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Abstract

For a given convex (semi-convex) function u, defined on a nonempty
open convex set Ω ⊂ Rn, we establish a local Steiner type formula, the
coefficients of which are nonnegative (signed) Borel measures. We also
determine explicit integral representations for these coefficient measures,
which are similar to the integral representations for the curvature measures
of convex bodies (and, more generally, of sets with positive reach). We
prove that, for r ∈ {0, . . . , n}, the r-th coefficient measure of the local
Steiner formula for u, restricted to the set of r-singular points of u, is
absolutely continuous with respect to the r-dimensional Hausdorff measure,
and that its density is the (n − r)-dimensional Hausdorff measure of the
subgradient of u.

As an application, under the assumptions that u is convex and Lip-
schitz, and Ω is bounded, we get sharp estimates for certain weighted
Hausdorff measures of the sets of r-singular points of u. Such estimates
depend on the Lipschitz constant of u and on the quermassintegrals of the
topological closure of Ω.

1 Introduction

The structure of the set of singular points of a convex function u, defined on
an open convex set Ω ⊂ Rn, presents interesting aspects, both analytic and
geometric. A first step in the study of this set is to consider the following sets
Σr(u), r ∈ {0, . . . , n}, of r-singular points of u:

Σr(u) := {x ∈ Ω : dim ∂u(x) ≥ n− r},

where ∂u(x) denotes the subgradient of u at x. Alberti, Ambrosio & Cannarsa [1]
proved that, for every r ∈ {0, . . . , n}, Σr(u) can be covered by countably many
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r-dimensional submanifolds of class C1, at least up to a set of zero r-dimensional
Hausdorff measure. In particular, it follows that the Hausdorff dimension of Σr(u)
is r at the most.

Quite simple examples show that the r-dimensional Hausdorff measure of
Σr(u) can be infinite, for some convex function u : Ω → R, even if Ω is bounded.
Therefore, a weighted r-dimensional Hausdorff measure of Σr(u) will be con-
sidered, where the weight to be assigned to a point x ∈ Σr(u) is the (n − r)-
dimensional Hausdorff measure of ∂u(x). In other words, we investigate the
integral ∫

Σr(u)

Hn−r(∂u(x)) dHr(x), (1)

where Hs, for s ≥ 0, denotes the s-dimensional Hausdorff measure. In [1], for a
convex and Lipschitz function u : Ω → R, defined on a nonempty, open, bounded
and convex set Ω ⊂ Rn, with Lipschitz constant L, and for every r ∈ {0, . . . , n},
the following inequality is proved:∫

Σr(u)

Hn−r(∂u(x)) dHr(x) ≤ C(L + diam(Ω))n, (2)

where C is a constant depending on n.
In the present paper we establish a sharp upper bound for the integral (1),

thus improving (2). Namely, in Theorem 6.3, we prove that

∫
Σr(u)

Hn−r(∂u(x)) dHr(x) ≤
(
n

r

)
Ln−rWn−r(Ω̄), (3)

for r ∈ {0, . . . , n}. The quantities Wi(Ω̄), i ∈ {0, . . . , n}, denote the quermassin-
tegrals of the topological closure Ω̄ of Ω. In Section 7, for every open bounded
convex set Ω, and for every L ≥ 0 and ε > 0, we find a convex Lipschitz function
u defined on Ω, with Lipschitz constant L, such thatfor all r ∈ {0, . . . , n},

∫
Σr(u)

Hn−r(∂u(x)) dHr(x) ≥
(
n

r

)
Ln−rWn−r(Ω̄)− ε.

These results represent a counterpart, in the context of convex Lipschitz func-
tions, of some properties of the sets of singular boundary points of convex bodies,
proved in [7] and, in the more general setting of sets with positive reach, in [11].
There, for a convex body K ⊂ Rn, the set Σr(K) of r-singular boundary points
of K is considered. Recall from [11] that Σr(K) is defined by

Σr(K) = {x ∈ ∂K : dim N(K, x) ≥ n− r},

for r ∈ {0, . . . , n− 1}, if N(K, x) denotes the normal cone of K at x.
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The following inequalities are proved in [7] for n = 3 and r = 1, and in [11]
for arbitrary n ≥ 2 and r ∈ {0, . . . , n− 1}:

∫
Σr(K)

Hn−1−r(N(K, x) ∩ Sn−1) dHr(x) ≤ n

(
n− 1

r

)
Wn−r(K), (4)

where Wi(K), for i ∈ {0, . . . , n}, are the quermassintegrals of the convex body
K. Note that the inequalities (4) are sharp; indeed equality holds when K is a
polytope.

The proof of the inequalities (3), given in Section 6, requires several prelim-
inary results which are contained in Sections 3 and 4. The basic ingredient is
the local Steiner formula for an arbitrary convex function u which we establish
in Section 3. This result is a generalization of Theorem 1.1 in [6]. Whereas
approximation of u by special smooth convex functions and weak continuity of
coefficient measures were used to prove the Steiner formula in [6], the present ap-
proach exploits the connection between analytic properties of the function u and
geometric properties of its epigraph. This, in addition, leads to explicit integral
representations for the coefficient measures, which are measures on the σ-algebra
of Borel sets of Ω× Rn.

In Section 4, we relate the r-th coefficient measure Θr(u, ·) of the Steiner
formula for the convex function u to the integral (1), by proving the formula

∫
Σr(u)

Hn−r(∂u(x)) dHr(x) =

(
n

r

)
Θr(u, Σr(u)× Rn), (5)

for r ∈ {0, . . . , n}. More generally, formula (5) can be stated for arbitrary Borel
subsets of Σr(u) × Rn. Let us denote by π1 : Rn × Rn → Rn the projection
map π1(x, y) := x. Then it follows from the extended version of (5) that the
restriction of the image measure Fn−r(u, ·) := Θr(u, ·) ◦ π−1

1 to Borel subsets
of Σr(u) is absolutely continuous with respect to the r-dimensional Hausdorff
measure. Note that a similar result holds in the context of convex bodies. In
fact, the restriction of the r-th curvature measure of a convex body K to the
set Σr(K) is absolutely continuous with respect to the r-dimensional Hausdorff
measure, and the density can explicitly be determined as well, see [11, Theorem
3.2].

The results of Sections 3 and 4 are extended in Section 5 to semi-convex
functions, with no essential difficulty. It is worth remarking that this extension
parallels the extension, to sets of positive reach, of several results regarding sets
of singular boundary points of convex bodies, see [11]. The close connection
between semi-convex functions and sets with positive reach has previously been
observed and developed by Bangert [3] and Fu [10].
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2 Notation and preliminaries

Results for sets with positive reach, and hence especially for convex sets, will
play an important rôle in the sequel. The basic theory in this field has been
developed by Federer in his classical paper [8]. Later M. Zähle [16] extended and
simplified Federer’s theory substantially. In this section, we collect some of those
facts which will be needed in the following. Details and proofs as well as further
references can be found in M. Zähle [16], see also Kohlmann [12].

The basic setting is given by the Euclidean space Rd (d ≥ 2) with scalar
product 〈· , ·〉 and norm | · |. Henceforth, let X ⊂ Rd be a nonempty closed set
with X 6= Rd. For a ∈ Rd we define dist(a, X) := min{|a − x| : x ∈ X}. Let
Unp(X) be the set of all a ∈ Rd for which card{x ∈ X : |a−x| = dist(a, X)} = 1,
that is, a ∈ Unp(X) holds if and only if there exists a unique nearest point pX(a)
to a in X.

For x ∈ X we define the number

reach(X, x) := sup{r ≥ 0 : U(x, r) ⊂ Unp(X)},

where U(x, r) := {z ∈ Rd : |z − x| < r}. Finally, we say that X has positive
reach, if

reach(X) := inf{reach(X, x) : x ∈ X} > 0.

Examples of sets with reach(X) = ∞ are nonempty closed convex sets X ⊂ Rd

with X 6= Rd.
Provided that ε ∈ (0, reach(X)), the projection map pX is at least defined on

Xε := {a ∈ Rd : dist(a, X) ≤ ε}. In addition, we introduce the maps

σX : Xε \X → Sd−1, a 7→ |a− pX(a)|−1(a− pX(a)),

and
FX : Xε \X → Rd × Sd−1, a 7→ (pX(a), σX(a)).

Denote by ∂M the topological boundary and by M̄ the closure of a set M . Since
FX |∂Xε is a bi-Lipschitz homeomorphism and ∂Xε is a (d − 1)-dimensional C1

submanifold of Rd, the image set Nor(X) := FX(∂Xε) is countably (d − 1)-
rectifiable in the sense of Federer. To Federer [9, §3.2.14] we refer for all notions
of geometric measure theory such as rectifiability, approximate differentials and
Jacobians, or approximate tangent vectors.

Assume now that ε ∈ (0, reach(X)), and let y ∈ ∂Xε be such that σX :
∂Xε → Sd−1 is differentiable at y. The differential DσX(y) : σX(y)⊥ → σX(y)⊥

is a symmetric linear map with eigenvalues k1(y), . . . , kd−1(y) and corresponding
eigenvectors u1(y), . . . , ud−1(y). Let (x, v) := FX(y) ∈ Nor(X). Then one defines

ki(x, v) :=


ki(y)

1− εki(y)
, if ki(y) < ε−1,

∞, if ki(y) = ε−1,
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for i ∈ {1, . . . , d − 1}. One can show that this definition is independent
of the particular choice of ε ∈ (0, reach(X)). Moreover, the unit vectors
u1(x + εv), . . . , ud−1(x + εv) do not depend on ε and represent an orthonor-
mal basis of v⊥. Thus, (generalized) curvatures ki(x, v), i ∈ {1, . . . , d − 1}, are
defined for all (x, v) ∈ Nor(X) such that σX |∂Xδ is differentiable at (x + δv)
for some (and hence for all) δ ∈ (0, reach(X)). In this situation, it is also
known that the set of (Hd−1 Nor(X), d − 1) approximate tangent vectors at
(x, v) is a (d − 1)-dimensional linear subspace of Rd × Rd, which is denoted by
Tand−1(Hd−1 Nor(X), (x, v)). This approximate tangent space is spanned by
the orthonormal basis wi(x, v), i ∈ {1, . . . , d− 1}, where

wi(x, v) :=

 1√
1 + ki(x, v)2

ui(x, v),
ki(x, v)√

1 + ki(x, v)2
ui(x, v)

 ,

and ui(x, v) := ui(x+ εv) for i ∈ {1, . . . , d−1}. Since σX |∂Xε is a Lipschitz map,
the preceding statements hold true for Hd−1 almost all (x, v) ∈ Nor(X).

Part of the present research is devoted to the investigation of singularities of
convex functions, see Section 4. If u : Ω → R is a convex function which is defined
on a (nonempty) open convex set in Rd, then the subgradient ∂u(x) of u at x ∈ Ω
is defined by

∂u(x) := {p ∈ Rd : ∀y ∈ Ω u(y)− u(x) ≥ 〈p, y − x〉}.

It is well known that this is a nonempty compact convex set. A point x ∈ Ω is
called singular, if dim ∂u(x) ≥ 1. In Section 4 we will classify the points x ∈ Ω
according to the dimension of ∂u(x).

For a set X of positive reach we now introduce the classical notion of a normal
cone. This is the notion which should be seen in analogy to the subgradient of
a function. The normal cone N(X, x) of X at a boundary point x ∈ ∂X can be
defined by

N(X, x) := {λv ∈ Rd : (x, v) ∈ Nor(X), λ ≥ 0}.
It is easy to see that this is a nonempty closed convex set. Moreover, this defini-
tion gives rise to a classification of boundary points according to

Σr(X) := {x ∈ ∂X : dim N(X, x) ≥ d− r},

for r ∈ {0, . . . , d − 1}. The set Σr(X) is called the set of r-singular boundary
points of X. It is known that Σr(X) is an r-rectifiable Borel set. Recently,
geometric and measure theoretic properties of these sets have been investigated
in [11].

As far as measure theory is concerned, we write Hr for the r-dimensional
Hausdorff measure, r ≥ 0, and B(T ) denotes the σ-algebra of Borel sets of a
topological space T . Our basic reference for results from measure theory is Federer
[9], for results about convex sets or functions we usually refer to Schneider [14].
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3 Steiner formulae and coefficient measures

In this section, we will establish a general Steiner type formula for an arbitrary
convex function u. The present result represents a generalization of Theorem 1.1
from [6].

First, let us introduce some more notation and add some preparatory remarks.
In the present section, it is always assumed that Ω ⊂ Rn is a nonempty open
convex set and that u : Ω → R is a convex function. As usual, the epigraph of u
is defined by setting

epi(u) := {(x, t) ∈ Ω× R : t ≥ u(x)}.

The closure of the epigraph of u, Xu := epi(u) ⊂ Rn+1, is a nonempty closed
convex subset of Rn+1 and Xu 6= Rn+1. In particular, we have reach(Xu) = ∞.
Thus, the present setting admits the application of the methods developed by M.
Zähle in [16], see also [11].

In order to introduce local parallel sets for the convex function u, we consider
the (generalized) graph Γ(u) of the multivalued subgradient map ∂u of u over Ω,
which is given by

Γ(u) := {(x, p) ∈ Ω× Rn : p ∈ ∂u(x)}.

Then, for any η ∈ B(Ω × Rn) and ρ ≥ 0, the local parallel set Pρ(u, η) of the
convex function u,

Pρ(u, η) := {x + ρ p ∈ Rn : (x, p) ∈ η ∩ Γ(u)},

can be defined. This definition is analogous to the one used in the context of
convex bodies, see Schneider [14, §4.1]. We should, however, remark that Pρ(u, Ω)
need neither be convex nor star-shaped in general.

It will be necessary, for the present approach, to obtain an alternative descrip-
tion of these local parallel sets. For that purpose, rather than the unit normal
bundle Nor(Xu) of Xu, we shall need the following subset

Nor(u) := Nor(Xu) ∩ ({(x, u(x)) ∈ Rn+1 : x ∈ Ω} × Sn)

of Rn+1 × Rn+1, which corresponds to the domain of u. The set Nor(u) will be
called the unit normal bundle of u. Obviously, this is a countably n-rectifiable
Borel set. A precise correspondence between the sets Γ(u) and Nor(u) is provided
by the map

T :


Γ(u) → Nor(u),

(x, p) 7→
(
(x, u(x)), 1√

1+|p|2
(p,−1)

)
.
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According to Theorem 1.5.11 from Schneider [14] and since u is real-valued and
Ω is open, this map is well-defined and onto. Moreover, it is easy to check that
it is also one-to-one.

Let us denote by (E1, . . . , En+1) the standard basis of Rn+1. Points and vectors
of Rn+1 will be denoted by capital letters. Furthermore, we identify Rn and
Rn × {0}. Then, the inverse map T̃ of T is given by

T̃ :


Nor(u) → Γ(u),

(X, V ) 7→ (X − 〈X, En+1〉En+1, En+1 − 〈V, En+1〉−1V ) .

Note that 〈V, En+1〉 < 0 holds true, if (X, V ) ∈ Nor(u) for some X ∈ Rn+1.
Hence, the maps T and T̃ are mutually inverse homeomorphisms, and locally
they are Lipschitz maps. This implies, in particular, that Γ(u) is a countably
n-rectifiable Borel set.

Now, for any η ∈ B(Ω × Rn) and ρ ≥ 0, the local parallel set Pρ(u, η) of the
convex function u can be parametrized by using the Borel set

η̂ := T (η ∩ Γ(u)) ⊂ Rn+1 × Rn+1

and the transformation Fρ : Nor(u) → Rn which is given by

Fρ := π1 ◦ T̃ + ρ π2 ◦ T̃ ,

where the projection maps π1, π2 : Rn × Rn → Rn are defined by setting

π1(x, u) := x and π2(x, u) := u.

Note that Fρ is injective for ρ > 0. This can easily be inferred from Proposition
2.2 of [6]. In fact, this proposition remains true, with the same proof, under the
present weaker assumptions, where it is neither assumed that Ω is bounded nor
that u is a Lipschitz map. In fact, these remarks eventually lead to the relation

Pρ(u, η) = Fρ(η̂) ⊂ Rn,

for any η ∈ B(Ω × Rn) and ρ ≥ 0. Finally, observe that Pρ(u, η) is a countably
n-rectifiable Borel set. A short proof for the fact that Pρ(u, η) ∈ B(Rn) can be
given by applying Theorem 8.3.7 of Cohn [5]. For a more elementary approach,
one first shows that Pρ(u, Ω) is a countable union of closed sets and then one uses
Proposition 2.2 of [6].

The preceding considerations and Federer’s coarea formula [9, Theorem 3.2.22]
hence imply that

Hn(Pρ(u, η)) = Hn(Fρ(Nor(u) ∩ η̂))

=
∫

Nor(u)

1η̂(X, V ) ap JnFρ(X, V ) dHn(X, V ). (6)
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Here again the injectivity of Fρ is used if ρ > 0. But (6) is also true for ρ = 0,
since ∂u(x) is single-valued for Hn almost all x ∈ Ω.

Therefore, in order to obtain the desired Steiner type formula and the integral
representation for the coefficient measures, it remains to determine the approx-
imate Jacobian ap JnFρ(X,V ) of the mapping Fρ. Before we can express the
precise result in Theorem 3.1 below, some of the facts mentioned in Section 2
have to be interpreted in the present framework. In particular, note that for Hn

almost all (X, V ) ∈ Nor(u) the vectors

Wi =

 1√
1 + Ki(X, V )2

Ui,
Ki(X, V )√

1 + Ki(X, V )2
Ui

 , i ∈ {1, . . . , n},

are an orthonormal basis of Tann(Hn Nor(u), (X, V )). Furthermore, the unit
vectors U1, . . . , Un represent a suitably chosen orthonormal basis of V ⊥ in Rn+1.
Of course, these vectors depend on the pair (X, V ) which is considered. More
precisely, for i ∈ {1, . . . , n}, Ui is chosen to be a unit vector which corresponds
to the curvature Ki(X, V ) of the unit normal bundle Nor(Xu) in the same way
as in Section 2, for i ∈ {1, . . . , d − 1}, the unit vector ui(x, v) corresponds to
the curvature ki(x, v) of the unit normal bundle Nor(X). In addition, it can be
assumed that (U1, . . . , Un, V ) is negatively oriented with respect to the standard
basis (E1, . . . , En+1) of Rn+1. Finally, for Hn almost all (X, V ) ∈ Nor(u), we set

Di1...ij(X, V ) :=

〈V, En+1〉2 +
j∑

l=1

〈Uil , En+1〉2

−〈V, En+1〉
≥ −〈V, En+1〉 > 0, (7)

provided that j ∈ {1, . . . , n} and 1 ≤ i1 < . . . < ij ≤ n. For j = 0 we set

Di1...i0(X,V ) := −〈V, En+1〉. (8)

Now, we are in a position to present the main result of this section.

Theorem 3.1 Let Ω ⊂ Rn be nonempty, open and convex, and let u : Ω → R be
a convex function. Then, there exist positive measures Θ0(u, ·), . . . , Θn(u, ·) on
B(Ω× Rn) such that the Steiner formula

Hn(Pρ(u, η)) =
n∑

j=0

(
n

j

)
ρjΘn−j(u, η)

holds true for any η ∈ B(Ω×Rn) and ρ ≥ 0. In addition, the coefficient measures
Θn−j(u, ·), j ∈ {0, . . . , n}, can be represented by(

n

j

)
Θn−j(u, η) =

∫
Nor(u)∩η̂

(
− 1

〈V, En+1〉

)j ∑
1≤i1<...<ij≤n

Ki1(X, V ) · · ·Kij(X, V )∏n
i=1

√
1 + Ki(X, V )2

Di1...ij(X, V ) dHn(X, V ).
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Proof. According to the preparatory considerations before Theorem 3.1, we have
to calculate the approximate Jacobian ap JnFρ(X, V ) of the mapping Fρ for Hn

almost all (X,V ) ∈ Nor(u). We shall adopt the previous notation. In the fol-
lowing, however, we shall often omit the argument (X, V ) of various functions, if
there is no danger of ambiguity. Hence we get, for Hn almost all (X,V ) ∈ Nor(u),
that

ap DFρ(X, V )(Wi) =
1√

1 + K2
i

(Ui − 〈Ui, En+1〉En+1)

− ρ

〈V, En+1〉
Ki√

1 + K2
i

(
Ui −

〈Ui, En+1〉
〈V, En+1〉

V

)

=
1√

1 + K2
i

Ai +

(
− 1

〈V, En+1〉

)
ρ

Ki√
1 + K2

i

Bi,

if
Ai := Ui − 〈Ui, En+1〉En+1 (9)

and

Bi := Ui −
〈Ui, En+1〉
〈V, En+1〉

V, (10)

for i ∈ {1, . . . , n}. Note that Ai, Bi ∈ E⊥
n+1. Now, the approximate Jacobian can

be calculated according to

ap JnFρ(X, V ) =

∥∥∥∥∥
n∧

i=1

ap DFρ(X, V )(Wi)

∥∥∥∥∥
and

n∧
i=1

ap DFρ(X, V )(Wi)

=
n∧

i=1

 1√
1 + K2

i

Ai +

(
− 1

〈V, En+1〉

)
ρ

Ki√
1 + K2

i

Bi



=
n∑

j=0

ρj

(
− 1

〈V, En+1〉

)j ∑
1≤i1<...<ij≤n

Ki1 · · ·Kij∏n
i=1

√
1 + K2

i

∧
i1...ij

(A, B).

The quantities
∧

i1...ij(A, B) are defined by∧
i1...ij

(A, B) := C1 ∧ . . . ∧ Cn,

where
Ci1 := Bi1 , . . . , Cij := Bij
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and
Cl := Al, l ∈ {1, . . . , n} \ {i1, . . . , ij},

provided that j ∈ {1, . . . , n} and 1 ≤ i1 < . . . < ij ≤ n. For j = 0, however, we
set ∧

i1...i0
(A, B) := A1 ∧ . . . ∧ An.

Observe that ∧
i1...ij

(A, B) = Di1...ij(A, B) E1 ∧ . . . ∧ En

with
Di1...ij(A, B) := det(C1, . . . , Cn),

if j ∈ {1, . . . , n}, and

Di1...i0(A, B) := det(A1, . . . , An).

Recall that (E1, . . . , En+1) is the standard basis of Rn+1, and (E1, . . . , En) is
supposed to be positively oriented with respect to the ‘det’ function on E⊥

n+1. By
some elementary linear algebra we can now deduce that

Di1...ij(A, B) = det(C1, . . . , Cn)

= det(C1, . . . , Cn, En+1)

=

〈V, En+1〉2 +
j∑

l=1

〈Uil , En+1〉2

〈V, En+1〉
det(U1, . . . , Un, V )

=

〈V, En+1〉2 +
j∑

l=1

〈Uil , En+1〉2

−〈V, En+1〉

≥ −〈V, En+1〉 > 0,

for j ∈ {0, . . . , n} and for any choice of the indices 1 ≤ i1 < . . . < ij ≤ n.
But then we get

ap JnFρ(X, V ) =
n∑

j=0

ρj

(
− 1

〈V, En+1〉

)j ∑
1≤i1<...<ij≤n

Ki1(X, V ) · · ·Kij(X, V )∏n
i=1

√
1 + Ki(X, V )2

Di1...ij(X,V ), (11)

if we write Di1...ij(X, V ) instead of Di1...ij(A, B), since this quantity basically is
a function of (X, V ), confer the preceding definitions (7) and (8). Moreover, we
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also used the fact that Ki(X, V ) ∈ [0,∞], for i ∈ {1, . . . , n} and Hn almost all
(X, V ) ∈ Nor(Xu).

Thus, from equations (6) and (11) we deduce the following Steiner formula

Hn(Pρ(u, η))

=
n∑

j=0

(
n

j

)
ρj 1(

n
j

) ∫
Nor(u)∩η̂

(
− 1

〈V, En+1〉

)j ∑
1≤i1<...<ij≤n

Ki1(X, V ) · · ·Kij(X, V )∏n
i=1

√
1 + Ki(X, V )2

Di1...ij(X, V ) dHn(X, V )

=:
n∑

j=0

(
n

j

)
ρjΘn−j(u, η),

which holds true for any η ∈ B(Ω× Rn) and ρ ≥ 0. The last line can serve as a
defining equation for the coefficient curvature measures Θn−j(u, ·), j ∈ {0, . . . , n},
of the convex function u. These are measures on the σ-algebra B(Ω×Rn), which
are nonnegative, since the integrand in the defining integral representation for
these measures is a nonnegative function.

Remark. A special case of the preceding Steiner formula implies that

Fj(u, β) = Θn−j(u, β × Rn),

if β ∈ B(Ω). This establishes the connection with the measures Fj(u, ·),
j ∈ {0, . . . , n}, which have previously been introduced in [6], under more re-
strictive assumptions on the associated convex function u, as measures on the
σ-algebra B(Ω).

In the two special cases j = 0 and j = n, the coefficient measures Θn−j(u, ·) will
be discussed separately. Assume that η ∈ B(Ω× Rn).

First, let j = 0. Since

det(A1, . . . , An) = −〈V, En+1〉,

we have

Hn({x ∈ Ω : ∃ p ∈ ∂u(x) (x, p) ∈ η})

= Hn(P0(u, η))

=
∫

Nor(u)∩η̂

(−〈V, En+1〉)
n∏

i=1

1√
1 + Ki(X,V )2

dHn(X,V )

= Θn(u, η),
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and hence, in particular,

Hn(β) = Θn(u, β × Rn) = F0(u, β),

if β ∈ B(Ω).
Now, let us investigate the case j = n. We have

det(B1, . . . , Bn) =

(
− 1

〈V, En+1〉

)
,

and thus we can write

Θ0(u, η) =
∫

Nor(u)∩η̂

(
− 1

〈V, En+1〉

)n+1 n∏
i=1

Ki(X, V )√
1 + Ki(X, V )2

dHn(X, V ).

From the calculations in the proof of Theorem 3.1, one obtains for the approxi-
mate Jacobian of the map π2 ◦ T̃ : Nor(u) → Rn that

ap Jn(π2 ◦ T̃ )(X, V ) =

(
− 1

〈V, En+1〉

)n+1 n∏
i=1

Ki(X, V )√
1 + Ki(X, V )2

,

for Hn almost all (X,V ) ∈ Nor(u). Therefore,

Θ0(u, η) =
∫

Rn

H0
(
η̂ ∩ (π2 ◦ T̃ )−1({p})

)
dHn(p)

=
∫

Rn

H0({x ∈ Ω : (x, p) ∈ Γ(u) ∩ η}) dHn(p)

= Hn({p ∈ Rn : ∃x ∈ Ω (x, p) ∈ Γ(u) ∩ η}).

As a special case we get that

Θ0(u, β × Rn) = Hn({p ∈ Rn : ∃x ∈ β p ∈ ∂u(x)}),

which is Theorem 3.1 from [6]. In the preceding argument we have used that for
Hn almost all p ∈ Rn there is at most one x ∈ Ω such that p ∈ ∂u(x). This
follows from Theorem 2.2.9 in Schneider [14] and from the relation{

p ∈ Rn : card
(
π−1

2 ({p}) ∩ Γ(u)
)
≥ 2

}
= H

({
V ∈ Sn : card

(
Π−1

2 ({V }) ∩ Nor(u)
)
≥ 2

})
,

where Π2 is defined by

Π2 : Rn+1 × Rn+1 → Rn+1, (X, V ) 7→ V,

and
H : Sn \ E⊥

n+1 → Rn, V 7→ En+1 − 〈V, En+1〉−1V,

is locally Lipschitzian.
Thus, in order to summarize, we have the following corollary.
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Corollary 3.2 Let Ω ⊂ Rn be open and convex, and let u : Ω → R be a convex
function. Then, for any η ∈ B(Ω× Rn),

Θn(u, η) = Hn
({

x ∈ Ω : π−1
1 ({x}) ∩ η ∩ Γ(u) 6= ∅

})
and

Θ0(u, η) = Hn
({

p ∈ Rn : π−1
2 ({p}) ∩ η ∩ Γ(u) 6= ∅

})
.

4 Weighted measures of singular points

In this second part of our treatment of convex functions, we shall investigate
singularities of convex functions. Basically, we will continue to use the notation
of Section 3. Recall from Section 1 that the set of r-singular points of the convex
function u : Ω → R is defined by

Σr(u) := {x ∈ Ω : dim ∂u(x) ≥ n− r},

if r ∈ {0, . . . , n}. Note that for any fixed point x ∈ Ω there is a bi-Lipschitz
transformation between ∂u(x) and N(Xu, (x, u(x))) ∩ Sn which is determined by

p 7→ 1√
1 + |p|2

(p,−1).

Moreover, the restriction of the map

Ω → graph(u) ⊂ Rn+1, x 7→ (x, u(x)),

to Σr(u) yields a locally bi-Lipschitz correspondence between Σr(u) and Σr(Xu)∩
graph(u), confer [11] for the notation concerning singular boundary points of
convex sets. Hence, according to Lemma 3.1 in [11], the set Σr(u) is a countably
r-rectifiable Borel set in Rn.

Theorem 4.1 Let Ω ⊂ Rn be nonempty, open and convex, and let u : Ω → R be
a convex function. Then, for r ∈ {0, . . . , n} and η ∈ B(Ω× Rn),(

n

r

)
Θr(u, η ∩ (Σr(u)× Rn)) =

∫
Σr(u)

Hn−r(∂u(x) ∩ ηx) dHr(x),

if ηx := {p ∈ Rn : (x, p) ∈ η}.

Proof. To start with, let us define the set

Nor(Σr(u)) := Nor(u) ∩ (Σr(Xu)× Sn),

which is a countably n-rectifiable Borel subset of Nor(Xu) ⊂ Rn+1 × Rn+1.
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A first observation is that, for Hn almost all (X, V ) ∈ Nor(Σr(u)), at least
(n− r) of the curvatures K1(X, V ), . . . , Kn(X, V ) are equal to ∞. For a justifi-
cation of this statement, see [11], proof of Theorem 3.2. Obviously, we can always
assume that

0 ≤ K1(X, V ) ≤ . . . ≤ Kn(X, V ) ≤ ∞.

Subsequently, we will consider the locally Lipschitz map G which is defined by

G : Nor(Σr(u)) → Σr(u), (X,V ) 7→ (π1 ◦ T̃ )(X, V ).

First of all, assume that r ∈ {1, . . . , n − 1}. Using the calculations which are
contained in the first part of the proof for Theorem 3.1, we obtain for Hn almost
all (X, V ) ∈ Nor(Σr(u)) that

ap JrG(X, V ) =

∥∥∥∥∥
r∧

i=1

(Ui − 〈Ui, En+1〉En+1)

∥∥∥∥∥
r∏

i=1

1√
1 + Ki(X, V )2

.

This is proved by exactly the same arguments and with the same conventions as
in the proof of Theorem 3.2 from [11]. Furthermore, observe that∥∥∥∥∥

r∧
i=1

(Ui − 〈Ui, En+1〉En+1)

∥∥∥∥∥ > 0.

From the integral representation of Θr(u, ·), which is provided by Theorem 3.1,
one can now deduce the relation(

n

r

)
Θr(u, η ∩ (Σr(u)× Rn))

=
∫

Nor(Σr(u))∩η̂

ap JrG(X, V )

(
− 1

〈V, En+1〉

)n−r

Dr+1...n(X, V )

‖∧r
i=1(Ui − 〈Ui, En+1〉En+1) ‖

dHn(X, V )

in the same way as equation (9) was deduced from equation (8) in the course of
the proof of Theorem 3.2 in [11].

An application of Federer’s coarea theorem then implies that(
n

r

)
Θr(u, η ∩ (Σr(u)× Rn))

=
∫

Σr(u)

∫
G−1({x})∩η̂

(
− 1

〈V, En+1〉

)n−r

Dr+1...n(X,V )

‖∧r
i=1(Ui − 〈Ui, En+1〉En+1) ‖

dHn−r(X, V ) dHr(x).
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Note that, for any fixed x ∈ Σr(u),

G−1({x}) ∩ η̂

=


(x, u(x)),

1√
1 + |p|2

(p,−1)

 ∈ Nor(Σr(u)) : p ∈ Rn, (x, p) ∈ η

 .

The set
{x ∈ Σr(u) : dim ∂u(x) > n− r}

has r-dimensional Hausdorff measure zero. Therefore, in the following we only
have to consider the case where dim ∂u(x) = n− r.

Next, we define the bijective map

f :


G−1({x}) → ∂u(x),

(
(x, u(x)), 1√

1+|p|2
(p,−1)

)
7→ p.

ForHr almost all x ∈ Σr(u) the following holds true: forHn−r almost all (X, V ) ∈
G−1({x}), the Jacobian Jn−rf(X, V ) of f is equal to the Jacobian Jn−rg(V ) of
the differentiable map g which is defined by

g :


Sn ∩ lin{Ur+1, . . . , Un, V } → Rn,

Y 7→ En+1 − 〈Y,En+1〉−1Y.

Once again it is important to emphasize that the unit vectors Ur+1, . . . , Un depend
on (X, V ) ∈ G−1({x}). Nevertheless, for Hr almost all x ∈ Σr(u) the following
holds true: for Hn−r almost all V ∈ N(Xu, (x, u(x))) ∩ Sn, the (n − r + 1)-
dimensional vector space

lin{Ur+1, . . . , Un, V } = lin N(Xu, (x, u(x)))

does not depend on the particular choice of (X, V ) ∈ G−1({x}). Here it is
assumed, as we always do, that the ordering of the vectors U1, . . . , Un is chosen
properly.

A straightforward calculation then yields

Jn−rg(V ) =

(
− 1

〈V, En+1〉

)n−r
∥∥∥∥∥∥

n∧
i=r+1

(
Ui −

〈Ui, En+1〉
〈V, En+1〉

V

)∥∥∥∥∥∥ .

It is easy to verify by another elementary calculation that 〈Ai, Bj〉 = δij for all
i, j ∈ {1, . . . , n}; for definitions of these quantities see (9) and (10) in the proof
of Theorem 3.1. From this observation we obtain

Dr+1...n(X,V ) = ‖A1 ∧ . . . ∧ Ar ∧Br+1 ∧ . . . ∧Bn‖

= ‖A1 ∧ . . . ∧ Ar‖ ‖Br+1 ∧ . . . ∧Bn‖.
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Hence, for Hr almost all x ∈ Σr(u), we can infer that

∫
G−1({x})∩η̂

(
− 1

〈V, En+1〉

)n−r

Dr+1...n(X, V )

‖∧r
i=1(Ui − 〈Ui, En+1〉En+1) ‖

dHn−r(X,V )

=
∫

G−1({x})

1η̂(X, V )Jn−rf(X, V ) dHr(X, V )

=
∫

∂u(x)

1η(x, p) dHr(p)

= Hr(∂u(x) ∩ ηx).

A special case of the coarea formula can be used to justify the second equality.
This immediately implies Theorem 4.1 in the case r ∈ {1, . . . , n− 1}.

Now, assume that r = n. But then the statement of the theorem is implied by
Corollary 3.2, since

π−1
1 ({x}) ∩ η ∩ Γ(u) 6= ∅ ⇔ ∂u(x) ∩ ηx 6= ∅

holds for all x ∈ Ω and because u is differentiable forHn almost all x ∈ Σn(u) = Ω.
Alternatively, another proof follows from minor modifications of the argument for
the case r ∈ {1, . . . , n− 1}.

Finally, we treat the case r = 0. Then, Σ0(u) = {xι : ι ∈ I}, where I is at most
countable. Note that

K1(X,V ) = . . . = Kn(X, V ) = ∞,

for Hn almost all (X, V ) ∈ Nor(Σ0(u)). Hence,

Θ0(u, η ∩ (Σ0(u)× Rn))

=
∫

Nor(Σ0(u))∩η̂

(
− 1

〈V, En+1〉

)n

n∏
i=1

Ki(X,V )√
1 + Ki(X, V )2

D1...n(X, V ) dHn(X, V )

=
∑
ι∈I

∫
G−1({xι})∩η̂

(
− 1

〈V, En+1〉

)n

D1...n(X, V ) dHn(X, V )
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=
∑
ι∈I

Hn(∂u(xι) ∩ ηxι)

=
∫

Σ0(u)

Hn(∂u(x) ∩ ηx) dH0(x).

The third equality can be verified as in the proof of the corresponding statement
in the case r ∈ {1, . . . , n− 1}.

This completes the proof in all cases.

The following special case of Theorem 4.1 will be essential for the proof of The-
orem 6.2 below.

Corollary 4.2 Let Ω ⊂ Rn be nonempty, open and convex, and let u : Ω → R be
a convex function. Then,(

n

r

)
Θr(u, (Σr(u) ∩ β)× Rn) =

(
n

n− r

)
Fn−r(u, Σr(u) ∩ β)

=
∫

Σr(u)∩β

Hn−r(∂u(x)) dHr(x),

for all r ∈ {0, . . . , n} and β ∈ B(Ω).

5 Semi-convex functions

In the following, the corresponding approach for semi-convex functions will be
outlined. The method is strictly analogous to the one of Section 3, if some results
for sets of positive reach or, more generally, sets with the unique footpoint prop-
erty, are used. We start with a definition of semi-convexity which is appropriate
for our purpose, see also Bangert [3], Fu [10], and Remark 2 after Theorem 5.2
below. If Ω ⊂ Rn is a nonempty open set, then we shall write U ⊂⊂ Ω if and
only if U is a nonempty, bounded, open and convex set such that Ū ⊂ Ω.

Definition. Let Ω ⊂ Rn be nonempty, open and convex. A function u : Ω → R is
called semi-convex, if for each set U with U ⊂⊂ Ω there is a nonnegative constant
C such that the function

k(x) := u(x) +
C

2
|x|2, x ∈ U,

is convex. The smallest such constant is denoted by SC(u, U).
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A few remarks are in order. Let Ω, U , and u be given as in the preceding
definition. Then, in particular, the function

x 7→ u(x) +
SC(u, U)

2
|x|2, x ∈ U,

is convex. This is equivalent to the condition that

u((1− t)x + ty)− (1− t)u(x)− tu(y) ≤ SC(u, U)

2
(1− t)t|x− y|2,

for all t ∈ [0, 1] and x, y ∈ U . The definition of semi-convexity immediately
implies that the restriction of u to any compact subset of Ω is a Lipschitz map.
Therefore, we can adopt the definition of the (generalized) subgradient ∂u(x) of
u at x ∈ Ω from Clarke [4, p. 27].

From this definition one can deduce that, for any x ∈ Ω, ∂u(x) is convex
and nonempty. Moreover, for x ∈ U , the subgradient ∂u(x) can be calculated
according to

∂u(x) = ∂k(x)− SC(u, U)x,

where

k(y) := u(y) +
SC(u, U)

2
|y|2, y ∈ U,

is a convex function. This follows from Clarke [4, pp. 38-40]. In particular, ∂k(x)
coincides with the subdifferential in the sense of convexity. (Note that by a slight
abuse of notation, we sometimes write z instead of {z}, if z ∈ Rn.)

Therefore, if η ∈ B(Ω × Rn) and ρ ≥ 0, then formally the graph Γ(u) of the
subgradient map ∂u and the local parallel sets Pρ(u, η) can be defined in the same
way as in the convex case.

After these preparations, we can state a straightforward extension of Propo-
sition 2.2 from [6].

Lemma 5.1 Let Ω ⊂ Rn be nonempty, open and convex, and let u : Ω → R
be a semi-convex function. Assume that U ⊂⊂ Ω, and let ρ ∈ [0, SC(u, U)−1).
Then, for each z ∈ Pρ(u, U × Rn), there is a unique point pρ(z) ∈ U such that
z = pρ(z) + ρv holds for some v ∈ ∂u(pρ(z)). Moreover, the mapping

pρ : Pρ(u, U × Rn) → U, z 7→ pρ(z),

is Lipschitz continuous with Lipschitz constant (1− ρSC(u, U))−1.

Proof. Set C := SC(u, U) and define

k(x) := u(x) +
C

2
|x|2, x ∈ U.

The preceding remarks yield that

∂k(x) = ∂u(x) + C x, x ∈ U.
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Now, choose x, x′ ∈ U and p ∈ ∂u(x), p′ ∈ ∂u(x′). Hence we get p̄ := p + Cx ∈
∂k(x) and p̄′ := p′ + Cx′ ∈ ∂k(x′), and thus

|x + ρp− (x′ + ρp′)| = (1− ρC)

∣∣∣∣∣x +
ρ

1− ρC
p̄−

(
x′ +

ρ

1− ρC
p̄′
)∣∣∣∣∣

≥ (1− ρC)|x− x′|.

An application of Proposition 2.2 from [6] justifies the last inequality.

Example. Define U(a, r) := {x ∈ Rn : |x − a| < r}, if a ∈ Rn and r ≥ 0. Let
Ω := U(o, 1) and u(x) := (−1/2)|x|2, x ∈ Ω. Then we have SC(u, U) = 1, for all
U ⊂⊂ Ω, and Pρ(u, Ω× Rn) = U(o, 1− ρ), if ρ ∈ [0, 1). Moreover, the map pρ is
given by

pρ : U(o, 1− ρ) → U(o, 1), z 7→ (1− ρ)−1z,

for ρ ∈ [0, 1). This trivial example shows that Lemma 5.1 cannot be improved.

Our next purpose is to define the generalized unit normal bundle Nor(u) of the
semi-convex function u : Ω → R and to describe its properties. One way to
do this, would be to define Nor(u) := T (Γ(u)), confer Section 3, and to deduce
rectifiability properties of Nor(u) from corresponding properties of Γ(u). In order
to be able to define generalized curvatures on Nor(u), however, we will proceed
in a different manner. First, choose U ⊂⊂ Ω arbitrarily. Then we have that
Lip(u|U) < ∞ and SC(u, U) < ∞. According to Proposition 1.7 of Fu [10],
there is a mapping u(U) : Rn → R such that

u(U)|U = u|U, Lip(u(U)) < ∞,

and
sup{SC(u(U), W ) : W ⊂⊂ Rn} = SC(u, U) < ∞.

Set Xu(U) := epi(u(U)) and Xu := epi(u), which both are closed subsets of Rn+1.
Theorem 2.3 of Fu [10] now implies that

reach
(
Xu(U)

)
≥ SC(u, U)−1 > 0,

and hence Nor
(
Xu(U)

)
is a countably n-rectifiable Borel set in Rn+1×Rn+1. More-

over, we then also get that

reach (Xu, (x, u(x))) > 0, x ∈ U,

since U is open. This observation, Theorem 4.8 (12) in Federer [8], and Lemma
2.9 in Fu [10] yield that
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Nor (Xu, (x, u(x))) ∩ Sn

= Nor
(
Xu(U), (x, u(x))

)
∩ Sn

=

 1√
1 + |p|2

(p,−1) ∈ Rn+1 : p ∈ ∂u(x)

 ,

if x ∈ U is arbitrarily chosen. Then we define

Nor(u) :=
⋃

U⊂⊂Ω

⋃
x∈U

(
Nor

(
Xu(U), (x, u(x))

)
∩ Sn

)

=
∞⋃
i=1

(
Nor

(
Xu(Ui)

)
∩ (graph(u|Ui)× Sn)

)
,

where (Ui)i∈N is a sequence of sets such that Ui ⊂⊂ Ω for all i ∈ N and ∪∞i=1Ui = Ω.
Therefore, Nor(u) is a countably n-rectifiable Borel set. In addition, the func-

tions T, T̃ which are defined as in Section 3, again are mutually inverse homeo-
morphisms and locally they are Lipschitz maps. Thus, in particular, Γ(u) is a
countably n-rectifiable Borel set. Moreover, note that

Nor(u) ∩ (graph(u|U)× Sn) = T (Γ(u) ∩ (U × Rn)),

for all U ⊂⊂ Ω.
Let U ⊂⊂ Ω, η ∈ B(U × Rn), and define η̂ := T (η ∩ Γ(u)) and Fρ as in

Section 3. If not explicitly stated otherwise, then we adopt all conventions and
definitions from Section 3. Thus we get Pρ(u, η) = Fρ(η̂) ⊂ Rn. Moreover,
Fρ|T (Γ(u)∩(U×Rn)) is an injective map provided that 0 < ρ < SC(u, U)−1. This
follows from Lemma 5.1. Hence, in particular, we obtain that Pρ(u, η) ∈ B(Rn).

Again let U ⊂⊂ Ω be arbitrarily chosen. The results of Section 2
show that, for Hn almost all (X, V ) ∈ Nor

(
Xu(U)

)
, generalized curvatures

K1(X, V ), . . . , Kn(X, V ) are defined. From the preceding discussion and the local
nature of these curvatures it can be seen that, forHn almost all (X,V ) ∈ T (Γ(u)∩
(U × Rn)), these curvatures K1(X, V ), . . . , Kn(X, V ) do not depend on the par-
ticular extension u(U) of u. Also for Hn almost all (X, V ) ∈ T (Γ(u)∩ (U ×Rn)),
a similar remark applies to the orthonormal basis (U1, . . . , Un) of V ⊥, which is
connected with these curvatures, and hence also to the quantities Di1...ij(X, V )
which are defined as in Section 3. Furthermore, since U ⊂⊂ Ω was arbitrarily
chosen, all these quantities are functions which merely depend on Nor(u).

Now we are prepared for stating a local Steiner formula for semi-convex func-
tions.

Theorem 5.2 Let Ω ⊂ Rn be nonempty, open and convex, and let u : Ω → R be
a semi-convex function. Assume that U ⊂⊂ Ω. Then, there are signed measures
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Θ0(u, ·), . . . , Θn(u, ·) on B(U × Rn) such that, for any η ∈ B(U × Rn) and ρ ∈
[0, SC(u, U)−1), the Steiner formula

Hn(Pρ(u, η)) =
n∑

j=0

(
n

j

)
ρjΘn−j(u, η)

holds true. In addition, the coefficient measures Θn−j(u, ·) can be represented by

(
n

j

)
Θn−j(u, η) =

∫
Nor(u)∩η̂

(
− 1

〈V, En+1〉

)j ∑
1≤i1<...<ij≤n

Ki1(X,V ) · · ·Kij(X,V )∏n
i=1

√
1 + Ki(X, V )2

Di1...ij(X, V ) dHn(X, V ),

if j ∈ {0, . . . , n} and η ∈ B(U × Rn).

Proof. The proof is essentially the same as the one for Theorem 3.1. The only
additional complication which arises consists in verifying that, for Hn almost all
(X, V ) ∈ T (Γ(u) ∩ (U × Rn)) and ρ ∈ (0, SC(u, U)−1), we have

h(ρ, X, V ) :=

det

 1√
1 + K2

i

Ai +

(
− 1

〈V, En+1〉

)
ρ

Ki√
1 + K2

i

Bi, i = 1, . . . , n

 > 0, (12)

provided that all bases and determinants are oriented in the same way as in the
proof of Theorem 3.1. Of course, Ai, Bi, and Ki, i ∈ {1, . . . , n}, are functions of
(X, V ). Since the epigraph of a semi-convex function need not be a convex set,
the curvature functions which are associated with Nor(u) can be negative. This
is the reason why, compared with the proof in the convex case, an additional
argument is required.

In order to establish that relation (12) holds true, consider the maps

Fρ : T (Γ(u) ∩ (U × Rn)) → Pρ(u, U × Rn)

and

Gρ :


Pρ(u, U × Rn) → T (Γ(u) ∩ (U × Rn)),

z 7→ T
(
pρ(z), 1

ρ
(z − pρ(z))

)
,

for some fixed ρ ∈ (0, SC(u, U)−1). Since Fρ, Gρ are mutually inverse homeo-
morphisms which locally are Lipschitz maps, we obtain that, for Hn almost all
(X, V ) ∈ T (Γ(u) ∩ (U × Rn)), the condition h(ρ, X, V ) 6= 0 is fulfilled. Note that



22

the set of Hn measure zero which has to be excluded can be chosen indepen-
dently of ρ ∈ (0, SC(u, U)−1), confer Zähle [16, p. 560] and Federer [8, Lemma
5.1]. Hence, for Hn almost all (X,V ) ∈ T (Γ(u) ∩ (U × Rn)), we get that

sgn h(ρ, X, V ) = lim
ρ↓0

sgn h(ρ, X, V ).

Suppose that precisely (n − r) of the curvatures K1(X, V ), . . . , Kn(X, V ) are
infinite, say Kr+1(X, V ) = . . . = Kn(X, V ) = ∞, for simplicity, where r ∈
{0, . . . , n}. But then

h(ρ, X, V ) =
r∏

i=1

1√
1 + Ki(X, V )2

(
− 1

〈V, En+1〉

)n−r

×

×ρn−r det(A1, . . . , Ar, Br+1, . . . , Bn) + o(ρn−r),

and thus
sgn h(ρ, X, V ) = sgn det(A1, . . . , Ar, Br+1, . . . , Bn), (13)

if ρ ∈ (0, SC(u, U)−1) is sufficiently small. In Section 3, it was shown that the
right-hand side of equation (13) is equal to 1, and this proves the initial state-
ment.

Remarks.

1. Note that the representation of the coefficient measures which is provided
by Theorem 5.2 is independent of the particular choice of the set U ⊂⊂ Ω.

2. Let Ω ⊂ Rn be nonempty and open (and not necessarily convex). Then it is
possible to work with a more general notion of semi-convexity by defining
that u : Ω → R be a semi-convex function if and only if for every x ∈ Ω there
is a nonempty open convex neighbourhood Ux ⊂ Ω and a finite positive
constant C such that the function

k(y) := u(y) +
C

2
|y|2, y ∈ Ux,

is convex. This is equivalent to demanding that u be a lower-C2 function,
see Rockafellar [13, p. 374]. Under this weaker assumption on a function
u, coefficient measures Θj(u, ·) can still be defined by the representation
given in Theorem 5.2. The Steiner formula, however, then is only true
for bounded Borel sets η which are contained in suitable neighbourhoods
Ux × Sn with x ∈ Ω. On the other hand, Theorem 5.3 below remains true
in full generality.

The analogue of Theorem 4.1 remains valid in the setting of semi-convex func-
tions. Since the proof carries over without essential changes, we merely state the
result.
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Theorem 5.3 Let Ω ⊂ Rn be nonempty, open and convex, and let u : Ω → R be
a semi-convex function. Then, we have(

n

r

)
Θr(u, η ∩ (Σr(u)× Rn)) =

∫
Σr(u)

Hn−r(Γ(u) ∩ ηx) dHr(x),

for r ∈ {0, . . . , n} and η ∈ B(Ω× Rn).

Remark. The proof of Theorem 5.3 shows that the restriction of the measure
Θr(u, ·) to the set (Σr(u) ∩ U) × Rn is nonnegative for all U ⊂⊂ Ω. Therefore,
the statement of Theorem 5.3 still makes sense, if η ∈ B(Ω× Rn).

6 Sharp inequalities for weighted measures

In Theorem 2 of [6], an upper bound is established for the values Fr(u, Ω), r ∈
{0, . . . , n}, if Ω is a sublevel set of u. There, the overall assumption is that Ω is a
nonempty open bounded convex subset of Rn and u : Ω → R is a convex Lipschitz
function. The measures Fr(u, ·) are defined on the σ-algebra B(Ω), and they are
related to the measures Θr(u, ·) of the present paper by the relation

Fr(u, β) = Θn−r(u, β × Rn),

which holds for β ∈ B(Ω) and r ∈ {0, . . . , n}. In Theorem 6.2 below we prove
that Theorem 2 of [6] holds without the assumption on Ω to be a sublevel set.
The proof of this result was made possible by an inequality proved by Trudinger,
see inequality (4.12) in [15], here stated as a lemma.

Let u ∈ C∞(Rn) be a convex Lipschitz function, and let Ω be a nonempty open
bounded convex subset of Rn whose boundary is of class C∞. Then, for every
i ∈ {0, . . . , n}, let Si(u, x) denote the i-th elementary symmetric function of the
eigenvalues of the Hessian matrix of u. Furthermore, for every j ∈ {0, . . . , n− 1},
let Hj(Ω̄, y) denote the j-th elementary symmetric function of the principal cur-
vatures of ∂Ω at y, where Ω̄ denotes the topological closure of Ω.

Lemma 6.1 (Trudinger) In the above notation, for every i ∈ {1, . . . , n} the
following inequality

i
∫
Ω

Si(u, x) dHn(x) ≤ Li
∫

∂Ω

Hi−1(Ω̄, y) dHn−1(y)

holds, where L denotes the Lipschitz constant of u in Ω.

Theorem 6.2 contains the promised estimates from above for the values Fr(u, Ω),
r ∈ {0, . . . , n}. The inequalities involve the Lipschitz constant of the convex
function u and the quermassintegrals Wr(Ω̄), r ∈ {0, . . . , n}, of the convex body
Ω̄ which is associated with the domain Ω of u. See Schneider [14] for a definition
of these quermassintegrals.
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Theorem 6.2 Let u be a convex Lipschitz function, defined on a nonempty open
bounded convex set Ω ⊂ Rn. Denote by L the Lipschitz constant of u in Ω. If Ω′

is an arbitrary compact convex subset of Ω, then

Fr(u, Ω′) ≤ LrWr(Ω
′),

and, in particular,
Fr(u, Ω) ≤ LrWr(Ω̄),

for every r ∈ {0, . . . , n}.

Proof. First of all, note that the second inequality is an immediate consequence
of the first inequality. In fact, there obviously exists an increasing sequence of
convex bodies Ω′

l ⊂ Ω, l ∈ N, such that⋃
l∈N

Ω′
l = Ω.

To each of the bodies Ω′
l the first inequality can be applied, and hence, for each

r ∈ {0, . . . , n},

Fr(u, Ω) = lim
l→∞

Fr(u, Ω′
l)

≤ lim
l→∞

LrWr(Ω
′
l)

≤ LrWr(Ω̄),

since the quermassintegrals are monotone functionals. Therefore, it is sufficient
to consider the first inequality.

For the case r = 0, recall that F0(u, Ω′) = Hn(Ω′) = W0(Ω
′). Hence the

theorem is true in this case.
Now let us consider the case that r ∈ {1, . . . , n}. Let Ω′ ⊂ Ω be fixed. Then

there are open convex sets Ω1, Ω2 such that

Ω′ ⊂ Ω1 ⊂ Ω̄1 ⊂ Ω2 ⊂ Ω̄2 ⊂ Ω.

According to Lemma 2.3 in [6] there is a convex Lipschitz function w : Rn → R
such that u|Ω2 = w|Ω2. In particular, this implies that

Lip(w|Ω2) = Lip(u|Ω2) ≤ L.

Furthermore, it is shown in Lemma 2.4 of [6] that the function w, which is con-
structed in a special way, can be approximated by a sequence of convex Lipschitz
functions wk ∈ C∞(Rn), k ∈ N, such that

Lip(wk|Ω1) ≤ Lip(w|Ω2) ≤ L,
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for all k ∈ N, wk → w uniformly on compact sets for k → ∞, and such that the
sequence Fr(wk, ·) converges weakly to Fr(w, ·) on B(Ω) for k →∞. See Ash [2]
for the notion of weak convergence of measures. The last statement follows from
the proof of Theorem 1 in [6].

For an arbitrary fixed ε > 0, there exists an open convex set Ωε with boundary
of class C∞ such that Ω′ ⊂ Ωε ⊂ Ω1 and

Wr(Ω̄ε) ≤ Wr(Ω
′) + ε. (14)

This fact is true, since every convex body can be approximated in the Hausdorff
metric by a sequence of smooth convex bodies, see Theorem 3.3.1 in Schneider
[14], and the quermassintegrals are continuous with respect to this metric.

By the weak convergence and nonnegativity of the measures which we con-
sider, we have

Fr(w, Ω′) ≤ Fr(w, Ωε)

≤ lim inf
k→∞

Fr(wk, Ωε). (15)

Since wk ∈ C∞(Rn), Proposition 2.1 from [6] implies that Fr(wk, ·) admits the
representation (

n

r

)
Fr(wk, β) =

∫
β

Sr(wk, x) dHn(x), (16)

for any β ∈ B(Rn).
On the other hand, we obtain from formula (4.2.28) in [14] that(

n− 1

r − 1

)
Wr(Ω̄ε) =

1

n

∫
∂Ωε

Hr−1(Ω̄ε, x) dHn−1(x), (17)

since ∂Ωε was assumed to be sufficiently smooth.
Thus, equation (16), Lemma 6.1, equation (17), and (14) imply(

n

r

)
lim inf

k→∞
Fr(wk, Ωε) = lim inf

k→∞

∫
Ωε

Sr(wk, x) dHn(x)

≤ Lr

r

∫
∂Ωε

Hr−1(Ω̄ε, x) dHn−1(x)

=

(
n

r

)
LrWr(Ω̄ε)

≤
(
n

r

)
Lr(Wr(Ω

′) + ε). (18)
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From (15) and (18) we now obtain

Fr(w, Ω′) ≤ Lr(Wr(Ω
′) + ε).

This proves the theorem, since ε > 0 was arbitrarily chosen.

The following theorem provides upper bounds for suitably weighted Hausdorff
measures of sets of singular points for a given convex Lipschitz function. It is a
straightforward consequence of Corollary 4.2, Theorem 6.2, and the fact that the
measures Fr(u, ·) are nonnegative, if u is a convex function.

Theorem 6.3 Let u be a convex Lipschitz function, defined on a nonempty open
bounded convex set Ω ⊂ Rn. Denote by L the Lipschitz constant of u in Ω. Then,
for every r ∈ {0, . . . , n}, the following inequality holds true

∫
Σr(u)

Hn−r(∂u(x)) dHr(x) ≤
(
n

r

)
Ln−rWn−r(Ω̄).

Remark. In the previous theorem, it is also possible to consider compact convex
subsets Ω′ of Ω.

7 Examples

The principal aim of this final section is to show that Theorem 6.3 is a sharp
result. This is achieved by constructing a sufficiently large class of examples.
The precise result is stated as a theorem.

Theorem 7.1 Let Ω be a nonempty open bounded convex subset of Rn, assume
that L ≥ 0, and let ε > 0 be arbitrarily chosen. Then, there exists a convex
Lipschitz function u defined on Ω, with Lipschitz constant L, and such that

∫
Σr(u)

Hn−r(∂u(x)) dHr(x) ≥
(
n

r

)
Ln−rWn−r(Ω̄)− ε,

for all r ∈ {0, . . . , n}.

Proof. The proof is based on the construction of a convex function which vanishes
in the interior of a polytope whose boundary is close to ∂Ω and increases linearly
on rays which are normals to the faces of that polytope. We recall that a polytope
is the convex hull of finitely many points, and we refer to Schneider [14], Chapters
1 and 2, for some basic properties of polytopes.

Fix δ > 0. There exists a polytope P , P ⊂ Ω, such that

Wj(P ) ≥ Wj(Ω̄)− δ, (19)



27

for all j ∈ {0, . . . , n}. This fact is true, since every convex body can be approx-
imated, in the Hausdorff metric, by a sequence of convex polytopes (see [14],
Theorem 1.8.13), and the quermassintegrals are continuous with respect to this
metric.

Let F(P ) denote the collection of all faces of P , and let Fj(P ) be the subset
of F(P ) consisting of all j-dimensional faces, for every j ∈ {0, . . . , n − 1}. If
A ∈ Fj(P ), we call relint(A) the relative interior of A as a j-dimensional convex
set. Note that every point of ∂P belongs to the relative interior of exactly one
face of P . Furthermore, we denote by ν(P, A) the set of all exterior unit normal
vectors of P at points of relint(A). If A ∈ Fj(P ), then ν(P, A) is the intersection
of the unit sphere in Rn with a convex cone of dimension (n− j).

Define
u(x) := L dist(x, P ), x ∈ Ω.

The function u is convex and nonnegative in Ω, and it vanishes in P . Furthermore,
let x ∈ Ω \P , and let x′ be the nearest point to x on ∂P . Then x = x′ + sv with
v ∈ ν(P, A), x ∈ relint(A), and s > 0. In this situation, the value attained by u
at x is given by the formula

u(x) = Ls. (20)

If x is an interior point of P , then

∂u(x) = {o}. (21)

If instead x ∈ relint(A), for some A ∈ F(P ), then the following relation holds:

∂u(x) = {tv : t ∈ [0, L], v ∈ ν(P, A)}. (22)

Indeed, let v ∈ ν(P, A) and t ∈ [0, L]; call H the support hyperplane to P with
exterior unit normal vector v, H+ the open half-space determined by H not
containing P , and H− the complement of H+. If y ∈ Ω ∩H+, then

u(y) ≥ L〈y − x, v〉 ≥ t〈y − x, v〉.

If y ∈ Ω ∩H−, then
u(y) ≥ 0 ≥ t〈y − x, v〉.

Hence tv ∈ ∂u(x), and thus

∂u(x) ⊃ {tv : t ∈ [0, L], v ∈ ν(P, A)}.

Now let v′ ∈ ∂u(x). Then we have for all y ∈ P that

〈y − x, v′〉 ≤ 0,

so that v′ = tv for some v ∈ ν(P, A) and some nonnegative t. On the other hand,
if s > 0 is such that x + sv′ ∈ Ω, by virtue of (20) and by the definition of ∂u(x),
we have

Lst = u(x + sv′) ≥ 〈x + sv′ − x, v′〉 = st2,
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whence t ≤ L. Thus (22) is completely proved.
Finally, it is easy to see that u is Lipschitz with Lipschitz constant L.
For every nonnegative r, denote by B(r) the ball centred at the origin with

radius r. Then, with the help of (21) and (22), it is easy to check that for ρ ≥ 0
the identity

Pρ(u, P × Rn) = P + B(ρL) (23)

holds true.
A consequence of formula (23) is that, for all ρ ≥ 0,

Hn(Pρ(u, P × Rn)) = Hn(P + B(ρL)) =
n∑

i=0

(
n

i

)
ρiLiWi(P ).

Hence, from a very special case of Theorem 3.1 we get that

Fi(u, P ) = LiWi(P ), i ∈ {0, . . . , n}.

The quermassintegrals of P can be expressed as follows (see Schneider [14],
§4.2):

W0(P ) = Hn(P )

and, for j ∈ {1, . . . , n},(
n

n− j

)
Wj(P ) =

1

j

∑
A∈Fn−j(P )

Hj−1(ν(P, A))Hn−j(A).

Now let us turn to the singular points of u. We start with Σn(u). Obviously,
relation (21) implies∫

Σn(u)∩P

H0(∂u(x)) dHn(x) = Hn(P ) = W0(P ). (24)

Next we consider Σi(u) for i ∈ {0, . . . , n− 1}. From (21) and (22) it follows that
a point x of P belongs to Σi(u) if and only if x ∈ relint(A) for some A ∈ Fj(P )
with j ≤ i. Furthermore, let A be an i-dimensional face of P and x ∈ relint(A).
Then, according to (22),

Hn−i(∂u(x)) =
Ln−i

n− i
Hn−1−i(ν(P, A)).

We conclude that∫
Σi(u)∩P

Hn−i(∂u(x)) dHi(x) =
∑

A∈Fi(P )

Ln−i

n− i
Hn−1−i(ν(P, A))Hi(A), (25)

for i ∈ {0, . . . , n− 1}.
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From (24) and (25) we infer the relation

∫
Σi(u)∩P

Hn−i(∂u(x)) dHi(x) =

(
n

i

)
Ln−iWn−i(P ),

for i ∈ {0, . . . , n}. Finally, by (19) we get, for every i ∈ {0, . . . , n}, that∫
Σi(u)

Hn−i(∂u(x)) dHi(x) ≥
∫

Σi(u)∩P

Hn−i(∂u(x)) dHi(x)

≥
(
n

i

)
Ln−iWn−i(Ω̄)− δ

(
n

i

)
Ln−i.

Since δ > 0 was arbitrarily chosen, this concludes the proof of the theorem.
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