Karlsruhe Institute of Technology Institute for Algebra and Geometry Dr. T. Arens Dipl.-Math.techn. A. Schkarbanenko Dipl.-Math. S. Heumann

41	42	43	44	45	Σ

Karlsruhe, December 22, 2009

Student Nr.:

Worksheet No.9 Advanced Mathematics I

Exercise 41: The following series representation of the logarithmus function can be applied to evaluate it approximatively on a computer:

$$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}.$$

- (a) For which $x \in \mathbb{R}$ is this expansion in a power series possible, i.e. for which x does the series converge?
- (b) How many elements of the power series are sufficient to evaluate $\ln(1.5)$ with an accuracy of two decimal places? Calculate $\ln(1.5)$ with an accuracy of two decimal places by applying the series representation above!

Exercise 42:

(a) Show that for $\varphi \in \mathbb{R}$ and $n = 0, 1, 2, 3, \ldots$ the following equality holds

$$\cos\left((n+1)\varphi\right) + \cos\left((n-1)\varphi\right) = 2\,\cos\varphi\,\cos(n\,\varphi).$$

(b) Consider for n = 0, 1, 2, ... the function $T_n : [-1, 1] \to \mathbb{R}$ given by

 $T_n(x) := \cos(n \arccos(x)).$

Prove that

$$T_{n+1}(x) + T_{n-1}(x) = 2 x T_n(x).$$

- (c) Conclude that the function T_n is a polynomial of degree n at most.
- (d) The function T_5 can be expanded at the expansion point $x_0 = -1/2$ in a power series. Which radius of convergence does this power series have?

Exercise 43: Find all solutions $z \in \mathbb{C}$ of the equation

$$\cosh z - \frac{1}{2} (1 - 8i) e^{-z} = 2 + 2i.$$

Solve the quadratic equation by completing the square.

Exercise 44: For each of the following equations, determine the set of solutions $z \in \mathbb{C}$:

(a)
$$\cos \overline{z} = \overline{\cos z}$$
 (b) $e^{i\overline{z}} = \overline{e^{iz}}$

Exercise 45: Solve the complex equations

(a) $(\sinh(iz) + \cosh(iz))^2 + 2\sin(2z) = 0$, (b) $\sinh(iz) + \cosh(iz))\sin(2z) = \sqrt{2}(i\sin(z) + \cos(z))$.

Solve the quadratic equation by completing the square.

We wish you a merry Christmas and a happy new year!

Due date: Please hand in your homework on Thursday, January 14, 12:00, into the AM1-box near Seminar room 1C-03, Allianz-Gebäude (05.20).

Tutorial 9 Advanced Mathematics I

Exercise T33:

(a) Determine all $z \in \mathbb{C}$, which satisfy the equation

 $\cos z = 4.$

Use the exponential representation of the cosine function.

(b) Determine all complex numbers $z \in \mathbb{C}$ that satisfy the equation

$$\cosh(z) = -1$$

Use the representation of cosh in terms of the exponential function.

Exercise T34: Solve the following equation for $z \in \mathbb{C}$:

 $-5\cos z + 7i\sin z = 1.$

Exercise T35: Prove the following formulas for z = x + iy, $x, y \in \mathbb{R}$:

 $\sin z = \sin x \cosh y + i \cos x \sinh y,$ $\cos z = \cos x \cosh y - i \sin x \sinh y.$

Hint: Use Theorem 4.21.

Exercise T36: The power a^x is defined by $a^x := e^{x \cdot \ln a}$ for $a > 0, x \in \mathbb{R}$. Show that:

- (a) $(a^x)^y = a^{xy}$ for a, b > 0.
- (b) a^x is strictly monotonically increasing for a > 1, and strictly monotonically decreasing for 0 < a < 1.

When a = 10 the inverse function of $f(x) = 10^x$ is $\log_{10} x$.

- (c) How can the value $\log_{10} x$ be computed, using the function $\ln x$?