Webrelaunch 2020

Dr. Bruno Ebner

  • Karlsruher Institut für Technologie (KIT)
    Institut für Stochastik
    Englerstr. 2
    D-76128 Karlsruhe
    Deutschland

Research

  1. asymptotic statistics
  2. goodness-of-fit problems
  3. banach valued stochastic processes
  4. statistics of point processes
  5. characterizations of distributions

Preprints

  1. Betsch, S., Ebner, B., Nestmann, F. (2020) "Characterizations of non-normalized discrete probability distributions and their application in statistics", arxiv:2011.04369 Link
  2. Ebner, B., Liebenberg, S.C. (2020) "On a new test of fit to the beta distribution", arXiv:2009.13995 Link
  3. Ebner, B., Henze, N., Strieder, D. (2020) "Testing normality in any dimension by Fourier methods in a multivariate Stein equation", arXiv:2007.02596 Link
  4. Ebner, B. (2020) "On combining the zero bias transform and the empirical characteristic function to test normality" arXiv:2002.12085 Link
  5. Allison, J.S., Betsch, S., Ebner, B., Visagie, I.J.H. (2019) "New weighted L^2-type tests for the inverse Gaussian distribution" arXiv:1910.14119 Link

Publications

  1. Ebner, B., Nestmann, F., Schulte, M. (2020) "Testing multivariate uniformity based on random geometric graphs", accepted for publication in Electronic Journal of Statistics Link
  2. Ebner, B., Henze, N. (2020) "Tests for multivariate normality -- a critical review with emphasis on weighted L^2-statistics", accepted for publication in TEST Link
  3. Dörr, P., Ebner, B., Henze, N. (2020) "A new test of multivariate normality by a double estimation in a characterizing PDE", to be published in Metrika.Open Access
  4. Dörr, P., Ebner, B., Henze, N. (2020) "Testing multivariate normality by zeros of the harmonic oscillator in characteristic function spaces", accepted for publication in Scandinavian Journal of Statistics, DOI
  5. Betsch, S., Ebner, B., Klar, B. (2020) "Minimum L^q-distance estimators for non-normalized parametric models", accepted for publication in Canadian Journal of Statistics, Open Access
  6. Betsch, S., Ebner, B. (2020) "Testing normality via a distributional fixed point property in the Stein characterization", TEST, Volume 29(1), 105–138 Online First.
  7. Betsch, S., Ebner, B. (2019) "Characterizations of continuous univariate probability distributions with applications to goodness-of-fit testing", in Annals of the Institute of Statistical Mathematics, Online First.
  8. Betsch, S., Ebner, B. (2019) "A new characterization of the Gamma distribution and associated goodness of fit tests", Metrika, Volume 82(7), 779-806 Link.
  9. Ebner, B., Henze, N., Klatt, M.A., Mecke, K. (2018) "Goodness-of-fit tests for complete spatial randomness based on Minkowski functionals of binary images", Electronic Journal of Statistics, Vol. 12, No. 2, 2873-2904 Link.
  10. Ebner, B., Henze, N., Yukich J.E. (2018) "Multivariate goodness-of-fit on flat and curved spaces via nearest neighbor distances", Journal of Multivariate Analysis, Volume 165, p. 231-242, Link.
  11. Ebner, B., Klar, B., Meintanis, S.G. (2018) "Fourier Inference for Stochastic Volatility Models with Heavy-Tailed Innovations", Statistical Papers, Volume 59(3), 1043-1060, DOI:10.1007/s00362-016-0803-6.
  12. Baringhaus, L., Ebner, B., Henze, N. (2017) "The Limit Distribution of weighted L^2-Goodness-of-Fit Statistics under fixed Alternatives, with Applications", Annals of the Institute of Statistical Mathematics, 69(5), 969–995. Link
  13. Ebner, B., Folkers, M., Haase, D. (2016) "Vorbereitende und begleitende Angebote in der Grundlehre Mathematik für die Fachrichtung Wirtschaftswissenschaften". in: Lehren und Lernen von Mathematik in der Studieneingangsphase, hrsg. v. Hoppenbrock, A., Biehler, R., Hochmuth, R., Rück, H.-G., Konzepte und Studien zur Hochschuldidaktik und Lehrerbildung Mathematik, Bd. 4, Wiesbaden: Springer Spektrum, S. 149 – 164. Link
  14. Ebner, B., Henze, N. (2016) "Runs in Bernoulli-Ketten", Stochastik in der Schule, 36, 3, S. 20–26. Link
  15. Ebner, B., Henze, N., Parthasarathy, P.R. (2013) "Ramanujan Theta Functions and Birth and Death Processes". Statistics & Probability Letters, Band 83(12), S. 2647–2655. Link
  16. Ebner, B. (2012) "Asymptotic Theory for the Test on Multivariate Normality by Cox and Small". Journal of Multivariate Analysis, Band 111, S. 368–379. Link
  17. Henze, N., Meintanis, S.G., Ebner, B. (2012) "Goodness-of-fit tests for the Gamma distribution based on the empirical Laplace transform". Communications in Statistics – Theory and Methods, Band 41(9), S. 1543-1556. Link
  18. Ebner, B. (2010). "Zur Asymptotik eines mit quadratischen Abhängigkeiten operierenden Tests auf multivariate Normalverteilung". Dissertation, KIT Scientific Publishing. Link
  19. Henze, N., Nikitin, Y., Ebner, B. (2009). "Integral distribution-free statistics of L_p-type and their asymptotic comparison". Computational Statistics & Data Analysis, Band 53(9), S. 3426-3438. Link
  20. Ebner, B., Folkers, M. (2007). "Mit Mathematik unterschreiben: Ein Vorschlag für den Schulunterricht". Realitätsnaher Mathematikunterricht - vom Fach aus und für die Praxis, Franzbecker, S. 24-37.

Other Publications

  1. Ebner, B., Folkers, M. (2012). "Vorkurs Mathematik für die Fachrichtung Wirtschaftswissenschaften", ILIAS Plattform des KIT Link.
  2. Ebner, B., Henze, N. (2013). "2013: Internationales Jahr der Statistik", Mitteilungen der Deutschen Mathematiker-Vereinigung, Band 21, Heft 4, S. 212-217. Link.
  3. Ebner, B., Folkers, M. (2013). "Ein Blended Learning Vorkurs Mathematik für die Fachrichtung Wirtschaftswissenschaften am Karlsruher Institut für Technologie (KIT)", khdm Report, Nr. 1. Link.

R Packages

  1. Butsch, L., Ebner, B. (2020) mnt: Affine Invariant Tests of Multivariate Normality. R package version 1.3. Link.
  2. Betsch, S., Butsch, L., Ebner, B. (2020) gofgamma: Goodness-of-Fit Tests for the Gamma Distribution. R package version 1.0. Link.

Talks

  1. Statcon (2020) On-line Workshop: Stein characterizations in distributional model checks.
  2. Seminar ULB (2020) Brussels: On some new characterizations of univariate distributions via fixed points of distributional transforms with application in goodness of fit testing problems.
  3. CMStatistics (2019) London: New tests of multivariate normality by a characterizing property of the Hermite operator.
  4. Cronos (2019) Limassol: Resampling under unimodality via the empirical zero bias transform
  5. SASA Eastern Cape Chapter meeting (2019) Port Elizabeth: Analyzing point patterns by a threshold transformation to binary images.
  6. Workshop (2019) Stellenbosch: Asymptotic Stochastics
  7. Seminar (2018) Pretoria: New Characterizations of Distributions by Fixed Points of Transformations and Applications to Goodness-of-Fit Testing.
  8. IWS (2018) Barcelona: Goodness of Fit Testing via fixed points of distributional transforms.
  9. GPSRS (2017) Bad Herrenalb: Goodness-of-fit tests for complete spatial randomness based on Minkowski functionals of binary images.
  10. Oberseminar (2017) Magdeburg: New goodness-of-fit tests for uniformity and complete spatial randomness based on local dependency.
  11. Mathematical colloquium (2016) Ulm: Goodness-of-fit tests for complete spatial randomness based on local dependency in point patterns.
  12. GPSD (2016) Bochum: Goodness-of-fit tests for complete spatial randomness based on Minkowski functionals.
  13. Statistics seminar (2015) ULB Brussels: New goodness-of-fit tests for Poisson point processes based on Minkowski functionals.
  14. ERCIM (2013) London: Fourier inference for stochastic volatility models with heavy-tailed innovations.
  15. 2. Khdm Arbeitstagung (2013) Paderborn: Ein Blended Learning Vorkurs Mathematik für die Fachrichtung Wirtschaftswissenschaften am Karlsruher Institut für Technologie (KIT).
  16. GPSD (2012) Mainz: Asymptotics for a goodness-of-fit test for multivariate normality operating with quadratic dependencies.