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Abstract. For a non-empty compact set A ⊂ R
d , d ≥ 2, and r ≥ 0, let A⊕r denote the set of

points whose distance fromA is r at the most. It is well-known that the volume,Vd(A⊕r ), ofA⊕r
is a polynomial of degree d in the parameter r if A is convex. We pursue the reverse question
and ask whetherA is necessarily convex if Vd(A⊕r ) is a polynomial in r . An affirmative answer
is given in dimension d = 2, counterexamples are provided for d ≥ 3. A positive resolution of
the question in all dimensions is obtained if the assumption of a polynomial parallel volume is
strengthened to the validity of a (polynomial) local Steiner formula.

Mathematics Subject Classification (2000): 52A38, 28A75, 52A22, 53C65

1. Introduction and results

Convex sets in a Euclidean space can be characterized in various ways within the
class of closed sets. Among the classical characteristic properties are the exis-
tence of supporting hyperplanes through each boundary point and the existence
of a nearest point map. The present paper investigates an apparently new charac-
terization of the convexity of a closed set, in terms of the volumes of its (local)
parallel sets.

Let A denote a non-empty compact subset of R
d , d ≥ 2, and let A⊕r be the

parallel set of A at distance r ≥ 0, i.e. the set of all points x ∈ R
d whose dis-

tance from A is at most r . Further, let Vd denote the volume function (Lebesgue
measure). In the following, we consider the parallel volume, Vd(A⊕r ), of A as a
function of the distance parameter r ≥ 0. If A is convex, then
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Vd(A⊕r ) =
d∑

j=0

rd−j κd−jVj (A), (1.1)

where κj is the (j -dimensional) volume of the Euclidean unit ball in R
j and the

coefficients V0(A), . . . , Vd(A) are the intrinsic volumes of the convex body A
(see, e.g., [16, (4.2.27)]). It is well known that Vd−1(A) is half the surface area (if
A has non-empty interior) and V0(A) = 1. The Steiner formula (1.1) and its ram-
ifications are of central importance in geometry. Applications of the fundamental
relation (1.1) and of the functionals Vj defined by it can be found in various other
branches of mathematics including stochastic geometry [18], [17], statistics [9],
[11], discrete mathematics [2], geometric functional analysis [7], and recently
also in physics [12], [13].

It is natural to investigate conditions under which a Steiner formula of the
form (1.1) can be obtained for sets which are not necessarily convex. Results in
this direction, which are available in the literature, usually state a Steiner formula
under regularity assumptions on the set and for a restricted range of the distance
parameter r; see, for instance, the classical contributions by Hadwiger [8] and
Federer [4]. In the present paper, we reverse this point of view and ask the fol-
lowing question.

Does polynomial parallel volume imply convexity?
It is tempting to guess a positive answer to this question. Simple examples (see

Section 4), however, show that, for all dimensions d ≥ 3, there are non-convex
sets whose parallel volume is a polynomial. On the other hand, in dimension d = 2
we can answer our question in an affirmative way.

Theorem 1. Let A ⊂ R
2 be compact such that

V2(A⊕t ) = V2(A)+ c1t + c2t
2, t ≥ 0, (1.2)

for some c1, c2 ∈ R. Then A is convex.

Note that the seemingly more general assumption thatV2(A⊕t ) is a polynomial
of degree n ∈ N in the parameter t ≥ 0 immediately implies (1.2). Theorem 1
provides a characterization of convexity by a global property. A corresponding
result is wrong in higher dimensions, but the conclusion of Theorem 1 remains
true under a stronger (local) hypothesis. We prepare such a result, together with
an extension, by introducing some more notation.

LetA denote an arbitrary non-empty closed subset of R
d . The distance d(A, z)

from a point z ∈ R
d to a set A ⊂ R

d is defined as inf{|y − z| : y ∈ A}, where
| · | denotes the Euclidean norm on R

d and inf ∅ := ∞. We put p(A, z) := y

whenever y is a uniquely determined point in A with d(A, z) = |y − z|, and we
call this point the metric projection of z on A. If 0 < d(A, z) < ∞ and p(A, z)
is defined, then p(A, z) lies on the boundary ∂A of A and we put u(A, z) :=
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(z − p(A, z))/d(A, z). The exoskeleton exo(A) of A consists of all points of
R
d \ A which do not admit a metric projection on A. This is a measurable set

(see, e.g., Lemma 6.1 in [10]) satisfying Hd(exo(A)) = 0, where Hd denotes the
d-dimensional Hausdorff measure. Clearly, if A is convex, then exo(A) = ∅. We
extend the definition of p(A, z) ∈ R

d and u(A, z) ∈ Sd−1 in a suitable and mea-
surable way to all z ∈ R

d . Here Sd−1 denotes the unit sphere {z ∈ R
d : |z| = 1}.

Now let A ⊂ R
d be a non-empty closed convex set. Extending and unify-

ing results by Aleksandrov [1], Fenchel & Jessen [6] and Federer [4], Schneider
[14], [15] has shown that A satisfies a local Steiner formula. It states that, for any
measurable bounded function f : R

d × Sd−1 → R with compact support and
t ≥ 0,

∫

Rd\A
f (p(A, z), u(A, z))1{d(A, z) ≤ t}dz

=
d−1∑

j=0

td−j κd−j
∫
f (x, u)Cj (A; d(x, u)), (1.3)

where dz denotes integration with respect to Lebesgue measure. The measures
Cj(A; ·), j ∈ {0, . . . , d − 1}, are the support measures (generalized curvature
measures) of the convex set A, which simultaneously generalize the surface area
measures and the curvature measures of A. They are non-negative, locally finite
and concentrated on ∂A × Sd−1. We refer to [16] for further background infor-
mation.

We now modify our initial question as follows:
Does the validity of a local Steiner formula imply convexity?
The positive answer is given in the following theorem.

Theorem 2. Let A ⊂ R
d be non-empty and closed. Assume that for any mea-

surable bounded function f : R
d × Sd−1 → R with compact support there are

c1(f ), . . . , cd(f ) ∈ R such that, for all t > 0,

∫

Rd\A
f (p(A, z), u(A, z))1{d(A, z) ≤ t}dz =

d∑

j=1

cj (f )t
j .

Then A is convex.

Theorem 2 is an immediate consequence of a more general result which is
stated as Theorem 3 below. Let again A ⊂ R

d be a closed set. The reach of
A, denoted by reach(A), is defined as the supremum of all r > 0 such that the
metric projection of z on A is defined for all z ∈ R

d with d(A, z) < r , where
sup ∅ := 0. We say that A has positive reach whenever reach(A) > 0. Of course,
a closed convex set A satisfies reach(A) = ∞. An extension of the local Steiner
formula (1.3) to sets with positive reach was established by Federer [4], a simpler
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and more general approach was later developed by M. Zähle [19]. To state such a
local Steiner formula, letA ⊂ R

d satisfy reach(A) ≥ r . Then, for any measurable
bounded function f : R

d × Sd−1 → R with compact support and t ∈ (0, r),
∫

Rd\A
f (p(A, z), u(A, z))1{d(A, z) ≤ t}dz

=
d−1∑

j=0

td−j κd−j
∫
f (x, u)Cj (A; d(x, u)).

HereCj(A; ·), j ∈ {0, . . . , d−1}, are locally finite signed measures on the Borel
sets of R

d × Sd−1 which extend the support measures of convex sets.
The following theorem provides a corresponding characterization of sets with

positive reach which generalizes Theorem 2.

Theorem 3. Let A ⊂ R
d be non-empty and closed. Assume that for any mea-

surable bounded function f : R
d × Sd−1 → R with compact support there are

c1(f ), . . . , cd(f ) ∈ R such that, for all t ∈ (0, r),
∫

Rd\A
f (p(A, z), u(A, z))1{d(A, z) ≤ t}dz =

d∑

j=1

cj (f )t
j . (1.4)

Then reach(A) ≥ r .

For the proof of Theorem 1, we will compare the given compact set with its
convex hull, provide a result concerning the differentiation of the parallel volumes
of a compact set, and (in a sense) exploit the fact that among all rectifiable curves
connecting two points precisely the segment has minimal length. The crucial tool
for the proof of Theorem 3 is a Steiner-type formula for arbitrary closed subsets
of R

d that has recently been developed in [10]. We give a brief introduction to
such a formula at the beginning of Section 3.

In the following, the Euclidean ball in R
d with center a ∈ R

d and radius r ≥ 0
is denoted by Bd(a, r). The i-dimensional Hausdorff measure is denoted by Hi .
The interior of a set A ⊂ R

d is denoted by int(A).

2. Proof of Theorem 1

The two-dimensional special case of the following lemma will play a crucial role
in the first part of the proof of Theorem 1. In the very special case of a compact
convex set, a stronger assertion is well known.

Lemma 1. Let A ⊂ R
d be compact. Then

d

dt
Vd(A⊕t ) = Hd−1(∂A⊕t )

for H1-almost all t > 0.
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Proof. Put f (x) := d(A, x), x ∈ R
d . By Lemma 3.2.34 in [5], we have

Hd(A⊕t \ A) =
∫ t

0
Hd−1(f −1({s}))ds. (2.1)

It is easy to check that ∂A⊕s ⊂ f −1({s}) for all s > 0. In general, this inclusion
cannot be replaced by an equality. Instead, Hd−1(f −1({s}) \ ∂A⊕s) = 0 will
be shown for H1-almost all s > 0. Since Hd(exo(A)) = 0, an application of
the coarea formula (see [5]), applied to the distance function f , shows that, for
H1-almost all s > 0,

Hd−1(exo(A) ∩ f −1({s})) = 0. (2.2)

Let s > 0 satisfy (2.2) and choose any x ∈ f −1({s}) \ exo(A). Then x ∈ A⊕s ,
and we will show that x /∈ int(A⊕s). In fact, since x /∈ exo(A), there is a uniquely
determined point y ∈ A such that Bd(x, s) ∩ A = {y}. Hence, for any z ∈
A \ int(Bd(y, s)), we have |z− x| > s. This implies the existence of some ε > 0
such that z /∈ Bd(x, s + ε) whenever z ∈ A \ int(Bd(y, s)). Thus we get

A ⊂ [Rd \ Bd(x, s + ε)] ∪ [Bd(y, s) \ int(Bd(x, s))]. (2.3)

From (2.3) we infer that x + λ|x − y|−1(x − y) /∈ A⊕s for λ ∈ (0, ε).
So far we have shown that f −1({s}) can be replaced by ∂A⊕s under the integral

in (2.1). The assertion of the lemma then follows by a well known property of
absolutely continuous functions. ��
Proof of Theorem 1. Let A ⊂ R

2 be a compact and non-empty set satisfying
(1.2). We will show that A is equal to its convex hull C := conv(A). The proof is
divided into three steps.

I. Since C is convex,

V2(C⊕t ) = V2(C)+ d1t + κ2t
2, t ≥ 0, (2.4)

where d1 is the boundary length of C. Since there is some a ∈ A and A ⊂ C, we
get {a}⊕t ⊂ A⊕t ⊂ C⊕t , and hence

κ2t
2 ≤ V2(A⊕t ) ≤ V2(C⊕t ). (2.5)

A comparison of (1.2), (2.4) and (2.5) first shows that κ2 ≤ c2 ≤ κ2, thus κ2 = c2,
and consequently c1 ≤ d1. Therefore, for all t > 0,

d

dt
V2(A⊕t ) = c1 + 2κ2t ≤ d1 + 2κ2t = d

dt
V2(C⊕t ). (2.6)

Combining (2.6) and Lemma 1, we get, for H1-almost all t > 0,

H1(∂A⊕t ) ≤ H1(∂C⊕t ). (2.7)
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II. We fix t > diam(A) (the diameter of A) such that (2.7) is satisfied. Then
by Lemma 1 in [3] and after a translation, the set A⊕t is a star body (see [16]).
In particular, ϕ : S1 → ∂A⊕t , u → ρ(A⊕t , u)u is a homeomorphism, where
ρ(A⊕t , ·) denotes the radial function of A⊕t . Since A⊕t ⊂ C⊕t , we have that
ρ(A⊕t , u) ≤ ρ(C⊕t , u) for all u ∈ S1. Now we define the spherical set� := {u ∈
S1 : ρ(A⊕t , u) < ρ(C⊕t , u)}.

Since� is an open subset of S1, there is an at most countable (possibly empty)
family S of mutually disjoint non-empty open spherical segments ω ⊂ S1 such
that � = ⋃

ω∈S ω. Each support line of C⊕t contains a point of ∂A⊕t ∩ ∂C⊕t .
Hence each open halfspace contains some u /∈ �. Therefore, for all ω ∈ S ,
H1(ω) < π and ω can be represented as the open geodesic segment between two
points αω and βω in S1. Let ω denote the closure of ω.

Letψ : S1 → ∂C⊕t be defined byψ(u) := ρ(C⊕t , u)u. Then aω := ϕ(αω) =
ψ(αω) and bω := ϕ(βω) = ψ(βω) for ω ∈ S . Next we show that Iω := ψ(ω) is a
segment forω ∈ S . Choose an arbitrary point γω ∈ ω, put cω := ψ(γω), and letHω
denote a support line of C⊕t at cω. It is sufficient to show that aω, bω ∈ Hω. Since
C⊕t = conv(A⊕t ) and cω ∈ Hω, there are points a′

ω, b
′
ω ∈ ∂A⊕t ∩ Hω ⊂ ∂C⊕t

such that cω ∈ (a′
ω, b

′
ω), where a′

ω �= b′
ω by the choice of cω. It follows that

a′
ω, b

′
ω /∈ ψ(ω) so that aω ∈ conv({0, a′

ω, b
′
ω}). Since aω is a boundary point of

C⊕t , it lies in [0, a′
ω) ∪ [0, b′

ω) or in [a′
ω, b

′
ω]. The first case is clearly impossible

as 0 ∈ int(C⊕t ). Hence aω ∈ [a′
ω, b

′
ω] ⊂ Hω, and by symmetry bω ∈ Hω.

We put �ω := ϕ(ω) and next prove that

H1(�ω) ≥ H1(Iω) (2.8)

for all ω ∈ S . Let Hω denote the line which contains Iω, and let Jω denote the
orthogonal projection of �ω onto Hω. Since aω, bω ∈ Jω and �ω is (topologi-
cally) connected, we get that Iω ⊂ Jω. Moreover, since the orthogonal projection
onto Hω is a contraction, we obtain that H1(�ω) ≥ H1(Jω) ≥ H1(Iω), i.e. (2.8).
Inequality (2.7) implies that

0 ≤ H1(∂C⊕t )− H1(∂A⊕t ) =
∑

ω∈S
(H1(Iω)− H1(�ω)). (2.9)

From (2.8) and (2.9) we deduce that

H1(�ω) = H1(Iω)

for ω ∈ S . For any ω ∈ S , we have pω := ϕ(γω) /∈ Iω. Let ω′ and ω′′ denote the
geodesic segments connecting αω, γω and γω, βω in S1. By the triangle inequality
and by repeating the argument leading to (2.8), we then get

H1(Iω) < |pω − aω| + |bω − pω| ≤ H1(ϕ(ω′))+ H1(ϕ(ω′′)) = H1(�ω),

a contradiction. This implies that S = ∅, and therefore A⊕t = C⊕t is convex.
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III. So far we have shown that A⊕t is convex for H1-almost all t > diam(A).
Hence A⊕r is convex for every r > diam(A), and thus A⊕r = C⊕r . In particular,
V2(A⊕r ) = V2(C⊕r ) for r > diam(A), and hence by (1.2) and the convexity of
C,

V2(A)+ c1r + κ2r
2 = V2(C)+ d1r + κ2r

2, (2.10)

first for r > diam(A), but then also for any r ≥ 0. This in turn shows that
V2(A⊕r ) = V2(C⊕r ) for r ≥ 0. Since A⊕r is compact and C⊕r is the closure of
its interior for r > 0, we deduce that A⊕r = C⊕r is convex for any r > 0. This
implies the asserted convexity of A. ��
In the second part of the proof of Theorem 1, one can use a global integralgeometric
Crofton formula instead of arguing locally by distinguishing between different
parts of the boundaries of A⊕t and C⊕t .

3. Support measures and proof of Theorem 3

First, we recall the main result of [10]. Let A ⊂ R
d be a non-empty closed set.

The normal bundle of A is defined by

N(A) := {(p(A, z), u(A, z)) : z /∈ A ∪ exo(A)}.
It is a measurable subset of ∂A×Sd−1. The reach function δ(A, ·) : R

d×Sd−1 →
[0,∞] of A is defined by

δ(A, x, u) := inf{t ≥ 0 : x + tu ∈ exo(A)}, (x, u) ∈ N(A),
and δ(A, x, u) := 0 for (x, u) /∈ N(A). Note that δ(A, ·) > 0 on N(A). By
Lemma 6.2 in [10], δ(A, ·) is a measurable function. The reach function of A
localizes the notion of reach introduced in Section 1 (see also [4]). It is easy to
check that reach(A) = inf{δ(A, x, u) : (x, u) ∈ N(A)}. In particular,A is convex
if and only if δ(A, ·) ≡ ∞ on N(A).

In [10], the support measuresµ0(A; ·), . . . , µd−1(A; ·) of a non-empty closed
set A ⊂ R

d have been introduced as real-valued functions, defined on all Borel
subsets of R

d × Sd−1 which are contained in

((Rd × Sd−1) \N(A)) ∪ {(x, u) : x ∈ B, δ(A, x, u) ≥ s},
for some s > 0 and some compact B ⊂ R

d . These signed measures vanish on
each Borel subset of (Rd ×Sd−1) \N(A). The total variation measure of µi(A; ·)
is denoted by |µi |(A; ·).

Put a ∧ b := min{a, b} for a, b ∈ R. Then Theorem 2.1 in [10] states that
∫

N(A)

1{x ∈ B}(δ(A, x, u) ∧ r)d−j |µj |(A; d(x, u)) < ∞,
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j = 0, . . . , d − 1, for all compact sets B ⊂ R
d and all r > 0, and, for any

measurable bounded function f : R
d → R with compact support,

∫

Rd\A
f (z)dz =

d−1∑

i=0

(d − i)κd−i
∫ ∞

0

∫

N(A)

td−1−i1{t < δ(A, x, u)}

×f (x + tu)µi(A; d(x, u))dt. (3.1)

The support measures are uniquely determined by the local Steiner-type formula
(3.1).

Proof of Theorem 3. We fix some τ ∈ (0, r) and a compact set B ⊂ R
d . Then we

put

Nτ,B := {(x, u) ∈ N(A) : δ(A, x, u) ≤ τ, x ∈ B}.
Let f : R

d × Sd−1 → [0, 1] be defined by f (x, u) := 1{(x, u) ∈ Nτ,B}. Then
(1.4) and (3.1) imply that, for all t ∈ (0, r),

d∑

j=1

cj (f )t
j =

d−1∑

i=0

(d − i)κd−i
∫ t

0

∫

Nτ,B

sd−1−i

×1{s < δ(A, x, u)}µi(A; d(x, u))ds (3.2)

for some c1(f ), . . . , cd(f ) ∈ R. The function on the right-hand side of (3.2) is
independent of t for t ∈ (τ, r). Hence the polynomial on the left-hand side of
(3.2) must be zero, which implies that

Hd({z ∈ A⊕r \ A : (p(A, z), u(A, z)) ∈ Nτ,B}) = 0.

Since this is true for any τ ∈ (0, r) and any compact set B ⊂ R
d , we obtain that

δ(A, p(A, z), u(A, z)) ≥ r for Hd-almost all z ∈ A⊕r \A. We will show that this
implies that reach(A) ≥ r .

Let z ∈ R
d \ A with r0 := d(A, z) < r . There is a sequence of points

zi ∈ A⊕r \ A, i ∈ N, converging to z as i → ∞ for which the metric projec-
tion pi := p(A, zi) ∈ A exists and δ(A, pi, ui) ≥ r with ui := u(A, zi) ∈
Sd−1. Passing to a subsequence and changing notation (if necessary) we can
assume that pi → p ∈ A and ui → u ∈ Sd−1. Choose r1 ∈ (r0, r). Then
Bd(pi + r1ui, r1) ∩ A = {pi} for all i ∈ N; hence A does not intersect the inte-
rior of Bd(p + r1u, r1). Clearly, zi = pi + d(A, zi)ui for i ∈ N, and therefore
z = p+d(A, z)u = p+r0u. Moreover,Bd(p+r0u, r0)∩A = {p}, which shows
that p is the unique nearest point of z in A. This proves the required assertion.

��
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4. Examples

This section is devoted to the construction of non-convex, compact sets in R
d ,

d ≥ 3, whose parallel volumes are polynomials. For this purpose let L be a
(d − 2)-dimensional linear subspace of R

d , and let C ⊂ L be a (d − 2)-dimen-
sional compact convex set. Then fix a closed set Â ⊂ C with ∂LC ⊂ Â, where
∂LC denotes the boundary of C relative to L. Then, for t ≥ diam(C)/2, we will
show that the set A := Â⊕t ⊂ R

d has polynomial parallel volume, i.e.

Vd(A⊕r ) =
d∑

k=0

ckr
k, r ≥ 0,

where ck ∈ R for k = 0, . . . , d. The set A is convex if and only if Â is convex.
Since A⊕r = Â⊕(t+r), we deduce that

Vd(A⊕r ) = Vd(C⊕(t+r))− Vd(C⊕(t+r) \ Â⊕(t+r)),

where Vd(C⊕(t+r)) is a polynomial in r ≥ 0 due to the convexity of C. As we will
now see, the second term in the sum does not depend on r ≥ 0, but is in fact a
constant.

For any y ∈ L,

Â⊕(t+r) ∩ (y + L⊥) =
{
y + BL⊥

(√
(t + r)2 − d(Â, y)2

)
, if d(Â, y) ≤ t + r,

∅, otherwise,

where BL⊥(s) = Bd(0, s) ∩ L⊥ denotes the ball in L⊥ with center 0 and radius
s. This equation also holds with Â replaced by C. Moreover, since ∂LC ⊂ Â, we
get that d(Â, y) = d(C, y) whenever y ∈ L \ C, and thus

Â⊕(t+r) ∩ ((L \ C)× L⊥) = C⊕(t+r) ∩ ((L \ C)× L⊥). (4.1)

Therefore,

Vd(C⊕(t+r) \ Â⊕(t+r))

= Vd(C⊕(t+r))− Vd(Â⊕(t+r))

=
∫

C

∫

L⊥

(
1{y + z ∈ C⊕(t+r)} − 1{y + z ∈ Â⊕(t+r)}

)H2(dz)Hd−2(dy),

where Fubini’s theorem and (4.1) were applied in the last step. Since t ≥
diam(C)/2, and hence d(Â, y) ≤ t + r for r ≥ 0 and y ∈ C, we further de-
duce that

Vd(C⊕(t+r) \ Â⊕(t+r))

=
∫

C

H2(BL⊥(t + r))− H2

(
BL⊥

(√
(t + r)2 − d(Â, y)2

))
Hd−2(dy)

= π

∫

L

d(Â, y)2 Hd−2(dy),
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which is independent of r ≥ 0. Thus, Vd(A⊕r ) is a polynomial in r ≥ 0 with
non-negative coefficients.

Turning our attention to special cases, in dimension d = 3 for instance, C can
be a segment of length 2 and Â the set consisting of the two endpoints of C. For
t = 1, the set A is then the union of two touching balls with radius 1.

More generally, let Â ⊂ L be a compact set whose convex hull is a ball in L
with radius s and take A := Â⊕t for some t ≥ s. (In dimension d = 3, Â can
be any compact subset of a line.) Then the parallel volume of A is a polynomial.
However, if Â is non-convex, then A is non-convex as well.

If A ⊂ R
d is any one of the sets constructed above, if n is an even natural

number, and if R
d is identified with a d-dimensional linear subspace of R

d+n,
then the parallel volume of A in R

d+n is again a polynomial.
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