

Stochastic Processes Problem sheet 9

Problem 1

Let $(B_t)_{t \ge 0}$ be a Brownian motion, $0 \le s < t < \infty$ and $n = \frac{s+t}{2}$

- a) Determine a common density of (B_s, B_n, B_t) .
- b) Determine the conditional density of B_n , given B_s and B_t .

Problem 2

Let $T \in \{[0,1], \mathbb{R}_+\}$, $\mathcal{C}(T)$ be the set of all continuous functions on T and \mathcal{B}^T the σ -algebra on \mathbb{R}^T generated by the projections. Prove:

$$\mathcal{C}(T) \notin \mathcal{B}^T$$
.

Hint: First show that for any $A \in \mathcal{B}^T$ there is a countable set $T(A) \subset T$ with

$$\forall x \in \mathbb{R}^T, y \in A \quad x(t) = y(t) \text{ for all } t \in T(A) \Rightarrow x \in A.$$

Problem 3

Let $(B_t^{(i)})_{t\in T}$, $i\in\mathbb{N}$, be a family of independent Brownian motions with time set T=[0,1]. Show that the process $(X_t)_{t>0}$ defined by

$$X_t := \sum_{i=1}^{\lfloor t \rfloor} B_1^{(i)} + B_{t-\lfloor t \rfloor}^{(\lfloor t \rfloor+1)}$$

is a Brownian motion with time set $[0, \infty)$.

Problem 4 (Theorem 9.7)

Let $a \ge 0$, $c \ne 0$ and $(B_t)_{t\ge 0}$ be a Brownian motion. Show that the following processes $(\tilde{B}_t)_{t\ge 0}$ are Brownian motions too:

(i) $\tilde{B}_t := -B_t, \ \forall t \ge 0$, (ii) $\tilde{B}_t := B_{a+t} - B_a, \ \forall t \ge 0$, (iii) $\tilde{B}_t := cB_{t/c^2}, \ \forall t \ge 0$.

This sheet will be discussed in the problem sessions on the 16th of June.

Exam dates: Wednesday, July 28th Wednesday, September 15th

Registration is possible from the 10th of June until the 16th of July at Tatjana Dominic's office (room 5A-22). The exam will be oral.