Dr. Marvin Knöller
- Friday 10:30-12:00am
- Kollegiengebäude Mathematik (20.30)
- 1.038
- 0721 608 46956
- marvin.knoeller@kit.edu
-
Karlsruher Institut für Technologie (KIT)
Fakultät für Mathematik
Institut für Angewandte und Numerische Mathematik
Englerstr. 2
76131 Karlsruhe
Semester | Titel | Typ |
---|---|---|
Winter Semester 2023/24 | Inverse Probleme | Lecture |
Publications:
- I. Fernandez-Corbaton, R. Griesmaier, M. Knöller, C. Rockstuhl, Maximizing the electromagnetic chirality of thin metallic nanowires at optical frequencies, J. Comput. Phys., 475 (2023), 111854.(DOI) Software
- R. Griesmaier, M. Knöller, R. Mandel, Inverse medium scattering for a nonlinear Helmholtz equation "J. Math. Anal. Appl." (2022), 515, 1, 126356 (DOI) Software
- X. Garcia Santiago, M. Hammerschmidt, J. Sachs, S. Burger, H. Kwon, M. Knöller, T. Arens, P. Fischer, I. Fernandez-Corbaton, C. Rockstuhl, Towards maximally electromagnetically chiral scatterers at optical frequencies, to appear in "ACS Photonics" (2022) (DOI)
- T. Arens, R. Griesmaier, M. Knöller, Maximizing the electromagnetic chirality of thin dielectric tubes, SIAM J. Appl. Math. (2021), 81(5), 1979–2006 (DOI) Software
- Y. Capdeboscq, R. Griesmaier, M. Knöller, An asymptotic representation formula for scattering by thin tubular structures and an application in inverse scattering, Multiscale Model. Simul., 19 (2021), 846–885 (DOI) Software
- M. Hofmanová, M. Knöller, K. Schratz: Randomized exponential integrators for modulated nonlinear Schrödinger equations, IMA Journal of Numerical Analysis (2020), 40, 2143–2162 (DOI)
- M. Knöller, A. Ostermann, K. Schratz: A Fourier integrator for the cubic nonlinear Schrödinger equation with rough initial data, SIAM J. Numer. Anal. 57 (2019), no. 4, 1967–1986 (DOI)
Preprints
- T. Arens, M. Knöller, R. Schurr, Inverse electromagnetic scattering problems for long tubular objects, Preprint, (2024) Software
- M. Knöller, J. Nick, The temporal domain derivative in inverse acoustic obstacle scattering, Preprint, (2024) Software