Webrelaunch 2020

AG Stochastische Geometrie (Wintersemester 2020/21)

Studierende und Gäste sind jederzeit herzlich willkommen. Wenn nicht explizit anders unten angegeben, finden alle Vorträge als Zoom-Meeting statt. Den Beitrittslink finden Sie in der jeweiligen Einladung zum Vortrag. Für die Aufnahme in den E-Mail-Verteiler für die Einladungen kontaktieren Sie bitte Steffen Winter (steffen.winter@kit.edu).

Termine
Seminar: Freitag 10:00-11:30 SR 2.058
Lehrende
Seminarleitung Prof. Dr. Daniel Hug
Sprechstunde: Nach Vereinbarung.
Zimmer 2.051 Kollegiengebäude Mathematik (20.30)
Email: daniel.hug@kit.edu
Seminarleitung Prof. Dr. Günter Last
Sprechstunde: Montag, 14:00-15:00 Uhr
Zimmer 2.001, Sekretariat 2.056 Kollegiengebäude Mathematik (20.30)
Email: guenter.last@kit.edu

Donnerstag, 29.10.2020, 14 Uhr (Zoom Meeting)

Viktor Bezborodov (Wroclaw University of Science and Technology)

Stochastic growth models

Abstract: We discuss stochastic particle growth models and their asymptotic growth rate. At the beginning we talk about classic stochastic growth models. We then proceed to more recent research such as a continuous-space birth process and a branching random walk with restriction. We conclude by discussing the spread rate of a continuous-time frog model.


Freitag, 13.11.2020, 10 Uhr (Zoom Meeting)

Mikhail Chebunin (Novosibirsk State University, Russia)

Limit theorems for two classes of stochastic models under information incompleteness conditions

Abstract: In this talk, we will deal with (A) statistical estimates and (B) stochastic algorithms (protocols) in the presence of incomplete information, which is frequently the case in probability and statistics. I will present results for two types of stochastic models. In model A, I will study the asymptotic properties of the number of different elements in a sample from distribution on the positive integers, which is taken from a one-parametric family of distributions. In model B, I will study stability and instability conditions for a multiple access information transmission system (``ALOHA-type"): time is slotted (integer-valued), messages arrive in an i.i.d. input; they cannot make a queue (no direct communication), and only one of them may be transmitted per unit of time. The only way to have successful transmissions is to allow a message to make a transmission attempt at random, with a probability that depends on certain system information.


Freitag, 4.12.2020, 10 Uhr (Zoom Meeting)

Günter Last (KIT)

A hyperflucuating and strongly rigid point process