Publikationen
The monograph Poisson Hyperplane Tessellations has been pbulished in 2024 in the Springer Series
Springer Monographs in Mathematics.
The textbook Lectures on Convex Geometry has been published in 2020 as vol. 286 in the Springer series
Graduate Texts in Mathematics.
2024--
122. D. Hug, G. Last, M. Schulte. Boolean models in hyperbolic space.
arxiv.pdf
121. D. Hug, F. Mussnig, J. Ulivelli. Kubota-type formulas and supports of mixed measures.
arxiv.pdf
120. D. Hug, G. Last, W. Weil. Boolean models arxiv.pdf
119. D. Hug, J.A. Weis. Integral geometric formulae for Minkowski tensors.
pdf
118. D. Hug, A. Reichenbacher. Geometric inequalities, stability results and Kendall's problem in spherical space.
pdf
117. D. Hug, P. A. Reichert. Extremizers of the Alexandrov--Fenchel inequality within a new class of
convex bodies
Adv. in Geometry (to appear) arxiv.pdf
116. D. Hug, F. Mussnig, J. Ulivelli. Additive kinematic formulas for convex functions.
Canadian Journal of Mathematics (to appear) arxiv.pdf
115. D. Hug, P. A. Reichert. The support of mixed area measures involving a new class of convex
bodies J. Funct. Anal. 287 (11), 1 December 2024, 110622 Open Access.pdf
114. D. Hug, R. Schneider. Vectorial analogues of Cauchy’s surface area formula Arch. Math. 122 (2024), 343-–352. arxiv.pdf Archiv Math. online Publication Date 2024-01-29 SharedIt link
Open Access.pdf
113. F.A. Bartha, F. Bencs, K.J. Böröczky, D. Hug. Extremizers and stability of the Betke--Weil inequality. Michigan Math. J. 74 (2024), 45--71. pdf Advance Publication 1-27 (2022). file:///C:/Users/Hug/Downloads/20216063-1.pdf DOI: 10.1307/mmj/20216063
https://doi.org/10.1307/mmj/20216063
2023
112. D. Hug, A. Colesanti. Geometric and Functional Inequalities. Chapter 3 (pages 79--158) of the Lecture Notes of the CIME Summer School on Convex Geometry,
held in Cetraro, Italy, from August 30th to September 3rd, 2021. Part of the book series: Lecture Notes in Mathematics, volume 2332, Published 2023, Editors: Andrea Colesanti, Monika Ludwig, https://link.springer.com/book/10.1007/978-3-031-37883-6.
111. C. Betken, D. Hug., Ch. Thäle. Intersections of Poisson $ k $-flats in constant curvature spaces Stochastic Processes and their Applications 165 (2023), 96–129. Share Link until October 22, 2023. Preprint Version arxiv.pdf
110. F. Ernesti, M. Schneider, S. Winter, D. Hug, G. Last, T. Böhlke: Characterizing digital microstructures by the Minkowski-based quadratic normal tensor Math. Meth. Appl. Sci. 46 (2023), 961–-985. doi:10.1002/mma.8560 pdf
2022
109. D. Hug., M. Santilli. Curvature measures and soap bubbles beyond convexity. Adv. Math. 411, Part A, 24 December 2022, 108802, 89 pp. Preliminary version on arxiv.pdf
108. T. Göll, D. Hug. On a game of chance in Marc Elsberg’s thriller ‘GREED’. Math. Semesterberichte
69 (2022), 103--139. https://doi.org/10.1007/s00591-021-00315-6. Published online: 03 February 2022 springer.pdf arxiv.pdf Python Code
107. D. Hug, R. Schneider: Threshold phenomena for random cones. Discrete Comput. Geom. 67 (2022), 564--594 springer.pdf arxiv.pdf
2021
106. D. Hug, R. Schneider. Another look at threshold phenomena for random cones. Studia Scientiarum Mathematicarum Hungarica: Combinatorics, Geometry and Topology. 58 (2021), 489--504.
Online Publication Date: 21 Oct 2021, Publication Date: 03 Dec 2021, DOI: https://doi.org/10.1556/012.2021.01513 published online: https://doi.org/10.1556/012.2021.01513 pdf
105. K.J. Böröczky, D. Hug. Reverse Alexandrov--Fenchel inequalities for zonoids. Communications in Contemporary
Mathematics.
24(8) (2022), 2150084.
https://doi.org/10.1142/S021919972150084X (Published online 25 September 2021) pdf
104. F. Herold, D. Hug and Ch. Thäle. Does a central limit theorem hold for the $k$-skeleton of Poisson
hyperplanes in hyperbolic space?
Probab. Theory and Relat. Fields 179(3) (2021), 889--968. PTRF.Springer arxiv.pdf
103. K. Böröczky, F. Fodor and D. Hug. Strengthened inequalities for the mean width and the -norm.
J. London Math. Soc. 104 (2021), 233--268. pdf JLMS.pdf
2020
102. D. Hug and R. Schneider. Integral geometry of pairs of hyperplanes or lines.
Arch. Math. 115 (2020), 339-–351. pdf
101. K. Böröczky and D. Hug. A reverse Minkowski-type inequality. Proc. Amer. Math. Soc. 148 (2020), 4907–-4922. pdf
100. D. Hug and R. Schneider. Poisson hyperplane processes and approximation of convex bodies.
Mathematika 66 (2020), 713-–732 doi:10.1112/mtk.12040. pdf
99. Richard J. Gardner, Daniel Hug, Sudan Xing, Deping Ye.
General volumes in the Orlicz-Brunn-Minkowski theory and a related Minkowski Problem II.
Calculus of Variations and PDE's 59 no. 1, Paper No. 15 (2020), 33 pp. pdf
2019
98. K. Böröczky, F. Fodor and D. Hug. Strengthened volume inequalities for zonoids of
even isotropic measures. Trans. Amer. Math. Soc. 371 (2019), 505--548. (electronically published July 20, 2018) https://doi.org/10.1090/tran/7299 pdf
97. D. Hug and Ch. Thäle. Splitting tessellations in spherical spaces.
Electron. J. Probab. 24 (2019), paper no. 24, 60 pp. ISSN:1083-6489 https://doi.org/10.1214/19-EJP267 pdf
96. R. J. Gardner, D. Hug, W. Weil, S. Xing, D. Ye.
General volumes in the Orlicz-Brunn-Minkowski theory and a related Minkowski Problem I.
Calculus of Variations and PDE's 58:12 (2019) 35 pp.
https://doi.org/10.1007/s00526-018-1449-0(to appear) pdf
95. D. Hug and W. Weil. Determination of Boolean models by mean values of mixed volumes.
Adv. Appl. Probab. 51 (2019), 116--135
pdf doi:10.1017/apr.2019.5
2018
94. D. Hug and J.A. Weis. Kinematic formulae for tensorial curvature measures. Annali di Matematica Pura ed Applicata (1923 -) (4) 197, no. 5, (2018), 1349--1384. (First Online: 30 January 2018) DOI 10.1007/s10231-018-0728-x
pdf
93. D. Hug, J. Rataj and W. Weil. Flag representations of mixed volumes and mixed functionals of convex bodies. J. Math. Anal. Appl. 460 (2018), 745--776. https://doi.org/10.1016/j.jmaa.2017.12.039 pdf
92. D. Hug and Z. Kabluchko. An inclusion-exclusion identity for normal cones of polyhedral sets. Mathematika 64 (2018), 124--136. pdf
91. A. Bernig and D. Hug. Kinematic formulas for tensor valuations. J. Reine Angew. Math. 736 (2018), 141–-191
SSN (Online) 1435-5345, ISSN (Print) 0075-4102, DOI: https://doi.org/10.1515/crelle-2015-0023, online first July 2015 pdf
2017
90. D. Hug and J.A. Weis. Crofton formulae for tensorial curvature
measures: the general case. In: Analytic aspects of convexity (Gabriele Bianchi, Andrea Colesanti, Paolo Gronchi (eds.), Springer INdAM Series, Springer, 2017+ pdf
89. A. Bernig and D. Hug. Integral geometry and algebraic structures for
tensor valuations. In: Lecture Notes in Mathematics, vol. 2177,
‘Tensor Valuations and their Applications in Stochastic Geometry and Imaging’ (eds. M. Kiderlen, Eva B. Vedel Jensen). 79--109.
DOI 10.1007/978-3-319-51951-7_4pdf
88. D. Hug and R. Schneider. Rotation covariant local tensor valuations on convex bodies. Communications in Contemporary Mathematics
19 1650061-1--31, (2017) World Scientific Publishing Company
DOI:10.1142/S0219199716500619
pdf
87. D. Hug and J.A. Weis. Crofton formulae for tensor-valued curvature measures. In: Lecture Notes in Mathematics, vol. 2177,
‘Tensor Valuations and their Applications in Stochastic Geometry and Imaging’ (eds. M. Kiderlen, Eva B. Vedel Jensen). 111--156.
DOI 10.1007/978-3-319-51951-7_5
pdf
86. D. Hug and J. Rataj. Mixed curvature measures of translative integral geometry. Geom. Dedicata 195 (2018), 101--120. First Online:
18 August 2017. DOI 10.1007/s10711-017-0278-1. pdf
85. D. Hug and R. Schneider. SO covariant local tensor valuations on polytopes. Michigan Math. J.
66 (2017), 637--659. pdf
84. A. Colesanti, D. Hug. and E. Saorin Gomez. Monotonicity and concavity of integral functionals involving area measures of convex bodies. Communications in Contemporary Mathematics 19 (2017) 1650033-1--26 pdf
83. D. Hug, M.A. Klatt, G. Last and M. Schulte. Second order analysis of geometric functionals
of Boolean models. In: Lecture Notes in Mathematics, vol. 2177,
‘Tensor Valuations and their Applications in Stochastic Geometry and Imaging’ (eds. M. Kiderlen, Eva B. Vedel Jensen). 339--383.
DOI 10.1007/978-3-319-51951-7_12
pdf
82. D. Hug, M. Kiderlen, A. M. Svane. Voronoi-based estimation of Minkowski tensors from
finite point samples. Discrete Comput. Geom. 57 (2017), 545--570.
pdf
81. D. Hug and R. Schneider. Tensor valuations and their local versions. In: Lecture Notes in Mathematics, vol. 2177,
‘Tensor Valuations and their Applications in Stochastic Geometry and Imaging’ (eds. M. Kiderlen, Eva B. Vedel Jensen). 27--65. DOI 10.1007/978-3-319-51951-7_2
pdf
80. P. Goodey, D. Hug and W. Weil. Kinematic formulas for area measures. Indiana Univ. Math. J. 66(3) (2017),
997--1018 pdf
79. I. Barany, D. Hug, M. Reitzner and R. Schneider. Random points in halfspheres. Random Structures Algorithms 50 (2017), 3--22.
pdf
78. P. Goodey, W. Hinderer, D. Hug, J. Rataj and W. Weil. A
flag representation of projection functions. Adv. Geom. 17(3) (2017), 303–-322.
pdf
77. K. Böröczky and D. Hug. Isotropic measures and stronger forms of the reverse
isoperimetric inequality. Trans. Amer. Math. Soc. 369(10) (2017), 6987--7019.
http://dx.doi.org/10.1090/tran/6857
pdf
2016
76. D. Hug and R. Schneider. Random conical tessellations. Discrete Comput. Geom. 52 (2016), 395--426. pdf
75. F. Fodor, D. Hug and I. Ziebarth. The volume of random polytopes circumscribed around a convex body. Mathematika 62 (2016), 283-306. pdf
74. I. Barany, D. Hug and R. Schneider. Affine diameters of convex bodies. Proc. Amer. Math. Soc. 144 (2016), 797-812. DOI: http://dx.doi.org/10.1090/proc12746
Published electronically: May 28, 2015 pdf
73. D. Hug and M. Reitzner. Introduction to Stochastic Geometry. In ``Stochastic Analysis for Poisson Point Processes: Malliavin Calculus, Wiener-Ito Chaos Expansions and Stochastic Geometry", edited by Giovanni Peccati and Matthias Reitzner, Bocconi & Springer Series, Vol. 7, 145-184 Springer, 2016.
pdf
72. D. Hug, G. Last and M. Schulte. Second-order properties and central limit theorems
for geometric functionals of Boolean models. Ann. Appl. Probab. 26 (2016), 73-135. pdf
2015
71. R.J. Gardner, D. Hug and W. Weil, D. Ye. The dual Orlicz-Brunn-Minkowski theory. J. Math. Anal. Appl. 430 (2015), 810--829. pdf
70. D. Hug, Ch. Thäle and W. Weil. Intersection and proximity of processes of flats. J. Math. Anal. Appl. 426 (2015), 1-42. pdf
69. A. Kousholt, M. Kiderlen and D. Hug. Surface tensor estimation from linear sections. Math. Nachr. 288 (2015), 1647-1672. Article first published online: 28 APR 2015
DOI: 10.1002/mana.201400147 pdf
68. J. Hörrmann, D. Hug, M. Reitzner and Ch. Thäle. Poisson polyhedra in high dimensions. Adv. Math. 281 (2015), 1-39. pdf
67. D. Hug and R. Schneider. Hölder continuity of support measures of
convex bodies. Arch. Math. 104 (2015), 83-92. pdf
66. W. Hinderer, D. Hug and W. Weil. Extensions of translation invariant valuations on polytopes. Mathematika 61 (2015) 236-258. pdf
2014
65. D. Hug and R. Schneider. Local tensor valuations. Geom. Funct. Anal. 24 (2014), 1516-1564. pdf
64. D. Hug, G. Last, Z. Pawlas and W. Weil. Statistics for Poisson models of overlapping spheres. Adv. Appl. Probab. 46 (2014),937-962.
pdf
63. J. Hörrmann, D. Hug, M. Klatt and K. Mecke. Minkowski tensor density formulas for Boolean models. Adv. Appl. Math. 55 (2014), 48-85. pdf
62. D. Hug and R. Schneider. Approximation properties of random polytopes associated with Poisson hyperplane processes. Adv. Appl. Probab. 46 (2014), 919-936. pdf
61. J. Hörrmann and D. Hug. On the volume of the zero cell
of a class of isotropic Poisson hyperplane tessellations. Adv. Appl. Probab. 46 (2014), 622-642. pdf
60. R.J. Gardner, D. Hug and W. Weil. The Orlicz-Brunn-Minkowski theory: a general framework, additions, and inequalities. J. Differential Geom. 97 (2014), 427-476.
pdf
2013
59. R.J. Gardner, D. Hug and W. Weil. Operations between sets in geometry. J. Europ. Math. Soc. 15 (2013), 2297–2352.
pdf
58. D. Hug. Random polytopes. In: Stochastic Geometry, Spatial Statistics and Random Fields. Asymptotic Methods. Lecture Notes in Mathematics 2068 (ed. Evgeny Spodarev) (2013), 205-238. 61.pdf|pdf
57. D. Hug, I. Türk and W. Weil. Flag measures for convex bodies. Fields Institute Communications (eds. Monika Ludwig, Vitali D. Milman, Vladimir Pestov, Nicole Tomczak-Jaegermann) 68 (2013), 145-187. pdf
56. D. Hug, J. Rataj and W. Weil. A product integral representation of mixed volumes of two convex bodies. Adv. Geom. 13 (2013), 633-662. pdf
55. G.E. Schröder-Turk, W. Mickel, S.C. Kapfer, F.M. Schaller, B. Breidenbach, D. Hug and K. Mecke. Minkowski tensors of anisotropic spatial structure. New J. Phys. 15 (2013), 083028 pdf
54. K. Böröczky, F. Fodor and D. Hug. Intrinsic volumes of random polytopes with vertices on the
boundary of a convex body. Trans. Amer. Math. Soc. 365 (2013), 785--809. pdf
2012
53. A. Colesanti, D. Hug. and E. Saorin Gomez. A characterization of some mixed volumes via the Brunn-Minkowski inequality. J. Geom. Analysis 24, Issue 2, (2014), 1064--1091 (appeared online 10 October 2012, DOI 10.1007/s12220-012-9364-7)
pdf
2011
52. G.E. Schröder-Turk, W. Mickel, S.C. Kapfer, M.A. Klatt,
F.M. Schaller, M.J.F. Hoffmann, N. Kleppmann, P. Armstrong, A. Inayat, D. Hug, M. Reichelsdorfer, W. Peukert, W. Schwieger, K. Mecke. Minkowski Tensor shape analysis of cellular, granular and porous structures. Advanced Materials, Special Issue: Hierarchical Structures Towards Functionality. 23 (2011), 2535–2553.
Wiley
51. D. Hug, R. Schneider. Reverse inequalities for zonoids and their application. Adv. Math. 228 (2011), 2634-2646. doi:10.1016/j.aim.2011.07.018
50. D. Hug, R. Schneider. Faces with given directions in anisotropic Poisson hyperplane tessellations. Adv. Appl. Probab. 43 (2011), 308-321. pdf
49. D. Hug, R. Schneider. Faces in Poisson-Voronoi mosaics. Probab. Theory and Relat. Fields.
151 (2011), 125-151. pdf Official journal site
2010
48. K. Böröczky, D. Hug. Stability of the reverse
Blaschke-Santalo inequality for zonoids
and applications. Adv. Appl. Math. 44 (2010), 309-328. pdf
47. D. Hug, R. Schneider. Large faces in Poisson hyperplane mosaics. Ann. Probab. 38 (2010), 1320-1344. pdf Official journal site
46. K. Böröczky, F. Fodor, D. Hug. The mean width of
random polytopes circumscribed
around a convex body. J. London Math. Soc. 81 (2010), 499–523. pdf
2009
45. D. Hug. Nakajima's problem for general
convex bodies. Proc. Amer. Math. Soc. 137 (2009), 255-263.
pdf
2008
44. K. Böröczky, L.M. Hoffmann, D. Hug. Expectation of intrinsic volumes of random polytopes. Periodica Mathematica Hungarica 57 (2008), 143-164. pdf
43. D. Hug, R. Schneider, R.
Schuster. Integral
geometry
of tensor valuations. Adv. Appl. Math. 41 (2008), 482-509. pdf
42. D. Hug, R. Schneider, R. Schuster. The
space of isometry covariant tensor
valuations. Algebra
i Analiz and St. Petersburg Math. J. 19 (2008), 137-158.
pdf
2007
41. R. Howard, D. Hug. Nakajima's problem: convex bodies of
constant
width and constant brightness. Mathematika 54 (2007), 15-24. pdf
40. R. Howard, D. Hug. Smooth convex bodies with proportional
projection
functions.
39. D. Hug, R. Schneider. Typical cells in Poisson hyperplane
tessellations. Discrete Comput.
Geom. 38 (2007), 305-319.
pdf
38. D. Hug, R. Schneider. A stability result
for a
volume ratio.
37. D. Hug, R. Schneider. Asymptotic shapes of large cells in
random
tessellations. Geom. Funct. Anal. 17 (2007), 156-191.
pdf
36. D. Hug. Random mosaics. pp. 247--266. In: Baddeley, A.; Bárány, I.; Schneider, R.; Weil, W. Stochastic geometry. Edited by W. Weil. Lecture Notes in Mathematics, 1892. Springer-Verlag, Berlin, 2007.
pdf
2006
35. D. Hug. Modellieren und
Entscheiden bei
Ungewissheit (Stochastik in Klasse 11), 30
Seiten +
Anhang, Dokumentation einer Unterrichtseinheit im Rahmen der zweiten
Staatsprüfung für die Laufbahn des höheren Schuldienstes
an Gymnasien (18 monatiger
Vorbereitungsdienst), Landeslehrerprüfungsamt,
Regierungspräsidium Freiburg, Abteilung 7 und Staatliches Seminar
für Didaktik
und Lehrerbildung (Gymnasien) Freiburg, Freiburg, 05. Januar 2006. pdf
34. D. Hug, G. Last, W. Weil. Polynomial parallel volume,
convexity and contact distributions of random sets. Probab.
Theory and Relat. Fields 135
(2006),
169-200. pdf
2005
33. D. Hug, R. Schneider. Large Typical Cells in Poisson-Delaunay Mosaics, Rev. Roumaine
Math. Pures Appl.
50
(2005), 657-670. pdf
32. A. Colesanti and D. Hug.
Hessian measures
of convex functions and area measures. J. London Math. Soc. 71
(2005), 221-235. pdf
31. D. Hug, M. Reitzner.
Gaussian polytopes: variances and limit
theorems, Adv. Appl. Probab. 37
(2005), 297-320. pdf
30. D. Hug, E. Lutwak, Deane Yang, Gaoyong Zhang. On the
Minkowski problem for polytopes.
Discrete
Comput. Geom. 33 (2005),
699-715. pdf
29. J. Gates, D. Hug, R. Schneider. Valuations on convex sets of
oriented hyperplanes. Discrete Comput. Geom. 33 (2005), 57-65.
pdf
2004
28. D. Hug, G.O. Munsonius, M. Reitzner. Asymptotic mean values of Gaussian polytopes. Contributions to Algebra and
Geometry 45
(2004), 531-548. pdf
27. D. Hug, M. Reitzner, R.
Schneider. Large
Poisson-Voronoi cells and Crofton cells. Adv.
Appl. Probab.
36
(2004), 667-690. pdf
26. D. Hug, R. Schneider. Large cells in Poisson-Delaunay
tessellations. Discrete Comput. Geom.
31
(2004), 503-514.pdf
25. D. Hug, M. Reitzner, R.
Schneider. The
limit shape of the zero cell in a stationary Poisson hyperplane
tessellation. Ann. Probab. 32
(2004),
1140-1167. pdf
24. M. Heveling, D. Hug, G. Last.
Does
polynomial parallel volume imply convexity? Math. Ann. 328
(2004), 469-479. pdf
23. D. Hug, G. Last, W. Weil. A local Steiner-type formula for
general
closed sets and applications. Math. Z. 246 (2004),
237-272. pdf
2003
22. D. Hug, G. Last, W. Weil. Distance measurements on processes of
flats. Adv.
Appl. Probab.
35
(2003), 70-95. pdf
21. F. Gao, D. Hug, R. Schneider.
Intrinsic volumes
and polar sets in spherical space. Math. Notae
41 (2001/02), 159-176 (2003). pdf
2002
20. D. Hug, R. Schneider. Kinematic and
Crofton formulae
of integral geometry: recent variants and extensions. (Survey) pp.
51-80. Homenatge al professor Lluís Santaló
i. Sors:
22 de novembre de 2002 / C. Barceló
i Vidal (ed.), Girona:
Universitat de Girona.
Càtedra Lluís
Santaló
d'Aplicacions de la Matemàtica,
2002. pdf
19. D. Hug, R. Schneider. Stability results involving surface area measures of convex bodies. Rend. Circ. Mat. Palermo (2) Suppl. No. 70, part II
(2002), 21--51. pdf
18. D. Hug, G. Last, W. Weil. A survey on contact distributions. pp.
317-357. Statistical
Physics and Spatial Statistics, Lecture Notes in Physics 600,
Morphology of Condensed Matter, Physics and Geometry of Spatially
Complex
Systems, ed. by K. Mecke and D. Stoyan,
Springer, Berlin, 2002. pdf
17. D. Hug, G. Last, W. Weil. Generalized contact distributions of
inhomogeneous Boolean models. Adv. Appl.
Probab. 34 (2002), 21-47. pdf
16. D. Hug, P. Mani-Levitska and R. Schätzle. Almost transversal intersections
of convex
surfaces and translative integral
formulae. Math.
Nachr. 246-247 (2002),
121-155. pdf
15. D. Hug. Absolute continuity for curvature measures of convex sets
III. Adv.
Math. 169 (2002), 92-117. pdf
2001
14. D. Hug and R. Schätzle.
Intersections and translative integral
formulas for boundaries of convex
bodies. Math. Nachr. 226
(2001),
99-128. pdf
2000
13. D. Hug. Contact distributions of Boolean models. Rend. Circ. Mat. Palermo (2) Suppl. No. 65, part I (2000), 137--181. pdf
12. D. Hug and G. Last. On support measures in Minkowski
spaces and contact distributions in stochastic geometry. Ann. Probab. 28 (2000), 796-850. pdf
11. A. Colesanti and D. Hug. Hessian
measures of
semi-convex functions and applications to support measures of convex
bodies. Manuscripta Math.
101 (2000), 209-238.
pdf
10. A. Colesanti and D. Hug. Steiner type
formulae
and weighted measures of singularities for semi-convex functions. Trans.
Amer. Math. Soc. 352 (2000), 3239-3263. pdf
1999
9. D. Hug. Measures, curvatures and currents in convex geometry. Habilitationsschrift, Albert-Ludwigs-Universität
Freiburg, December 1999, 191 pp. pdf
8. D. Hug. Absolute continuity for curvature measures of convex sets
II. Math.
Z. 232 (1999), 437-485. pdf
1998
7. D. Hug. Absolute continuity for curvature measures of convex
6. D. Hug. Generalized curvature measures and singularities of sets
with
positive reach. Forum Math. 10 (1998), 699-728. pdf
1996
5. D. Hug. Curvature relations and affine surface area for a general
convex
body and its polar. Results Math. 29 (1996), 233-248.
pdf
4. D. Hug. Contributions to affine surface area. Manuscripta
Math. 91 (1996), 283-301. pdf
1995
3. G. Dolzmann and D. Hug. Equality of two
representations of extended affine surface area. Arch. Math. 65
(1995), 352-356. pdf
2. D. Hug. On the mean number of normals
through a
point in the interior of a convex body. Geom.
Dedicata 55 (1995), 319-340. pdf
1994
1. D. Hug, Geometrische Maße in der affinen Konvexgeometrie. Dissertation, Freiburg, 1994, 256 pp.