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Abstract

We consider a stationary Poisson hyperplane process with given directional distribution

and intensity in d-dimensional Euclidean space. Generalizing the zero cell of such a

process, we fix a convex body K and consider the intersection of all closed halfspaces

bounded by hyperplanes of the process and containing K. We study how well these

random polytopes approximate K (measured by the Hausdorff distance) if the intensity

increases, and how this approximation depends on the directional distribution in relation

to properties of K.
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1 Introduction

Asymptotic properties of the convex hull of n independent, identically distributed random
points in Rd, as n tends to infinity, are an actively studied topic of stochastic geometry; see,
for example, Subsection 8.2.4 of the book [8] and the more recent survey by Reitzner [6].
Very often, one studies uniform random points in a given convex body and measures the rate
of approximation by the volume difference, or the difference of other global functionals, or
one investigates the asymptotic behaviour of combinatorial quantities like face numbers. In
contrast, approximation by random polytopes, measured in terms of the Hausdorff metric
δ, has been investigated less frequently. We refer to Note 5 for Subsection 8.2.4 in [8] and
mention here only the following results. For a convex body K of class C2

+ (that is, with a twice
continuously differentiable boundary with positive Gauss curvature), Bárány [1] (Theorem 6)
showed that the Hausdorff distance from K to the convex hull Kn of n i.i.d. uniform random
points in K satisfies

E δ(K,Kn) ∼
(

log n

n

)2/(d+1)

as n→∞ (here f(n) ∼ g(n) means that there are constants c1, c2 such that c1g(n) < f(n) <
c2g(n)). A result of Dümbgen and Walther [3] (Corollary 1) says that, for an arbitrary convex
body K,

δ(K,Kn) = O

((
log n

n

)1/d
)

almost surely.

The second standard approach to convex polytopes, generating them as intersections of
closed halfspaces instead of convex hulls of points, has not found equal attention in the
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study of random polytopes. About the role that duality, either in an exact or a heuristic
sense, can play here, we refer to the introduction of [2]. This alternative approach has to
offer some new aspects, in particular since random hyperplanes naturally come with some
directional distribution, which influences the random polytopes that they generate. This
aspect is emphasized in the present article, where we consider random polytopes generated
by a stationary Poisson hyperplane process, with an arbitrary directional distribution.

Let X be a stationary nondegenerate (see [8, p. 486]) Poisson hyperplane process in Eu-
clidean space Rd, d ≥ 2 (with scalar product 〈·, ·〉 and norm ‖ · ‖). The reader is referred to
Chapters 3 and 4 of [8] for an introduction, and also for some notational conventions used
here. For a hyperplane H in Rd, not passing through the origin o, we denote by H−o the
closed halfspace bounded by H that contains o. The random polytope

Z0 :=
⋂
H∈X

H−o

is called the zero cell of X (it is also known as the Crofton polytope of X).

A generalization of this notion is obtained as follows. Let K ⊂ Rd be a convex body. For
a hyperplane H not intersecting K we denote by H−K the closed halfspace bounded by H that
contains K. Then we define the K-cell of X as the random polytope

ZK :=
⋂

H∈X,H∩K=∅

H−K .

The almost sure boundedness of ZK follows as in the proof of [8, Theorem 10.3.2]. In the
following we are interested in the question how well K is approximated by ZK , if the intensity
of the process X tends to infinity. Since the intensity is a constant multiple of the expected
number of hyperplanes in the process that hit K, the analogy to convex hulls of an increasing
number of points is evident.

We consider approximation in sense of the Hausdorff metric δ on the space K of convex
bodies (always with interior points) in Rd. Of course, in order that approximation of K
by ZK be possible at all, the convex body K must somehow be adapted to the directional
distribution of the hyperplane process X. For example, a ball K cannot be approximated
arbitrarily closely by ZK if the hyperplane process X has only hyperplanes of finitely many
directions. To make this more precise, let N be a closed subset of the unit sphere Sd−1, not
contained in a closed halfsphere. For a given convex body K, we denote by P(K,N) the
set of all polytopes which are finite intersections of closed halfspaces containing K and with
outer unit normal vectors in N .

Proposition 1. The convex body K can be approximated arbitrarily closely by polytopes
from P(K,N) if and only if suppSd−1(K, ·) ⊂ N .

Here supp denotes the support of a measure, and Sd−1(K, ·) is the surface area measure
of K (see [7], for example). We shall give a proof of Proposition 1 in the next section. It
serves here only to motivate the assumption (2) made below.

The intensity measure Θ = EX(·) of X is assumed, as usual, to be locally finite. It can
then be represented in the form (see [8], (4.33))

Θ(A) = 2γ

∫
Sd−1

∫ ∞
0

1A(H(u, t)) dt ϕ(du) (1)
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for A ∈ B(Hd), where γ > 0 is the intensity and ϕ is the spherical directional distribution of
X; the latter is an even probability measure on the unit sphere Sd−1 which is not concentrated
on a great subsphere. By Hd we denote the space of hyperplanes in Rd, and B(T ) is the σ-
algebra of Borel sets of a topological space T . Further,

H(u, t) = {x ∈ Rd : 〈x,u〉 = t}

for u ∈ Sd−1 and t > 0 is the standard parametrization of a hyperplane not passing through
the origin o. We assume, as usual, that ϕ is not concentrated on a great subsphere. For
convenience (in view of some later estimations of constants), we also assume that γ ≥ 1.

For K ∈ K, the Hausdorff distance δ(K,P ) of K from a polytope P containing it is the
smallest number ε ≥ 0 such that P ⊂ K(ε), where K(ε) = K + εBd (Bd is the unit ball)
denotes the outer parallel body ofK at distance ε. Therefore, we prescribe a number ε > 0 and
ask for the probability P{ZK 6⊂ K(ε)}. First we give a necessary and sufficient condition that
this probability tends to zero if the intensity of the process X tends to infinity; if the condition
is satisfied, we obtain that the decay is exponential. Under a slightly stronger assumption,
this can then be used to derive our main results, concerning the rate of convergence.

Without loss of generality, we may assume that o ∈ intK. By the independence properties
of the Poisson process, we then have

P{ZK 6⊂ K(ε)} = P {Z0 6⊂ K(ε) | K ⊂ Z0} .

The conditional probability involving the zero cell is slightly more convenient to handle.

We assume in the following that the surface area measure of the given convex body K
satisfies

suppSd−1(K, ·) ⊂ suppϕ. (2)

By Proposition 1, this assumption is necessary for arbitrarily good approximation of K by
ZK . Theorem 1 shows, in a stronger form, that it is also sufficient.

For y ∈ Rd \K, let Ky := conv(K ∪ {y}). For ε > 0 we define

µ(K,ϕ, ε) := min
y∈bdK(ε)

∫
Sd−1

[h(Ky, u)− h(K,u)]ϕ(du), (3)

where h denotes the support function. Lemma 1, to be proved in the next section, shows
that µ(K,ϕ, ε) > 0.

Theorem 1. Let X be a stationary Poisson hyperplane process in Rd with intensity γ and
directional distribution ϕ. Let K ∈ K be a convex body satisfying (2). There are positive
constants C1(ε), C2 (both depending on K, ϕ, d) such that the following holds. If 0 < ε ≤ 1,
then

P {ZK 6⊂ K(ε)} ≤ C1(ε) exp [−C2µ(K,ϕ, ε)γ] . (4)

From this estimate we can deduce that ZK converges to K in the Hausdorff metric almost
surely as the intensity goes to infinity. To make this statement precise, we consider an
embedding of a Poisson hyperplane process Xτ with intensity τ > 0, directional distribution
ϕ, and intensity measure

EXτ (·) = 2τ

∫
Sd−1

∫ ∞
0

1{H(u, t) ∈ ·}dt ϕ(du) =: τΘ1
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into a Poisson process ξ on [0,∞) × Hd with intensity measure λ ⊗ Θ1, where λ denotes
Lebesgue measure on [0,∞). Then ξ([0, τ ]×·) is a Poisson hyperplane process with intensity

measure τΘ1, thus Xτ ∼ ξ([0, τ ]× ·). Let Z
(τ)
K denote the K-cell associated with ξ([0, τ ]× ·).

Then we have K ⊂ Z
(σ)
K ⊂ Z

(τ)
K for σ ≥ τ > 0, and therefore δ(K,Z

(σ)
K ) ≤ δ(K,Z

(τ)
K ). This

shows that

P

{
sup
σ≥τ

δ(K,Z
(σ)
K ) ≥ ε

}
= P

{
δ(K,Z

(τ)
K ) ≥ ε

}
≤ C1(ε) exp [−C2µ(K,ϕ, ε)τ ]

for all ε > 0, and thus

lim
τ→∞

δ(K,Z
(τ)
K ) = 0

holds almost surely.

In order to be able to estimate the rate of convergence, we need a stronger assumption
than (2), namely

Sd−1(K, ·) ≤ b ϕ (5)

with some constant b.

We consider a sequence X1, X2, . . . of Poisson hyperplane processes as above (defined on a
common probability space), with spherical directional distribution ϕ, where Xn has intensity

n. For a given convex body K, the K-cell of Xn is denoted by Z
(n)
K .

If (Yn)n∈N is a sequence of real random variables and f(n)n∈N is a sequence of nonnegative
real numbers, we write Yn = O(f(n)) almost surely if there is a constant C <∞ such that with
probability one we have Yn ≤ Cf(n) for sufficiently large n. Moreover, we write Yn ∼ f(n)
almost surely if there are constants 0 < c ≤ C < ∞ such that with probability one we have
cf(n) ≤ Yn ≤ Cf(n) for all sufficiently large n. A ‘ball’ in the following is a Euclidean ball
of positive radius.

Theorem 2. Suppose that the convex body K and the directional distribution ϕ of the
stationary Poisson hyperplane processes Xn satisfy (5). There is a constant α ≤ d, depending
only on K, such that

δ(K,Z
(n)
K ) = O

((
log n

n

)1/α
)

almost surely, (6)

as n → ∞. If a ball rolls freely inside K, then (6) holds with α = (d + 1)/2, and if K is a
polytope, then (6) holds with α = 1.

Under stronger assumptions, we can determine the exact asymptotic order of approxima-
tion.

Theorem 3. Let the convex body K ∈ K be such that a ball rolls freely inside K and that K
rolls freely inside a ball. Suppose that the directional distribution ϕ of the stationary Poisson
hyperplane processes Xn satisfies

aϕ ≤ Sd−1(K, ·) ≤ b ϕ (7)

with some positive constants a, b. Then

δ(K,Z
(n)
K ) ∼

(
log n

n

)2/(d+1)

almost surely, (8)
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as n→∞.

Note that Theorem 3 covers, in particular, the case where K is of class C2
+ and the

hyperplane processes Xn are isotropic, that is, their directional distribution ϕ is invariant
under rotations and thus is equal to the normalized spherical Lebesgue measure. If K is of
class C2

+, the surface area measure Sd−1(K, ·) has a positive continuous density with respect
to spherical Lebesgue measure, so that (7) holds, and the assumptions on K are satisfied by
Blaschke’s rolling theorem (Corollary 3.2.10 in [7]).

In the next section, we prove some auxiliary results. Theorem 1 is proved in Section 3,
and the proofs of Theorems 2 and 3 follow in Section 4.

2 Auxiliary results

Proof of Proposition 1. By [7], Theorem 4.6.3, the support of the area measure Sd−1(K, ·) is
equal to cl extnK, the closure of the set of extreme (unit) normal vectors of K.

Suppose now that K can be approximated arbitrarily closely by polytopes from P(K,N).
Let x be a regular boundary point of K, and let (xi)i∈N be a sequence of points in Rd \K
converging to x. To each i, there exists a polytope Pi ∈ P(K,N) not containing xi, hence
there is a closed halfspace H−i with outer normal vector ui ∈ N containing K but not xi.
For i→∞, the sequence of hyperplanes Hi bounding H−i has a convergent subsequence; its
limit is the unique supporting hyperplane of K at x. It follows that the outer unit normal
vector of K at x belongs to the closed set N . A normal vector at a regular boundary point
of K is a 0-exposed normal vector. Since x was an arbitrary regular boundary point of K,
the set N contains the set of 0-exposed normal vectors of K. The closure of the 0-exposed
normal vectors is equal to the closure of the extreme normal vectors (see Theorem 2.2.7 of
[7], also for the terminology used here). Hence, cl extnK ⊂ N .

Conversely, suppose that cl extnK ⊂ N . Since the regular boundary points ofK are dense
in the boundary of K (as follows from [7], Theorem 2.2.4), the body K is the intersection of
its supporting halfspaces with a regular point of K in the boundary. The outer unit normal
vector of such a halfspace is extreme and hence belongs to N . It follows that K can be
approximated arbitrarily closely by polytopes from P(K,N).

In the rest of this paper, c1, c2, . . . denote positive constants that depend only on K, ϕ
and the dimension d.

Lemma 1. If (2) holds, then µ(K,ϕ, ε) > 0. Suppose that (5) is satisfied. Let 0 < ε ≤ 1.

(a) For general K and for ε ≤ D(K), where D(K) denotes the diameter of K,

µ(K,ϕ, ε) ≥ c1εd. (9)

(b) If a ball rolls freely inside K, then

µ(K,ϕ, ε) ≥ c2ε(d+1)/2. (10)

(c) If K is a polytope, then
µ(K,ϕ, ε) ≥ c3ε. (11)

5



Proof. First, let (2) be satisfied. Let y ∈ Rd \K. Let Vd denote the volume and V the mixed
volume in Rd. Using a formula for mixed volumes ([7], (5.1.18)) and Minkowski’s inequality
(e.g., [7], (6.2.2)), we get

1

d

∫
Sd−1

[h(Ky,u)− h(K,u)]Sd−1(K,du)

= V (Ky,K, . . . ,K)− Vd(K)

≥ Vd(Ky)
1
dVd(K)

d−1
d − Vd(K)

= Vd(K)
d−1
d

[
Vd(K

y)
1
d − Vd(K)

1
d

]
> 0.

The integrand is nonnegative and continuous as a function of u. Since the integral is positive,
there exists a neighbourhood (in Sd−1) of some point u0 ∈ suppSd−1(K, ·) on which the
integrand is positive. By (2), u0 ∈ suppϕ, and hence

g(y) :=

∫
Sd−1

[h(Ky,u)− h(K,u)]ϕ(du) > 0.

The function g is continuous, hence on each compact subset of Rd \K it attains a minimum.
This proves that µ(K,ϕ, ε) > 0.

Now suppose that (5) holds. From the preceding estimate we get

b

d

∫
Sd−1

[h(Ky,u)− h(K,u)]ϕ(du) ≥ 1

d

∫
Sd−1

[h(Ky,u)− h(K,u)]Sd−1(K,du)

≥ Vd(K)
d−1
d

[
Vd(K

y)
1
d − Vd(K)

1
d

]
≥ c4 [Vd(K

y)− Vd(K)] .

(a) For the proof of (9), let C be the cone with apex y spanned by K. Let y′ be the point
in K nearest to y. The vector y − y′ has length ε, and the hyperplane H ′ orthogonal to it
and passing through y′ supports K. Let H be the other supporting hyperplane of K parallel
to H ′. Let ∆ be the convex hull of y and H ∩ C and ∆′ the convex hull of y and H ′ ∩ C.
Denoting by D(K) the diameter of K and assuming that ε ≤ D(K), we have

Vd(K
y)− Vd(K) ≥ Vd(∆′) ≥

(
ε

D(K) + ε

)d
Vd(∆) ≥

(
ε

2D(K)

)d
Vd(K).

This gives (9).

(b) Suppose that a ball of radius r > 0 rolls freely inside K. Since µ(·, ϕ, ε) is translation
invariant, we can assume that K contains the ball B(o, r) of radius r centred at o. Let R > 0
be such that K ⊂ B(o, R). For s > 0, the convex body

Ks := {x ∈ Rd : Vd(K
x)− Vd(K) ≤ s}

is known as an illumination body of K (cf. [9, p. 258]; the convexity follows from Satz 4 in
Fáry and Rédei [4]). Now let y ∈ bdK(ε) and put ν := Vd(K

y) − Vd(K), then y ∈ bdKν .
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Let x ∈ bdK be determined by {x} = [o,y]∩bdK, and denote by N(x) the unique exterior
unit normal vector of K at x. Since B(o, r) ⊂ K, we have

〈x, N(x)〉 ≥ r, 〈x/‖x‖, N(x)〉 ≥ r/R.

From ‖y‖ − ‖x‖ ≥ ε we get ‖y‖d − ‖x‖d ≥ drd−1ε. Therefore, Lemma 2 in [9] yields

ν2/(d+1) ≥ c5rr(d−1)/(d+1)

((
‖y‖
‖x‖

)d
− 1

)
≥ c6R−d

(
‖y‖d − ‖x‖d

)
≥ c7ε,

hence
Vd(K

y)− Vd(K) ≥ c8 ε(d+1)/2,

which gives (10).

(c) Now suppose that K is a polytope. Let y′ be the point in K nearest to y. Put
v := (y − y′)/‖y − y′‖, and let F denote the unique (proper) face of K which contains y′ in
its relative interior. Let F1, . . . , Fm be the facets of K that contain F , and let u1, . . . ,um be
their outer unit normal vectors. By [7, p. 74 and Theorem 2.4.9], we have

v ∈ N(K,F ) = N(K,y′) = pos{ui : i = 1, . . . ,m},

where N(K,F ) and N(K,y′) are the normal cones of K at F and y′, respectively, and pos
denotes the positive hull. Hence, there is some i ∈ {1, . . . ,m} such that 〈v,ui〉 > 0, in
particular, we have

a(F,v) := max{〈v,ui〉 : i = 1 . . . ,m} = 〈v,ui0〉 > 0,

for some i0 ∈ {1, . . . ,m}. Since N(K,F ) ∩ Sd−1 is compact, it follows that

a(F ) := min{a(F,v) : v ∈ N(K,F ) ∩ Sd−1} > 0,

and thus
c9 := min{a(F ) : F is a proper face of K} > 0.

Therefore, with c10 := min{Vd−1(F ) : F is a facet of K} > 0, where Vd−1 denotes the (d−1)-
dimensional volume, we get∫

Sd−1

[h(Ky,u)− h(K,u)]Sd−1(K,du) >〈y − y′,ui0〉Vd−1(Fi0)

≥‖y − y′‖ · c9c10 = c11ε,

This yields (11).

Remark. Although in the case of a general convex body K, the derivation of the estimate
(9) may seem rather crude, the order of εd cannot be improved. In fact, if (9) would be
replaced by µ(K,ϕ, ε) ≥ c1ε

α with 1 < α < d, then a counterexample would be provided by
a body K which in a neighbourhood of some boundary point is congruent to a suitable part
of a body of revolution with meridian curve given by µ(t) = |t|r with 1 < r < d−1

α−1 .

Lemma 2. Let the convex body K ∈ K be such that a ball rolls freely inside K and K rolls
freely inside a ball. Assume further that

aϕ ≤ Sd−1(K, ·) (12)
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with some positive constant a. Then∫
Sd−1

[h(Ky,u)− h(K,u)]ϕ(du) ≤ c12ε(d+1)/2

for ε > 0 and y ∈ bdK(ε).

Proof. Since K rolls freely in some ball, say of radius R, there is a convex body L with
K + L = RBd ([7, Theorem 3.2.2]). From the polynomial expansion of Sd−1(K + L, ·) ([7,
(5.1.17)]) it follows that Sd−1(K, ·) ≤ Sd−1(RB

d, ·) = Rd−1σ, where σ denotes the spherical
Lebesgue measure on Sd−1. Let y ∈ bdK(ε). In view of (12) we get∫

Sd−1

[h(Ky,u)− h(K,u)]ϕ(du) ≤ c13
∫
Sd−1

[h(Ky,u)− h(K,u)]σ(du).

Let y ∈ bdK(ε), and let x be the point in K nearest to y; then y = x + εN(x), where
N(x) is the outer unit normal vector of K at x. By assumption, a ball, say of radius r > 0,
rolls freely inside K. In particular, some ball B of radius r satisfies x ∈ B ⊂ K. Let

Cap (y, ε) :=

{
u ∈ Sd−1 : 〈u, N(x)〉 ≥ r

r + ε

}
.

For u ∈ Sd−1 \ Cap (y, ε) we have h(Ky,u)− h(K,u) = 0. If h(Ky,u)− h(K,u) 6= 0, then

h(Ky,u)− h(K,u) ≤ 〈y − x,u〉 ≤ ε.

With α(ε) := arccos r/(r + ε) this gives∫
Sd−1

[h(Ky,u)− h(K,u)]σ(du) ≤
∫
Cap (y,ε)

ε σ(du)

≤ c13ε sind−1 α(ε) = c13ε
√

1− (r/(r + ε))2
d−1

≤ c14ε
(d+1)/2.

This yields the assertion.

The following lemma is sufficient for our purpose; it does not aim at an optimal order.

Lemma 3. Let K ∈ K be a convex body which rolls freely in some ball. There are constants
c15, c16 > 0 such that the following holds. For 0 < ε < c15, let m(ε) be the largest number m
such that there are m points in bdK(ε) with the property that each segment connecting any
two of them intersects the interior of K. Then

m(ε) ≥ c16ε−1/2.

Proof. The convex body K contains some ball, without loss of generality the ball rBd. Let
R be such that K rolls freely in a ball of radius R. We put c15 := min{2R, (πr)2/64R} and
assume that 0 < ε < c15.

For points x,y ∈ bdK(ε), we assert that

‖x− y‖ ≥ 4
√
Rε ⇒ [x,y] ∩ intK 6= ∅. (13)
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For the proof, let x,y ∈ bdK(ε) and suppose that [x,y] ∩ intK = ∅. Let p ∈ K and
q ∈ aff {x,y} be points of smallest distance. Then the hyperplane H through p orthogonal
to q−p supports K. By assumption, there is a ball of radius R, say B, such that K ⊂ B and
p ∈ bdB. The ball B + εBd contains K(ε) and hence the segment [x,y]. The line parallel
to [x,y] through p lies in H and intersects the ball B + εBd in a segment S, which is not
shorter than [x,y]. Thus, ‖x − y‖ ≤ length(S) = 2

√
2Rε+ ε2 < 4

√
Rε, since ε < 2R. This

proves (13).

Let m be the largest integer with

m ≤ πr

4
√
R
ε−1/2.

Then m ≥ 2 (by the choice of c15), and there is a constant c16 with m ≥ c16/
√
ε. Let C be

an arbitrary great circle of the ball rBd. On C, we choose m equidistant points y1, . . . ,ym.
For i 6= j we have ‖yi − yj‖ ≥ 2r sin(π/m) > rπ/m. Let xi = λiyi ∈ bdK(ε) with λi > 0,

then λi > 1 for i = 1, . . . ,m and hence ‖xi − xj‖ > rπ/m ≥ 4
√
Rε for i 6= j. By (13), this

completes the proof.

3 Proof of Theorem 1

We assume that X and K are as in Theorem 1 and satisfy the assumptions mentioned above,
that is, ϕ is not concentrated on a great subsphere, γ ≥ 1, and the inclusion (2) holds. Recall
that o ∈ intK.

For a convex body L ⊂ Rd we define

HL := {H ∈ Hd : H ∩ L 6= ∅}

and
Φ(L) := Θ(HL).

By (1) we have

Φ(L) = 2γ

∫
Sd−1

h(L,u)ϕ(du). (14)

The following two lemmas use ideas from the proofs of Lemmas 3 and 5 in [5], but the
present situation is simpler. As there, we use the abbreviation

H−1 ∩ · · · ∩H
−
n =: P (H(n)),

where H1, . . . ,Hn are hyperplanes not passing through o and H−i is the closed halfspace
bounded by Hi that contains o.

Let ‖x‖K = min{λ ≥ 0 : x ∈ λK} for x ∈ Rd. For a nonempty compact convex set L,
we define ‖L‖K := max{‖x‖K : x ∈ L}. For ε ≥ 0 and m ∈ N, let

Kε(m) := {L ∈ Kd : K ⊂ L 6⊂ K(ε), ‖L‖K ∈ (m,m+ 1]}

and
qε(m) := P{Z0 ∈ Kε(m)}.

We abbreviate
(m+ 1)K =: Km.
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We have

qε(m) =

∞∑
N=d+1

P{X(HKm) = N}pN (15)

with

pN := P{Z0 ∈ Kε(m) | X(HKm) = N}

= Φ(Km)−N
∫
HN

Km

1{P (H(N)) ∈ Kε(m)}ΘN (d(H1, . . . ,HN )),

the latter by a well-known property of Poisson processes (e.g., [8, Th. 3.2.2(b)]), and

P{X(HKm) = N} =
Φ(Km)N

N !
exp [−Φ(Km)] . (16)

Lemma 4. There exists a number m0, depending only on K, ϕ and d, such that

q0(m) ≤ c17 exp[−Φ(K)− c18γm]

for m ≥ m0.

Proof. We modify and adapt the proof of Lemma 2 in [5]. If H1, . . . ,HN ∈ HKm and if
P := P (H(N)) ∈ K0(m), then P has a vertex v with m < ‖v‖K ≤ m + 1. Since v is the
intersection of some d facets of P , there exists a d-element set J ⊂ {1, . . . , N} with

{v} =
⋂
j∈J

Hj .

We denote the segment [o,v] by S = S(Hi, i ∈ J) (where it is assumed that the hyperplanes
Hi, i ∈ J , have linearly independent normal vectors) and note that

Hi ∩ relintS = ∅ for i = 1, . . . , N.

For any segment S = [o,v] with ‖v‖K ≥ m we have

Φ(S) = 2γ

∫
Sd−1

〈v,u〉+ϕ(du) ≥ 2c19γm

with a positive constant c19. This follows from the fact that the function

v1 7→
∫
Sd−1

〈v1,u〉+ϕ(du), v1 ∈ Sd−1,

is positive (since ϕ is not concentrated on a great subsphere) and continuous. Let m0 be the
smallest integer ≥ (2/c19)

∫
Sd−1 h(K,u)ϕ(du). For m ≥ m0 we then have

Φ(S) ≥ Φ(K) + c19γm,

and hence∫
HKm

1{H ∩ S = ∅}Θ(dH) = Φ(Km)− Φ(S) ≤ Φ(Km)− Φ(K)− c19γm,

10



where we used that S ⊂ Km, since ‖v‖K ≤ m+ 1. Now we obtain

pN ≤
(
N

d

)
Φ(Km)−N

∫
Hd

Km

1 {‖S(Hj , j ∈ {1, . . . , d})‖K ≥ m}

∫
HN−d

Km

1 {Hi ∩ S(Hj , j ∈ {1, . . . , d}) = ∅ for i = d+ 1, . . . , N}

×ΘN−d(d(Hd+1, . . . ,HN )) Θd(d(H1, . . . ,Hd))

≤
(
N

d

)
Φ(Km)−N

∫
Hd

Km

[Φ(Km)− Φ(K)− c19γm]N−d Θd(d(H1, . . . ,Hd))

=

(
N

d

)
Φ(Km)d−N [Φ(Km)− Φ(K)− c19γm]N−d .

With (15) (for ε = 0) and (16) this gives

q0(m)

≤
∞∑

N=d+1

Φ(Km)N

N !
exp [−Φ(Km)]

(
N

d

)
Φ(Km)d−N [Φ(Km)− Φ(K)− c19γm]N−d

=
1

d!
Φ(Km)d exp[−Φ(Km)]

∞∑
N=d+1

1

(N − d)!
[Φ(Km)− Φ(K)− c19γm]N−d

≤ 1

d!
Φ(Km)d exp [−Φ(K)− c19γm]

=
1

d!

(
2γ(m+ 1)

∫
Sd−1

h(K,u)ϕ(du)

)d
exp [−Φ(K)− c19γm]

≤ c17 exp [−Φ(K)− c18γm]

with c18 = c19/2, say.

According to (14) and (3), we have

Φ(Ky)− Φ(K) ≥ 2γµ(K,ϕ, ε) (17)

for 0 < ε ≤ 1 and y ∈ bdK(ε), if (2) is satisfied. In the following lemma, we assume that
(17) holds.

Lemma 5. Let 0 < ε ≤ 1 and suppose that (17) holds whenever y ∈ bdK(ε). Then, for
m ∈ N,

qε(m) ≤ c20(γm)d exp [−Φ(K)− 2γµ(K,ϕ, ε)] .

Proof. Suppose that H1, . . . ,HN ∈ HKm are such that P := P (H(N)) ∈ Kε(m). Then P has
a vertex x ∈ Km \K(ε). This vertex is the intersection of d facets of P . Hence, there exists
an index set J ⊂ {1, . . . , N} with d elements such that

{x} =
⋂
j∈J

Hj .

11



There exists a point y ∈ bdK(ε) such that

Φ(conv(K ∪ {x}) ≥ Φ(conv(K ∪ {y}) = Φ(Ky) ≥ Φ(K) + 2γµ(K,ϕ, ε),

where (17) was used, together with the monotonicity of Φ. This gives∫
HKm

1{H ∩ conv(K ∪ {x}) = ∅}Θ(dH) = Φ(Km)− Φ(conv(K ∪ {x})

≤ Φ(Km)− Φ(K)− 2γµ(K,ϕ, ε).

We write x = x(H1, . . . ,Hd) for the intersection point of the hyperplanes H1, . . . ,Hd (sup-
posed in general position) and obtain

pN ≤
(
N

d

)
Φ(Km)−N

∫
Hd

Km

1{x(H1, . . . ,Hd) ∈ Km \K(ε)}

∫
HN−d

Km

1{Hi ∩ conv(K ∪ {x(H1, . . . ,Hd)}) = ∅ for i = d+ 1, . . . , N}

× ΘN−d(d(Hd+1, . . . ,HN )) Θd(d(H1 . . . , Hd))

≤
(
N

d

)
Φ(Km)d−N [Φ(Km)− Φ(K)− 2γµ(K,ϕ, ε)]N−d .

Similarly as in the proof of Lemma 2, summation over N gives

qε(m) ≤ 1

d!
Φ(Km)d exp [−Φ(K)− 2γµ(K,ϕ, ε)] ≤ c20(γm)d exp [−Φ(K)− 2γµ(K,ϕ, ε)] .

Proof of Theorem 1. We have

P {Z0 6⊂ K(ε) | K ⊂ Z0} =
P {K ⊂ Z0, Z0 6⊂ K(ε)}

P {K ⊂ Z0}
=

∑∞
m=1 qε(m)

exp [−Φ(K)]
.

To estimate the last numerator, we choose m0 according to Lemma 4 and use Lemma 5 for
m ≤ m0 and Lemma 4 together with qε(m) ≤ q0(m) for m > m0. Since assumption (17) is
satisfied, Lemma 5 can be applied, and we obtain

P {Z0 6⊂ K(ε) | K ⊂ Z0} ≤
m0∑
m=1

c20(γm)d exp[−2γµ(K,ϕ, ε)] +
∑
m>m0

c17 exp[−c18γm].

The first sum can be estimated by

m0∑
m=1

c20(γm)d exp[−2γµ(K,ϕ, ε)] (18)

≤ c20md+1
0 γd exp [−γµ(K,ϕ, ε)] exp [−γµ(K,ϕ, ε)]

≤ c21(ε) exp [−c22γµ(K,ϕ, ε)] .

The second sum can be estimated by∑
m>m0

c17 exp[−c18γm] ≤ c17 exp[−c18γ]
∑
m>m0

exp[−c18(m− 1)] ≤ c23 exp [−c18γ] ,

since γ ≥ 1 (by assumption) and the last sum converges. Both estimates together yield
(4).
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4 Proofs of Theorems 2 and 3

Under the stronger assumption (5), we can conclude from Lemma 1 that µ(K,ϕ, ε) ≥ c24ε
α

with some α ≤ d. Therefore, in estimating (18) we can use that

γd exp [−γµ(K,ϕ, ε)] ≤ γd exp (−γc24εα) ≤ c25ε−dα.

This gives
m0∑
m=1

c20(γm)d exp[−2γµ(K,ϕ, ε)] ≤ c26ε−dα exp (−c27γεα) .

The estimation of the second sum above remains unchanged. Hence, under the assumptions
of Theorem 2 and with γ = n, we can conclude that

P
{
δ(K,Z

(n)
K ) > ε

}
≤ c28ε−dα exp (−c29nεα) .

We choose

C >
d+ 1

c29

and put

εn :=

(
C log n

n

)1/α

.

Then

∞∑
n=1

P
{
δ(K,Z

(n)
K ) > εn

}
≤

∞∑
n=1

c28

(
n

C log n

)d
exp (−c29C log n)

= c30

∞∑
n=1

(log n)−dnd−c29C <∞. (19)

The Borel–Cantelli lemma gives

P
{
δ(K,Z

(n)
K ) > εn for infinitely many n

}
= 0,

hence

P

{
δ(K,Z

(n)
K ) ≤

(
C log n

n

)1/α

for sufficiently large n

}
= 1.

This completes the proof of Theorem 2.

Proof of Theorem 3. Let 0 < ε < c15 (with c15 as in Lemma 3). According to Lemma 3, we
can choose

m = m(ε) ≥ c16ε−1/2

points x1, . . . ,xm ∈ bdK(ε) such that the segment joining any two of them intersects the

interior of K. Let n ∈ N. Suppose that δ(K,Z
(n)
K ) < ε. Then each point xi is separated from

K by some hyperplane from Xn. Let Ai ⊂ Hd be the set of hyperplanes separating xi and
K. By the choice of the points x1, . . . ,xm, the sets A1, . . . ,Am are pairwise disjoint. Since
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Xn is a Poisson process, the processes Xn A1, . . . , Xn Am are stochastically independent
(e.g., [8, Theorem 3.2.2]). It follows that

P{δ(K,Z(n)
K ) < ε} ≤ P{Xn(Ai) ≥ 1 for i = 1, . . . ,m}

=

m∏
i=1

P{Xn(Ai) ≥ 1} =

m∏
i=1

[1− P{Xn(Ai) = 0}]

=

m∏
i=1

(1− exp[−Θn(Ai)])

where Θn is the intensity measure of Xn. Since the assumptions on K in Lemma 2 are
satisfied, we can conclude that

Θn(Ai) = Θn(HKxi )−Θn(HK)

= 2n

∫
Sd−1

[h(Kxi ,u)− h(K,u)]ϕ(du)

≤ 2nc12ε
(d+1)/2.

This gives

P
{
δ(K,Z

(n)
K ) < ε

}
≤
[
1− exp

(
−2c12nε

(d+1)/2
)]m(ε)

.

Now we choose

ε(d+1)/2
n =

c log n

n
with

0 < c <
1

4c12(d+ 1)
.

Then
P
{
δ(K,Z

(n)
K ) < εn

}
≤
(
1− n−2c12c

)m(εn)

with

m(εn) ≥ c16ε−1/2n = c16

(
n

c log n

)1/(d+1)

> c31n
1/(2d+2)

for sufficiently large n. With p := 2c12c and q := 1/(2d+ 2) we have q > p and

(
1− n−2c12c

)m(εn)
<

(
1− 1

np

)c31nq

=

[(
1− 1

np

)np·nq−p
]c31
≤ (e−c31)n

q−p
.

It follows that
∞∑
n=1

P

{
δ(K,Z

(n)
K ) <

(
c log n

n

) 2
d+1

}
<∞.

From the Borel–Cantelli lemma we conclude that

P

{
δ(K,Z

(n)
K ) <

(
c log n

n

) 2
d+1

for infinitely many n

}
= 0

and hence

P

{
δ(K,Z

(n)
K ) ≥

(
c log n

n

) 2
d+1

for almost all n

}
= 1.

Together with Theorem 2, this completes the proof of Theorem 3.
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