Applied Stochastic Models (SS 09)

Problem Set 10

Problem 1

Describe how the integrals

(a)
$$\int_0^1 e^{e^x} dx,$$
(b)
$$\int_0^\infty \frac{x}{1+x^2} dx,$$
(c)
$$\int_0^\infty \int_0^x e^{-(x+y)} dy dx$$

can be approximated by simulation.

Problem 2

Let U be uniform in [0,1]. Use simulation to approximate $Cor(U, \sqrt{1-U^2})$ and $Cor(U^2, \sqrt{1-U^2})$.

Problem 3

Use the inverse transform method to generate a random variable having the density function

(a)
$$f(x) = e^x/(e-1), 0 \le x \le 1,$$

(b)
$$f(x) = \frac{2}{\pi\sqrt{1-x^2}}, \quad 0 \le x \le 1.$$

Use the inverse transform method to generate a random variable having the cfd

(c)
$$F(x) = \frac{1}{1 + e^{-x}}, -\infty < x < \infty.$$

Problem 4

Use the acceptance-rejection method to generate a random variable with pdf

$$f(x) = 20x(1-x)^3, \quad 0 < x < 1.$$