Webrelaunch 2020

Dr. Marvin Knöller

  • Karlsruher Institut für Technologie (KIT)
    Fakultät für Mathematik
    Institut für Angewandte und Numerische Mathematik
    Englerstr. 2
    76131 Karlsruhe

Aktuelles Lehrangebot
Semester Titel Typ
Wintersemester 2023/24 Vorlesung

Veröffentlichungen:

  1. I. Fernandez-Corbaton, R. Griesmaier, M. Knöller, C. Rockstuhl, Maximizing the electromagnetic chirality of thin metallic nanowires at optical frequencies, J. Comput. Phys., 475 (2023), 111854.(DOI) Software
  2. R. Griesmaier, M. Knöller, R. Mandel, Inverse medium scattering for a nonlinear Helmholtz equation "J. Math. Anal. Appl." (2022), 515, 1, 126356 (DOI) Software
  3. X. Garcia Santiago, M. Hammerschmidt, J. Sachs, S. Burger, H. Kwon, M. Knöller, T. Arens, P. Fischer, I. Fernandez-Corbaton, C. Rockstuhl, Towards maximally electromagnetically chiral scatterers at optical frequencies, to appear in "ACS Photonics" (2022) (DOI)
  4. T. Arens, R. Griesmaier, M. Knöller, Maximizing the electromagnetic chirality of thin dielectric tubes, SIAM J. Appl. Math. (2021), 81(5), 1979–2006 (DOI) Software
  5. Y. Capdeboscq, R. Griesmaier, M. Knöller, An asymptotic representation formula for scattering by thin tubular structures and an application in inverse scattering, Multiscale Model. Simul., 19 (2021), 846–885 (DOI) Software
  6. M. Hofmanová, M. Knöller, K. Schratz: Randomized exponential integrators for modulated nonlinear Schrödinger equations, IMA Journal of Numerical Analysis (2020), 40, 2143–2162 (DOI)
  7. M. Knöller, A. Ostermann, K. Schratz: A Fourier integrator for the cubic nonlinear Schrödinger equation with rough initial data, SIAM J. Numer. Anal. 57 (2019), no. 4, 1967–1986 (DOI)

Preprints

  1. T. Arens, M. Knöller, R. Schurr, Inverse electromagnetic scattering problems for long tubular objects, Preprint, (2024) Software
  2. M. Knöller, J. Nick, The temporal domain derivative in inverse acoustic obstacle scattering, Preprint, (2024) Software