Webrelaunch 2020

Dr. Marvin Knöller

  • Karlsruher Institut für Technologie (KIT)
    Fakultät für Mathematik
    Institut für Angewandte und Numerische Mathematik
    Englerstr. 2
    76131 Karlsruhe

Current List of Courses

Semester Titel Typ
Winter Semester 2023/24 Lecture

Since January 1, 2025, I am no longer employed at KIT. From then on you will find the latest news on the pages of the University of Helsinki.

Link to my GitHub and to my Google Scholar profile.

Publications:

  1. I. Fernandez-Corbaton, R. Griesmaier, M. Knöller, C. Rockstuhl, Maximizing the electromagnetic chirality of thin metallic nanowires at optical frequencies, J. Comput. Phys., 475 (2023), 111854.(DOI) Software
  2. R. Griesmaier, M. Knöller, R. Mandel, Inverse medium scattering for a nonlinear Helmholtz equation "J. Math. Anal. Appl." (2022), 515, 1, 126356 (DOI) Software
  3. X. Garcia Santiago, M. Hammerschmidt, J. Sachs, S. Burger, H. Kwon, M. Knöller, T. Arens, P. Fischer, I. Fernandez-Corbaton, C. Rockstuhl, Towards maximally electromagnetically chiral scatterers at optical frequencies, to appear in "ACS Photonics" (2022) (DOI)
  4. T. Arens, R. Griesmaier, M. Knöller, Maximizing the electromagnetic chirality of thin dielectric tubes, SIAM J. Appl. Math. (2021), 81(5), 1979–2006 (DOI) Software
  5. Y. Capdeboscq, R. Griesmaier, M. Knöller, An asymptotic representation formula for scattering by thin tubular structures and an application in inverse scattering, Multiscale Model. Simul., 19 (2021), 846–885 (DOI) Software
  6. M. Hofmanová, M. Knöller, K. Schratz: Randomized exponential integrators for modulated nonlinear Schrödinger equations, IMA Journal of Numerical Analysis (2020), 40, 2143–2162 (DOI)
  7. M. Knöller, A. Ostermann, K. Schratz: A Fourier integrator for the cubic nonlinear Schrödinger equation with rough initial data, SIAM J. Numer. Anal. 57 (2019), no. 4, 1967–1986 (DOI)

Preprints

  1. T. Arens, M. Knöller, R. Schurr, Inverse electromagnetic scattering problems for long tubular objects, Preprint, (2024) Software
  2. M. Knöller, J. Nick, The temporal domain derivative in inverse acoustic obstacle scattering, Preprint, (2024) Software