Webrelaunch 2020

Dr. Bruno Ebner

  • Karlsruher Institut für Technologie (KIT)
    Institut für Stochastik
    Englerstr. 2
    76131 Karlsruhe

Aktuelles Lehrangebot
Semester Titel Typ
Wintersemester 2022/23 Vorlesung
Sommersemester 2022 Vorlesung
Vorlesung
Proseminar
Sommersemester 2021 Vorlesung
Vorlesung
Wintersemester 2020/21 Vorlesung
Vorlesung
Vorlesung
Sommersemester 2020 Vorlesung
Vorlesung
Wintersemester 2019/20 Vorlesung
Vorlesung
Vorlesung
Sommersemester 2019 Vorlesung
Vorlesung
Seminar
Wintersemester 2018/19 Vorlesung
Sommersemester 2018 Vorlesung
Vorlesung
Seminar
Wintersemester 2017/18 Vorlesung
Proseminar
Sommersemester 2017 Vorlesung
Vorlesung
Seminar
Wintersemester 2016/17 Vorlesung
Vorlesung
Vorlesung

Forschungsinteressen

  1. Asymptotische Statistik
  2. Anpassungstests
  3. Stochastische Prozesse in Banachräumen
  4. Statistiken von Punktprozessen
  5. Charakterisierungen von Verteilungen
  6. Stein Operatoren
  7. Direktionale Daten

Preprints

  1. Dobler, D., Ebner, B. (2023) "Is the Gompertz family a good fit to your data?", arXiv:2302.01639 Link
  2. Borodavka, J., Ebner, B. (2023) "A general maximal projection approach to uniformity testing on the hypersphere", arXiv:2301.03482 Link

Veröffentlichungen

  1. Allison, J. S., Ebner, B., Smuts, M. (2023+) "Logistic or not logistic?", accepted for publication in Statistica Neerlandica Link
  2. Ebner, B., Fischer, A., Henze, N., Mayer, C. (2023+) "Weibull or not Weibull?", accepted for publication in Annals of the Institute of Statistical Mathematics Link
  3. Ebner, B. (2023+) "The test of exponentiality based on the mean residual life function revisited", Journal of Nonparametric Statistics Link,ArXiv
  4. Ebner, B., Eid, L., Klar, B. (2023+) "Cauchy or not Cauchy? New goodness-of-fit tests for the Cauchy distribution", accepted for publication in Statistical Papers Open Access
  5. Anastasiou, A., Barp, A., Briol, F.-X., Ebner, B., Gaunt, R.E., Ghaderinezhad, F., Gorham, J., Gretton, A., Ley, C., Liu, Q., Mackey, L., Oates, C.J., Reinert, G., Swan, Y. (2023) "Stein's Method Meets Computational Statistics: A Review of Some Recent Developments", Statistical Science, 38(1): 120-139 Link
  6. Ebner, B., Liebenberg, S., Visagie, J. (2022) "A new omnibus test of fit based on a characterisation of the uniform distribution", Statistics, 56(6): 1364-1384 Link
  7. Ebner, B., Henze, N., Strieder, D. (2022) "Testing normality in any dimension by Fourier methods in a multivariate Stein equation", The Canadian Journal of Statistics, 50(3): 992-1033 Open Access
  8. Ebner, B., Henze, N. (2022+) "On the eigenvalues associated with the limit null distribution of the Epps-Pulley test of normality", accepted for publication in Statistical Papers Open Access
  9. Betsch, S., Ebner, B., Nestmann, F. (2022) "Characterizations of non-normalized discrete probability distributions and their application in statistics", Electronic Journal of Statistics, 16(1): 1303-1329 Open Access
  10. Allison, J.S., Betsch, S., Ebner, B., Visagie, I.J.H. (2022) "On Testing the Adequacy of the Inverse Gaussian Distribution", Mathematics, 10(3), 350 Open Access
  11. Ebner, B., Henze, N. (2021) "Bahadur efficiencies of the Epps--Pulley test for normality", Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 501, Veroyatnostʹ i Statistika. 30, 302–314 Link
  12. Dörr, P., Ebner, B., Henze, N. (2021) "Testing multivariate normality by zeros of the harmonic oscillator in characteristic function spaces", Scandinavian Journal of Statistics, Volume 48: 456-501. DOI
  13. Betsch, S., Ebner, B., Klar, B. (2021) "Minimum L^q-distance estimators for non-normalized parametric models", The Canadian Journal of Statistics, Volume 49(2): 514–548. Open Access
  14. Dörr, P., Ebner, B., Henze, N. (2021) "A new test of multivariate normality by a double estimation in a characterizing PDE", Metrika, 84(3), 401-427.Open Access
  15. Ebner, B. (2021) "On combining the zero bias transform and the empirical characteristic function to test normality", ALEA, Lat. Am. J. Probab. Math. Stat. 18, 1029–1045 Open Access
  16. Betsch, S., Ebner, B. (2021) "Fixed point characterizations of continuous univariate probability distributions and their applications", Annals of the Institute of Statistical Mathematics, 73: 31–59, Online First.
  17. Ebner, B., Liebenberg, S.C. (2021) "On a new test of fit to the beta distribution", Stat, 10:e341 Open Access
  18. Ebner, B., Henze, N. (2020) "Tests for multivariate normality -- a critical review with emphasis on weighted L^2-statistics", TEST, Volume 29: 845–892 Open Access and the rejoinder of the discussion.
  19. Ebner, B., Nestmann, F., Schulte, M. (2020) "Testing multivariate uniformity based on random geometric graphs", Electronic Journal of Statistics, Volume 14(2): 4273-4320 Open Access.
  20. Betsch, S., Ebner, B. (2020) "Testing normality via a distributional fixed point property in the Stein characterization", TEST, Volume 29(1), 105–138 Online First.
  21. Betsch, S., Ebner, B. (2019) "A new characterization of the Gamma distribution and associated goodness of fit tests", Metrika, Volume 82(7), 779-806 Link.
  22. Ebner, B., Henze, N., Klatt, M.A., Mecke, K. (2018) "Goodness-of-fit tests for complete spatial randomness based on Minkowski functionals of binary images", Electronic Journal of Statistics, Vol. 12, No. 2, 2873-2904 Link.
  23. Ebner, B., Henze, N., Yukich J.E. (2018) "Multivariate goodness-of-fit on flat and curved spaces via nearest neighbor distances", Journal of Multivariate Analysis, Volume 165, p. 231-242, Link.
  24. Ebner, B., Klar, B., Meintanis, S.G. (2018) "Fourier Inference for Stochastic Volatility Models with Heavy-Tailed Innovations", Statistical Papers, Volume 59(3), 1043-1060, DOI:10.1007/s00362-016-0803-6.
  25. Baringhaus, L., Ebner, B., Henze, N. (2017) "The Limit Distribution of weighted L^2-Goodness-of-Fit Statistics under fixed Alternatives, with Applications", Annals of the Institute of Statistical Mathematics, 69(5), 969–995. Link
  26. Ebner, B., Folkers, M., Haase, D. (2016) "Vorbereitende und begleitende Angebote in der Grundlehre Mathematik für die Fachrichtung Wirtschaftswissenschaften". in: Lehren und Lernen von Mathematik in der Studieneingangsphase, hrsg. v. Hoppenbrock, A., Biehler, R., Hochmuth, R., Rück, H.-G., Konzepte und Studien zur Hochschuldidaktik und Lehrerbildung Mathematik, Bd. 4, Wiesbaden: Springer Spektrum, S. 149 – 164. Link
  27. Ebner, B., Henze, N. (2016) "Runs in Bernoulli-Ketten", Stochastik in der Schule, 36, 3, S. 20–26. Link
  28. Ebner, B., Henze, N., Parthasarathy, P.R. (2013) "Ramanujan Theta Functions and Birth and Death Processes". Statistics & Probability Letters, Band 83(12), S. 2647–2655. Link
  29. Ebner, B. (2012) "Asymptotic Theory for the Test on Multivariate Normality by Cox and Small". Journal of Multivariate Analysis, Band 111, S. 368–379. Link
  30. Henze, N., Meintanis, S.G., Ebner, B. (2012) "Goodness-of-fit tests for the Gamma distribution based on the empirical Laplace transform". Communications in Statistics – Theory and Methods, Band 41(9), S. 1543-1556. Link
  31. Ebner, B. (2010). "Zur Asymptotik eines mit quadratischen Abhängigkeiten operierenden Tests auf multivariate Normalverteilung". Dissertation, KIT Scientific Publishing. Link
  32. Henze, N., Nikitin, Y., Ebner, B. (2009). "Integral distribution-free statistics of L_p-type and their asymptotic comparison". Computational Statistics & Data Analysis, Band 53(9), S. 3426-3438. Link
  33. Ebner, B., Folkers, M. (2007). "Mit Mathematik unterschreiben: Ein Vorschlag für den Schulunterricht". Realitätsnaher Mathematikunterricht - vom Fach aus und für die Praxis, Franzbecker, S. 24-37.

Sonstige Veröffentlichungen

  1. Ebner, B., Folkers, M. (2013). "Vorkurs Mathematik für die Fachrichtung Wirtschaftswissenschaften", ILIAS Plattform des KIT Link.
  2. Ebner, B., Henze, N. (2013). "2013: Internationales Jahr der Statistik", Mitteilungen der Deutschen Mathematiker-Vereinigung, Band 21, Heft 4, S. 212-217. Link.
  3. Ebner, B., Folkers, M. (2013). "Ein Blended Learning Vorkurs Mathematik für die Fachrichtung Wirtschaftswissenschaften am Karlsruher Institut für Technologie (KIT)", khdm Report, Nr. 1. Link.

R Pakete

  1. Butsch, L., Ebner, B. (2020) mnt: Affine Invariant Tests of Multivariate Normality. R package version 1.3. Link.
  2. Betsch, S., Butsch, L., Ebner, B. (2020) gofgamma: Goodness-of-Fit Tests for the Gamma Distribution. R package version 1.0. Link.

Vorträge auf Konferenzen/Arbeitsgemeinschaften

  1. CMStatistics (2022) London: On approximating eigenvalues of covariance operators with applications to goodness-of-fit tests
  2. Seminar ULB (2022) Brüssel: On weighted L^2-type statistics, asymptotics and the related Hilbert-Schmidt integral operator
  3. 5th GOFCP Workshop (2022) ENSAI Rennes: A general maximal projection approach to uniformity testing on the hypersphere
  4. CMStatistics (2021) London - online: On testing randomness of binary images.
  5. CMStatistics (2020) London - online: On Stein operators in testing the fit to parametric families of distributions.
  6. Statcon (2020) On-line Workshop: Stein characterizations in distributional model checks.
  7. Seminar ULB (2020) Brüssel: On some new characterizations of univariate distributions via fixed points of distributional transforms with application in goodness of fit testing problems.
  8. CMStatistics (2019) London: New tests of multivariate normality by a characterizing property of the Hermite operator.
  9. Cronos (2019) Limassol: Resampling under unimodality via the empirical zero bias transform.
  10. SASA Eastern Cape Chapter meeting (2019) Port Elizabeth: Analyzing point patterns by a threshold transformation to binary images.
  11. Workshop (2019) Stellenbosch: Asymptotic Stochastics.
  12. Seminar (2018) Pretoria: New Characterizations of Distributions by Fixed Points of Transformations and Applications to Goodness-of-Fit Testing.
  13. IWS (2018) Barcelona: Goodness of Fit Testing via fixed points of distributional transforms.
  14. GPSRS (2017) Bad Herrenalb: Goodness-of-fit tests for complete spatial randomness based on Minkowski functionals of binary images.
  15. Oberseminar (2017) Magdeburg: New goodness-of-fit tests for uniformity and complete spatial randomness based on local dependency.
  16. Mathematisches Kolloquium (2016) Ulm: Anpassungstests für vollständige räumliche Zufälligkeit basierend auf lokalen Abhängigkeiten in Punktmustern.
  17. GPSD (2016) Bochum: Goodness-of-fit tests for complete spatial randomness based on Minkowski functionals.
  18. Statistics seminar (2015) ULB Brüssel: New goodness-of-fit tests for Poisson point processes based on Minkowski functionals.
  19. ERCIM (2013) London: Fourier inference for stochastic volatility models with heavy-tailed innovations.
  20. 2. Khdm Arbeitstagung (2013) Paderborn: Ein Blended Learning Vorkurs Mathematik für die Fachrichtung Wirtschaftswissenschaften am Karlsruher Institut für Technologie (KIT).
  21. GPSD (2012) Mainz: Asymptotics for a goodness-of-fit test for multivariate normality operating with quadratic dependencies.