Random Euclidean coverage and connectivity problems

Mathew Penrose (University of Bath, UK)

Seminar, KIT, 6 November 2023

Consider sample of \(n \) uniform random points in a bounded region \(A \) in \(\mathbb{R}^d, \ d \geq 2 \), having a smooth boundary. The coverage threshold \(T_n \) is the smallest \(r \) such that the union \(Z \) of Euclidean balls of radius \(r \) centred on the sample points covers \(A \). The connectivity threshold \(K_n \) is twice the smallest \(r \) required for \(Z \) to be connected. The two-sample coverage threshold \(S_{n,m} \) is the smallest \(r \) such that \(Z \) covers all the points of a second independent sample of \(m \) points in \(A \). These thresholds are random variables determined by the sample, and are of interest, for example, in wireless communications, set estimation, and topological data analysis.

We discuss new/recent results on the large-\(n \) limiting distributions of \(T_n \), and \(K_n \) and \(S_{n,m} \) (taking \(m = m(n) \sim \tau n \) for some constant \(\tau \)). When \(A \) has unit volume, with \(v \) denoting the volume of the unit ball in \(\mathbb{R}^d \) and \(|dA| \) the perimeter of \(A \), these take the form of weak convergence of \(nvT_n^d - (2 - 2/d)\log n - a_d \log(\log n) \) to a Gumbel-type random variable with cumulative distribution function

\[
F(x) = \exp(-b_d e^{-x} - c_d |dA| e^{-x/2}),
\]

for suitable constants \(a_d, c_d \) with \(b_2 = 1, \ b_d = 0 \) for \(d > 2 \). The corresponding result for \(K_n \) takes the same form with different constants \(a_d, c_d \).

If time permits, we may also discuss extensions and related results concerning (i) the \(k \)-connectivity threshold of the associated geometric graph, and (ii) non-uniform random samples of points.

Some of the work described here is joint work with Frankie Higgs and Xiaochuan Yang.