theorie und Numerik für parabolische Gleichungen in einer Dimension. Bachelor Thesis, University of Bonn, 2015. In German.