Webrelaunch 2020

Dr. Bruno Ebner

  • Karlsruher Institut für Technologie (KIT)
    Institut für Stochastik
    Englerstr. 2
    D-76128 Karlsruhe
    Deutschland

Wegen der Corona Pandemie erreichen Sie mich am einfachsten über MS Teams.

Forschungsinteressen

  1. Asymptotische Statistik
  2. Anpassungstests
  3. Stochastische Prozesse in Banachräumen
  4. Statistiken von Punktprozessen
  5. Charakterisierungen von Verteilungen
  6. Stein Operatoren

Preprints

  1. Betsch, S., Ebner, B., Nestmann, F. (2020) "Characterizations of non-normalized discrete probability distributions and their application in statistics", arxiv:2011.04369 Link
  2. Ebner, B., Henze, N., Strieder, D. (2020) "Testing normality in any dimension by Fourier methods in a multivariate Stein equation", arXiv:2007.02596 Link
  3. Ebner, B. (2020) "On combining the zero bias transform and the empirical characteristic function to test normality", arXiv:2002.12085 Link
  4. Allison, J.S., Betsch, S., Ebner, B., Visagie, I.J.H. (2019) "New weighted L^2-type tests for the inverse Gaussian distribution", arXiv:1910.14119 Link

Veröffentlichungen

  1. Ebner, B., Liebenberg, S.C. (2020) "On a new test of fit to the beta distribution", accepted for publication in STAT DOI
  2. Dörr, P., Ebner, B., Henze, N. (2020) "A new test of multivariate normality by a double estimation in a characterizing PDE", to be published in Metrika.Open Access
  3. Dörr, P., Ebner, B., Henze, N. (2020) "Testing multivariate normality by zeros of the harmonic oscillator in characteristic function spaces", accepted for publication in Scandinavian Journal of Statistics, DOI
  4. Betsch, S., Ebner, B., Klar, B. (2020) "Minimum L^q-distance estimators for non-normalized parametric models", accepted for publication in Canadian Journal of Statistics, Open Access
  5. Ebner, B., Henze, N. (2020) "Tests for multivariate normality -- a critical review with emphasis on weighted L^2-statistics", TEST, Volume 29: 845–892 Open Access and the rejoinder of the discussion.
  6. Ebner, B., Nestmann, F., Schulte, M. (2020) "Testing multivariate uniformity based on random geometric graphs", Electronic Journal of Statistics, Volume 14(2): 4273-4320 Open Access.
  7. Betsch, S., Ebner, B. (2020) "Testing normality via a distributional fixed point property in the Stein characterization", TEST, Volume 29(1), 105–138 Online First.
  8. Betsch, S., Ebner, B. (2019) "Characterizations of continuous univariate probability distributions with applications to goodness-of-fit testing", in Annals of the Institute of Statistical Mathematics, Online First.
  9. Betsch, S., Ebner, B. (2019) "A new characterization of the Gamma distribution and associated goodness of fit tests", Metrika, Volume 82(7), 779-806 Link.
  10. Ebner, B., Henze, N., Klatt, M.A., Mecke, K. (2018) "Goodness-of-fit tests for complete spatial randomness based on Minkowski functionals of binary images", Electronic Journal of Statistics, Vol. 12, No. 2, 2873-2904 Link.
  11. Ebner, B., Henze, N., Yukich J.E. (2018) "Multivariate goodness-of-fit on flat and curved spaces via nearest neighbor distances", Journal of Multivariate Analysis, Volume 165, p. 231-242, Link.
  12. Ebner, B., Klar, B., Meintanis, S.G. (2018) "Fourier Inference for Stochastic Volatility Models with Heavy-Tailed Innovations", Statistical Papers, Volume 59(3), 1043-1060, DOI:10.1007/s00362-016-0803-6.
  13. Baringhaus, L., Ebner, B., Henze, N. (2017) "The Limit Distribution of weighted L^2-Goodness-of-Fit Statistics under fixed Alternatives, with Applications", Annals of the Institute of Statistical Mathematics, 69(5), 969–995. Link
  14. Ebner, B., Folkers, M., Haase, D. (2016) "Vorbereitende und begleitende Angebote in der Grundlehre Mathematik für die Fachrichtung Wirtschaftswissenschaften". in: Lehren und Lernen von Mathematik in der Studieneingangsphase, hrsg. v. Hoppenbrock, A., Biehler, R., Hochmuth, R., Rück, H.-G., Konzepte und Studien zur Hochschuldidaktik und Lehrerbildung Mathematik, Bd. 4, Wiesbaden: Springer Spektrum, S. 149 – 164. Link
  15. Ebner, B., Henze, N. (2016) "Runs in Bernoulli-Ketten", Stochastik in der Schule, 36, 3, S. 20–26. Link
  16. Ebner, B., Henze, N., Parthasarathy, P.R. (2013) "Ramanujan Theta Functions and Birth and Death Processes". Statistics & Probability Letters, Band 83(12), S. 2647–2655. Link
  17. Ebner, B. (2012) "Asymptotic Theory for the Test on Multivariate Normality by Cox and Small". Journal of Multivariate Analysis, Band 111, S. 368–379. Link
  18. Henze, N., Meintanis, S.G., Ebner, B. (2012) "Goodness-of-fit tests for the Gamma distribution based on the empirical Laplace transform". Communications in Statistics – Theory and Methods, Band 41(9), S. 1543-1556. Link
  19. Ebner, B. (2010). "Zur Asymptotik eines mit quadratischen Abhängigkeiten operierenden Tests auf multivariate Normalverteilung". Dissertation, KIT Scientific Publishing. Link
  20. Henze, N., Nikitin, Y., Ebner, B. (2009). "Integral distribution-free statistics of L_p-type and their asymptotic comparison". Computational Statistics & Data Analysis, Band 53(9), S. 3426-3438. Link
  21. Ebner, B., Folkers, M. (2007). "Mit Mathematik unterschreiben: Ein Vorschlag für den Schulunterricht". Realitätsnaher Mathematikunterricht - vom Fach aus und für die Praxis, Franzbecker, S. 24-37.

Sonstige Veröffentlichungen

  1. Ebner, B., Folkers, M. (2013). "Vorkurs Mathematik für die Fachrichtung Wirtschaftswissenschaften", ILIAS Plattform des KIT Link.
  2. Ebner, B., Henze, N. (2013). "2013: Internationales Jahr der Statistik", Mitteilungen der Deutschen Mathematiker-Vereinigung, Band 21, Heft 4, S. 212-217. Link.
  3. Ebner, B., Folkers, M. (2013). "Ein Blended Learning Vorkurs Mathematik für die Fachrichtung Wirtschaftswissenschaften am Karlsruher Institut für Technologie (KIT)", khdm Report, Nr. 1. Link.

R Pakete

  1. Butsch, L., Ebner, B. (2020) mnt: Affine Invariant Tests of Multivariate Normality. R package version 1.3. Link.
  2. Betsch, S., Butsch, L., Ebner, B. (2020) gofgamma: Goodness-of-Fit Tests for the Gamma Distribution. R package version 1.0. Link.

Vorträge auf Konferenzen/Arbeitsgemeinschaften

  1. CMStatistics (2020) London - online: On Stein operators in testing the fit to parametric families of distributions.
  2. Statcon (2020) On-line Workshop: Stein characterizations in distributional model checks.
  3. Seminar ULB (2020) Brüssel: On some new characterizations of univariate distributions via fixed points of distributional transforms with application in goodness of fit testing problems.
  4. CMStatistics (2019) London: New tests of multivariate normality by a characterizing property of the Hermite operator.
  5. Cronos (2019) Limassol: Resampling under unimodality via the empirical zero bias transform.
  6. SASA Eastern Cape Chapter meeting (2019) Port Elizabeth: Analyzing point patterns by a threshold transformation to binary images.
  7. Workshop (2019) Stellenbosch: Asymptotic Stochastics.
  8. Seminar (2018) Pretoria: New Characterizations of Distributions by Fixed Points of Transformations and Applications to Goodness-of-Fit Testing.
  9. IWS (2018) Barcelona: Goodness of Fit Testing via fixed points of distributional transforms.
  10. GPSRS (2017) Bad Herrenalb: Goodness-of-fit tests for complete spatial randomness based on Minkowski functionals of binary images.
  11. Oberseminar (2017) Magdeburg: New goodness-of-fit tests for uniformity and complete spatial randomness based on local dependency.
  12. Mathematisches Kolloquium (2016) Ulm: Anpassungstests für vollständige räumliche Zufälligkeit basierend auf lokalen Abhängigkeiten in Punktmustern.
  13. GPSD (2016) Bochum: Goodness-of-fit tests for complete spatial randomness based on Minkowski functionals.
  14. Statistics seminar (2015) ULB Brüssel: New goodness-of-fit tests for Poisson point processes based on Minkowski functionals.
  15. ERCIM (2013) London: Fourier inference for stochastic volatility models with heavy-tailed innovations.
  16. 2. Khdm Arbeitstagung (2013) Paderborn: Ein Blended Learning Vorkurs Mathematik für die Fachrichtung Wirtschaftswissenschaften am Karlsruher Institut für Technologie (KIT).
  17. GPSD (2012) Mainz: Asymptotics for a goodness-of-fit test for multivariate normality operating with quadratic dependencies.