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1 Introduction

Let X1, . . . , Xm, . . . be independent copies of a random (column) vector X and, inde-

pendently of the Xj, let Y1, . . . , Yn, . . . be independent copies of a random vector Y .

The distributions of X and Y are assumed to be continuous and elliptically symmetric,

i.e., X and Y are some full rank affine transformations of spherically symmetric distri-

butions (see, e.g. Fang, Kotz and Ng (1990), p. 31). Moreover, we assume E‖X‖4 < ∞
1AMS 1991 subject classification numbers: 62H15, 62E20
2Proposed running head: TESTS FOR EQUIVALENCE OF ELLIPTICAL DISTRIBUTIONS
3Research started while N. Henze was a distinguished Lukacs professor visiting Bowling Green

State University
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and E‖Y ‖4 < ∞, where ‖ · ‖ denotes the Euclidean norm. Writing ’∼’ for equality in

distribution and Gld for the group of nonsingular matrices of order d, this paper deals

with testing the hypothesis

H0 : Y ∼ AX + b for some A ∈ Gld and some b ∈ Rd,(1.1)

against general alternatives. Put in other words, H0 means that X and Y have a

density of the form

|Σ|−1/2 g
(
(x− µ)′Σ−1(x− µ)

)

with the same (unspecified) density generator g (see Fang, Kotz and Ng (1990), p.35),

but with possibly different values of the location vector µ and the positive definite

matrix Σ. Here, |Σ| denotes the determinant of Σ, and the prime stands for transpose

of vectors and matrices.

Notice that H0 includes the special case that both X and Y have nondegenerate

normal distributions. The idea of testing H0 is to test the equivalent hypothesis that

the standardized distributions coincide. Since these distributions are spherically sym-

metric and thus uniquely determined by the distribution of their radial parts, the test

statistic is a suitable measure of discrepancy between the empirical distributions of the

radial part of the standardized samples. The paper is organized as follows. Section 2

introduces the new test statistics, and Section 3 is devoted to asymptotic distribution

theory. Section 4 introduces a resampling procedure that renders the test asymptot-

ically of a prespecified level. The final section presents the results of a Monte Carlo

study.

2 The test statistics

We first transform (1.1) into an equivalent testing problem. If Y ∼ AX +b for A ∈ Gld

and b ∈ Rd, then ν = Aµ + b and T = AΣA′, where µ = EX, ν = EY , S = E(X −
µ)(X−µ)′ and T = E(Y −ν)(Y −ν)′. Let S−1/2 denote the symmetric positive definite

square root of S−1, and likewise define T−1/2. Furthermore, put X̃ = S−1/2(X − µ),

Ỹ = T−1/2(Y − ν). The distributional equality Y ∼ AX + b then implies

Ỹ ∼ T−1/2AS−1/2X̃.
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Since X̃ and Ỹ have spherically symmetric distributions and the matrix T−1/2AS−1/2

is orthogonal, we have Ỹ ∼ X̃ and thus

‖Ỹ ‖2 ∼ ‖X̃‖2.(2.1)

To show that (2.1) entails (1.1), notice that Ỹ ∼ U · ‖Ỹ ‖ and X̃ ∼ V · ‖X̃‖, where

U, V, ‖X̃‖ and ‖Ỹ ‖ are independent, and the distributions of U and V are uniform over

the surface of the unit d-sphere (see Fang, Kotz and Ng (1990), p. 30). Therefore,

(2.1) implies Ỹ ∼ X̃, from which (1.1) readily follows.

To test (2.1), let X̄m = m−1
∑m

j=1 Xj, Ȳn = n−1
∑n

k=1 Yk denote the sample means,

and write Sm = m−1
∑m

j=1(Xj − X̄m)(Xj − X̄m)′, Tn = n−1
∑n

k=1(Yk − Ȳn)(Yk − Ȳn)′

for the sample covariance matrices. We assume that m > d and n > d, thus ensuring

the almost sure invertibility of Sm and Tn (see Eaton and Perlman (1973)). Define the

standardized data

X̃j = S−1/2
m (Xj − X̄m), Ỹk = T−1/2

n (Yk − Ȳn)

(1 ≤ j ≤ m, 1 ≤ k ≤ n). For short, put

Dj = ‖X̃j‖2 (1 ≤ j ≤ m), ∆k = ‖Ỹk‖2 (1 ≤ k ≤ n).

Our measure of discrepancy between the empirical distributions of D1, . . . , Dm and

∆1, . . . , ∆n is based on the empirical characteristic functions

ϕm(t) =
1

m

m∑
j=1

exp(itDj),

ψn(t) =
1

n

n∑

k=1

exp(it∆k)

of these samples. In the spirit of a class of tests for univariate and multivariate nor-

mality (Epps and Pulley (1983), Henze and Wagner (1997)), the test statistic is

Um,n,a =

∫ ∞

−∞

∣∣ϕm(t)− ψn(t)
∣∣2 exp(−at2) dt,(2.2)

where a > 0 is a constant the role of which will be discussed later. It is readily seen

that, as m,n →∞,

Um,n,a −→
∫ ∞

−∞
|ϕ(t)− ψ(t)|2 exp(−at2) dt
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almost surely, where ϕ(t) = E exp(it‖X̃‖2) and ψ(t) = E exp(it‖Ỹ ‖2). Thus, rejecting

H0 for large values of Um,n,a should give a reasonable test of H0.

Using

∫ ∞

−∞
cos(tc) exp(−at2)dt =

(π

a

)1/2

exp

(
− c2

4a

)
,

some algebra yields the alternative representation

Um,n,a =

√
π

a

[
1

m2

m∑

j,k=1

exp

(
− 1

4a
(Dj −Dk)

2

)
(2.3)

+
1

n2

n∑

j,k=1

exp

(
− 1

4a
(∆j −∆k)

2

)

− 2

mn

m∑
j=1

n∑

k=1

exp

(
− 1

4a
(Dj −∆k)

2

)]
.

This shows that a computer routine implementing Um,n,a is readily available. Moreover,

since Dj = (Xj − X̄m)′S−1
m (Xj − X̄m) and ∆k = (Yk − Ȳn)′T−1

n (Yk − Ȳn), not even the

computation of the square roots of S−1
m and T−1

n is needed.

For later purposes, we note that, by analogy with (2.2), Um,n,a may be written in

the form

Um,n,a =

∫ ∞

−∞
(ϕ∗m(t)− ψ∗n(t))2 exp(−at2) dt,(2.4)

where

ϕ∗m(t) =
1

m

m∑
j=1

[cos(tDj) + sin(tDj)] ,(2.5)

ψ∗n(t) =
1

n

n∑

k=1

[cos(t∆k) + sin(t∆k)](2.6)

are the empirical cosine-sine-transforms of D1, . . . , Dm and ∆1, . . . , ∆n, respectively.

Representation (2.4) follows readily from symmetry arguments and the trigonometric

formula cos(u− v) = cos u cos v + sin u sin v.

An important property of Um,n,a is its invariance with repect to affine transforma-

tions Xj 7→ BXj + β, Yk 7→ CYk + γ (B, C ∈ Glg; β, γ ∈ Rd) of the data. Restriction
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to affine invariant test statistics is crucial since the testing problem (1.1) is affine in-

variant in the sense that H0 holds for X and Y if, and only if, it holds for BX + β

and CY + γ for any choice of B, C ∈ Gld and β, γ ∈ Rd. Consequently, a decision in

favor or against H0 should be the same for Xj, Yk (1 ≤ j ≤ m, 1 ≤ k ≤ n) and the

transformed data BXj + β, CYk + γ (1 ≤ j ≤ m, 1 ≤ k ≤ n), a goal that is achieved

by affine invariant test statistics. Since Um,n,a is affine invariant, its null distribution

does not depend on the matrix A and the vector b figuring in (1.1). Under H0 we thus

may assume without loss of generality that X and Y have the same distribution.

In what follows, we discuss the role of the weight function exp(−at2) figuring in (2.2).

Our first result shows that Um,n,a has an alternative representation in terms of an

L2-distance between two nonparametric density estimators.

Proposition 2.1 We have

Um,n,a = 2π

∫ ∞

−∞

(
f̂m(x)− ĝn(x)

)2

dx,

where

f̂m(x) =
1

m

m∑
j=1

1√
2πa

exp

(
−(x−Dj)

2

2a

)
,

ĝn(x) =
1

n

n∑

k=1

1√
2πa

exp

(
−(x−∆j)

2

2a

)
.

Proof. Let

ũ(x) =

∫ ∞

−∞
exp(itx)u(t) dt

be the Fourier transform of a square integrable complex-valued function u defined on

R. By Plancherel’s theorem, we have
∫ ∞

−∞
|ũ(x)|2 dx = 2π

∫ ∞

−∞
|u(t)|2 dt.(2.7)

Notice that Um,n,a =
∫∞
−∞ |ũ(x)|2dx, where

ũ(x) =
1

m

m∑
j=1

exp
(
itDj − a

2
t2

)
− 1

n

n∑

k=1

exp
(
it∆k − a

2
t2

)
.
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Write Pm for the empirical distribution of D1, . . . , Dm, and let Qn be the empirical

distribution of ∆1, . . . , ∆n. The function m−1
∑m

j=1 exp(itDj − at2/2) is the Fourier

transform of the convolution Pm ? N (0, a), and n−1
∑n

k=1 exp(it∆j − at2/2) is the

Fourier transform of the convolution Qn ?N (0, a). Since Pm ?N (0, a) and Qn ?N (0, a)

have densities f̂m(x) and ĝn(x), respectively, the assertion follows from (2.7).

Since f̂m(x) and ĝn(x) are nonparametric kernel density estimators with Gaussian ker-

nel (2π)−1/2 exp(−t2/2) and bandwidth
√

a, applied to D1, . . . , Dm and ∆1, . . . , ∆n,

repectively, the role of a in the definition of Um,n,a ist that of a smoothing parameter.

From the viewpoint of density estimation, the bandwidth must tend to zero as the

sample size increases in order to obtain consistent estimates. However, we keep a fixed

in what follows in order to be able to discriminate between alternatives that approach

each other at the rate 1/
√

m + n, where m and n are assumed to be of the same order

of magnitude (as for this point, see Anderson, Hall, and Titterington (1994)).

Our next result shows that, in the limit as a →∞ (according to the above discussion,

this case corresponds to ’infinite smoothing’), a rescaled version of Um,n,a approaches

a limit statistic that may be of independent interest.

Proposition 2.2 We have

lim
a→∞

16a5/2

3
√

π
Um,n,a =

(
1

m

m∑
j=1

D2
j −

1

n

n∑

k=1

∆2
k

)2

.(2.8)

Proof. By expanding the exponential terms in (2.3), we have
√

a

π
Um,n,a =

1

m2

m∑

j,k=1

[
1− 1

4a
(Dj −Dk)

2 +
1

32a2
(Dj −Dk)

4

]

+
1

n2

n∑

j,k=1

[
1− 1

4a
(∆j −∆k)

2 +
1

32a2
(∆j −∆k)

4

]

− 2

mn

m∑
j=1

n∑

k=1

[
1− 1

4a
(Dj−∆k)

2 +
1

32a2
(Dj−∆k)

4

]
+O

(
1

a3

)

as a →∞. Since
∑m

j=1 Dj = md and
∑n

k=1 ∆k = nd, the result follows by tedious but

straightforward algebra.
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Notice that the right-hand side of (2.8) is an estimator of (E‖X̃‖4 − E‖Ỹ ‖4)2.

Thus, for large a, Um,n,a is essentially a measure of discrepancy between the fourth

moments of the norm of the radial part of the underlying standardized distributions.

3 Asymptotic distribution theory

In this section, we study the limit distribution of Um,n,a under H0. Since Um,n,a is

affine invariant, we assume without loss of generality that X ∼ Y , and that X has a

spherically symmetric distribution satisfying EX = 0 and EXX ′ = Id, where Id is the

unit matrix of order d.

A convenient setting for asymptotics is the separable Hilbert space L2 of measur-

able real-valued functions on R that are square-integrable with respect to the measure

exp(−at2)dt. The norm in L2 will be denoted by

‖u‖L2 =

(∫ ∞

−∞
u2(t) exp(−at2) dt

)1/2

.

The notation
D−→ means weak convergence of random elements of L2 and random

variables, and OP (1) stands for a sequence of random variables that is bounded in

probability. Likewise, oP (1) denotes a sequence of random variables that converges to

0 in probability. The first result of this section is as follows.

Theorem 3.1 Let X have a spherically symmetric distribution satisfying EXX ′ = Id

and E‖X‖4 < ∞, and put

ϕ∗(t) = E
[
cos(t‖X‖2) + sin(t‖X‖2)

]
,(3.1)

ρ(t) = E
[‖X‖2

(
sin(t‖X‖2)− cos(t‖X‖2)

)]
,

g(t, x) = cos(t‖x‖2) + sin(t‖x‖2)− ϕ∗(t) + tρ(t)

(
1

d
‖x‖2 − 1

)
,(3.2)

t ∈ R. If Y ∼ X, there exists a centered Gaussian processW(·) on L2 having covariance

kernel

K(s, t) = E[g(s,X)g(t,X)](3.3)

such that, as m,n →∞,

mn

m + n
Um,n,a

D−→
∫ ∞

−∞
W2(t) exp(−at2) dt.(3.4)
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Proof. Put

Um(t) =
√

m (ϕ∗m(t)− ϕ∗(t)) ,

Vn(t) =
√

n (ψ∗n(t)− ϕ∗(t)) ,

where ϕ∗m, ψ∗n and ϕ∗ are defined in (2.5), (2.6) and (3.1), respectively. From (2.4), we

then have

mn

m + n
Um,n,a =

∫ ∞

−∞

(√
n

m + n
Um(t)−

√
m

m + n
Vn(t)

)2

exp(−at2)dt.

We will prove

Um(·) D−→ U(·) as m →∞(3.5)

and

Vn(·) D−→ V(·) as n →∞(3.6)

in L2, where U(·) and V(·) are independent centered Gaussian processes on L2 having

covariance kernel K(s, t). Since, for any choice of κ, λ ∈ R satisfying κ2 + λ2 = 1, the

process κU(·) + λV(·) is centered Gaussian with covariance kernel K(s, t), it follows

from (3.5) and (3.6) that

√
n

m + n
Um(·) −

√
m

m + n
Vn(·) D−→ W(·),

where W(·) has the properties stated in Theorem 3.1. Assertion (3.4) is then a conse-

quence of the continuous mapping theorem.

Clearly, given their existence, the processes U(·) and V(·) are independent because

the two samples X1, . . . , Xm and Y1, . . . , Yn have this property. Moreover, since (3.5)

and (3.6) are equivalent, only (3.5) needs to be proved.

To show (3.5), notice that Um(t) is a sum of functions of the random variables

Dj = ‖X̃j‖2 = (Xj − X̄m)′S−1
m (Xj − X̄m) (1 ≤ j ≤ m),

which are not independent. We will decompose Um(t) according to

Um(t) = U∗m(t) + Rm(t),(3.7)
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where

U∗m(t) =
1√
m

m∑
j=1

g(t,Xj),

‖Rm‖L2 = oP (1) as m → ∞, and g(t, x) is defined in (3.2). Since
√

m U∗m(·) is a

sum of i.i.d. centered L2-valued random elements, a standard Hilbert space central

limit theorem yields U∗m(·) D−→ U(·), where U(·) has the properties stated above. Since

‖Rm‖L2 = oP (1), (3.5) then follows from (3.7) and Slutzky’s lemma.

To prove (3.7), start with

Dj = ‖Xj‖2 + εj,

where

εj = X ′
j(S

−1
m − Id)Xj − 2X ′

jS
−1
m X̄m + X̄ ′

mS−1
m X̄m.(3.8)

A Taylor expansion gives

cos(tDj) = cos(t‖Xj‖2)− t εj sin(t‖Xj‖2) +
1

2
t2 ε2

j ξj,(3.9)

sin(tDj) = sin(t‖Xj‖2) + t εj cos(t‖Xj‖2) +
1

2
t2 ε2

j ηj,(3.10)

where |ξj| ≤ 1 and |ηj| ≤ 1. We first assert

1√
m

∣∣∣∣
m∑

j=1

ε2
j(ξj + ηj)

∣∣∣∣ = oP (1),(3.11)

thus showing that the contribution of the rightmost terms in (3.9) and (3.10) is asymp-

totically negligible. To this end, notice that

1√
m

∣∣∣∣
m∑

j=1

ε2
j(ξj + ηj)

∣∣∣∣ ≤ 2√
m

m∑
j=1

ε2
j

≤ 24√
m

m∑
j=1

(
X ′

jS
−1
m X̄m

)2
+

6√
m

m∑
j=1

(
X ′

j(S
−1
m − Id)Xj

)2

+ 6
√

m
(
X̄ ′

mS−1
m X̄m

)2
.
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Now, the last term is oP (1) since S−1
m = OP (1) and

√
mX̄m = OP (1). Using tr(AB) =

tr(BA), where AB and BA are square matrices and tr(·) denotes trace, we obtain

1√
m

m∑
j=1

(
X ′

jS
−1
m X̄m

)2
=

1√
m

m∑
j=1

tr
(
X ′

jS
−1
m X̄mX̄ ′

mS−1
m Xj

)

=
1√
m

tr

(
S−1

m

√
mX̄m

√
mX̄ ′

mS−1
m

1

m

m∑
j=1

XjX
′
j

)
,

which is oP (1) since m−1
∑m

j=1 XjX
′
j = OP (1). Finally,

1√
m

m∑
j=1

(
X ′

j(S
−1
m − Id)Xj

)2 ≤ 1√
m

m∑
j=1

‖Xj‖2‖(S−1
m − Id)Xj‖2

=
1√
m

tr

[
(√

m(S−1
m − Id)

)2 · 1

m

m∑
j=1

XjX
′
j‖Xj‖2

]
.

Since, in view of E‖X‖4 < ∞, both factors within squared brackets are OP (1), (3.11)

is proved.

We next approximate m−1/2
∑m

j=1 εj sin(t‖Xj‖2), up to terms that are asymptoti-

cally negligible, by a sum of i.i.d. random variables. To this end, notice that

1√
m

m∑
j=1

εj sin(t‖Xj‖2) =
1√
m

m∑
j=1

[
X ′

j(S
−1
m − Id)Xj

]
sin(t‖Xj‖2)

− 2√
m

m∑
j=1

X ′
jS

−1
m X̄m sin(t‖Xj‖2)

+
1√
m

m∑
j=1

X̄ ′
mS−1

m X̄m sin(t‖Xj‖2)

= Zm,1(t) − 2Zm,2(t) + Zm,3(t) (say).

Putting Bm =
√

m(S−1
m − Id), A(t) = E[XX ′ sin(t‖X‖2)] and

∆m(t) =
1

m

m∑
j=1

XjX
′
j sin(t‖Xj‖2) − A(t),

we have

Zm,1(t) = tr(BmA(t)) + tr(Bm∆m(t)).(3.12)

Letting Bm = (Bm,k,l)1≤k,l≤d and ∆m(t) = (∆m,k,l(t))1≤k,l≤d, and using the Cauchy-

Schwarz inequality, it follows that

∣∣tr(Bm∆m(t))
∣∣ ≤

(
d∑

k,l=1

B2
m,k,l

)1/2

·
(

d∑

k,l=1

∆2
m,k,l(t)

)1/2

(3.13)
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and thus

∫ ∞

−∞
(tr(Bm∆m(t)))2 exp(−at2)dt ≤ OP (1)

∫ ∞

−∞

d∑

k,l=1

∆2
m,k,l(t) exp(−at2)dt,

since the first factor on the right-hand side of (3.13) is OP (1). Use Fubini’s theorem

to conclude that the expectation of the last integral converges to zero as m → ∞.

Consequently, ‖tr(Bm∆m(·)‖L2 = o(1) which shows that the second term on the right-

hand side of (3.12) is asymptotically negligible. In view of

√
m(S−1

m − Id) = − 1√
m

m∑
j=1

(XjX
′
j − Id) + OP (m−1/2),

it follows readily that

Zm,1(t) = − 1√
m

m∑
j=1

tr
(
(XjX

′
j − Id)A(t)

)
+ Rm,1(t)

for some L2-valued random element Rm,1(·) satisfying ‖Rm,1(·)‖L2 = o(1). Using The-

orem 3.3 of Fang, Kotz and Ng (1990) together with the decomposition X ∼ U · ‖X‖,
where U and ‖X‖ are independent, and the distributions of U is uniform over the

surface of the unit d-sphere, we obtain A(t) = d−1E[‖X‖2 sin(t‖X‖2)] Id and thus

Zm,1(t) = − 1√
m

m∑
j=1

E
[‖X‖2 sin(t‖X‖2)

] (
d−1‖Xj‖2 − 1

)
+ oP (1).

As for Zm,2(t), we have

Zm,2(t) =

(
1

m

m∑
j=1

Xj sin(t‖Xj‖2)

)′√
m

(
S−1

m − Id

)
X̄m

+
(√

mX̄m

)′ 1

m

m∑
j=1

Xj sin(t‖Xj‖2).

Use the fact that E[X sin(t‖X‖2)] = 0 by spherical symmetry and thus m−1
∑m

j=1 Xj

sin(t‖Xj‖2) = oP (1) to conclude ‖Zm,2(·)‖L2 = o(1). Since also ‖Zm,3(·)‖L2 = o(1), it

follows that

1√
m

m∑
j=1

εj sin(t‖Xj‖2) = − 1√
m

m∑
j=1

E
[‖X‖2 sin(t‖X‖2)

](‖Xj‖2

d
− 1

)
+oP (1).
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Likewise, we have

1√
m

m∑
j=1

εj cos(t‖Xj‖2) = − 1√
m

m∑
j=1

E
[‖X‖2 cos(t‖X‖2)

](‖Xj‖2

d
− 1

)
+oP (1),

and (3.7) follows by straightforward algebra.

4 A resampling procedure

To perform the test based on Um,n,a, we suggest the use of the following resampling

procedure. Pool the values D1, . . . , Dm, ∆1, . . . , ∆n into a sample of size N = m + n

and draw a random sample D∗ = {D∗
1, . . . , D

∗
m, ∆∗

1, . . . , ∆
∗
n} with replacement from the

combined sample.

Independently of D∗, generate independent random vectors V1, . . . , VN , uniformly

distributed over the surface of the unit d-sphere, and put

ZN,j = Vj ·
√

D∗
j , j = 1, . . . , m,

ZN,m+k = Vm+k ·
√

∆∗
k, k = 1, . . . , n.

Note that, conditionally on D1, . . . , Dm, ∆1, . . . , ∆n, the random vectors ZN,1, . . . , ZN,N

have the same spherically symmetric distribution PN and distribution function FN

(say). The (conditional) distribution function of ‖ZN,1‖2 is the empirical distribution

function of D1, . . . , Dm, ∆1, . . . , ∆n. Writing again Z̃N,j for the standardization of ZN,j,

let DN,j = ‖Z̃N,j‖2, ∆N,k = ‖Z̃N,m+k‖2 (1 ≤ j ≤ m, 1 ≤ k ≤ n).

Putting UR
m,n,a = Um,n,a(DN,1, . . . , DN,m, ∆N,1, . . . , ∆N,n), we have

mn

m + n
UR

m,n,a =

∫ ∞

−∞

(√
n

m + n
UN,m(t)−

√
m

m + n
VN,n(t)

)2

exp(−at2)dt,

where

UN,m(t) =
√

m (ϕN,m(t)− ϕN(t)) , ϕN,m(t) =
1

m

m∑
j=1

[cos(tDN,j) + sin(tDN,j)] ,

VN,n(t) =
√

n (ψN,n(t)− ϕN(t)) , ψN,n(t) =
1

n

n∑

k=1

[cos(t∆N,k) + sin(t∆N,k)] ,
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and

ϕN(t) =

∫

Rd

(
cos(t‖z‖2) + sin(t‖z‖2)

)
dFN(z).(4.1)

To prove the conditional convergence in distribution of the resampling process UN,m to

the Gaussian process W figuring in Theorem 3.1, we use the following Hilbert space

Central Limit Theorem of Kundu et al. (Kundu, Majumdar, and Mukherjee (2000),

Theorem 1.1). Therein, H denotes a real separable infinite-dimensional Hilbert space.

Lemma 4.1 Let {ek : k ≥ 0} be an orthonormal basis of H. For each N ≥ 1, let

WN1, WN2, . . . ,WNN be a finite sequence of independent H-valued random elements

with zero means and finite second moments, and put WN =
∑N

j=1 WNj. Let CN be the

covariance operator of WN . Assume that the following conditions hold:

a) limN→∞〈CNek, el〉 = akl (say) exists for all k ≥ 0 and l ≥ 0.

b) limN→∞
∑∞

k=0〈CNek, ek〉 =
∑∞

k=0 akk < ∞.

c) limN→∞ LN(ε, ek) = 0 for every ε > 0 and every k ≥ 0, where, for b ∈ H,

LN(ε, b) =
∑N

j=1 E (〈WNj, b〉2 1{|〈WNj, b〉| > ε}).

Then WN
D−→ N (0, C) in H, where N (0, C) is a centered Gaussian random element

of H with covariance operator C characterized by 〈Ch, el〉 =
∑∞

j=0〈h, ej〉ajl, for every

l ≥ 0.

The main result of this section is as follows.

Theorem 4.2 For almost all sample sequences X1(ω), X2(ω), . . . , Y1(ω), Y2(ω), . . ., we

have under H0

mn

m + n
UR

m,n,a
D−→

∫ ∞

−∞
W2(t) exp(−at2) dt (m,n →∞)

in L2, where we use the notation and assume the conditions of Theorem 3.1.

Proof. Define

ρN(t) = E
[‖ZN,1‖2

(
sin(t‖ZN,1‖2)− cos(t‖ZN,1‖2)

)]
,

gN(t, x) = cos(t‖x‖2) + sin(t‖x‖2)− ϕN(t) + tρN(t)

(
1

d
‖x‖2 − 1

)
,
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and

U∗N,m(t) =
1√
m

m∑
j=1

gN(t, ZN,j).

We show

UN,m(t) = U∗N,m(t) + RN,m(t),(4.2)

where ‖RN,m‖L2 = oPN
(1) as N → ∞ and U∗N,m(·) D−→ U(·). Then, a reasoning

similar as in the proof of Theorem 3.1 yields

UN,m(·) D−→ U(·) (m →∞), VN,n(·) D−→ V(·) (n →∞),

and the assertion of the theorem.

To show (4.2), let D1 be a countable dense subset of R, and let Ω1 be the set of all

ω ∈ Ω for which X̄m → 0, Sm → Id, m−1
∑m

j=1 ‖Xj‖4 → E‖X‖4, m− 1
2 max1≤j≤m ‖ZN,j‖2

→ 0, m−1
∑m

j=1 cos(t‖Xj‖2) → E[cos(t‖X‖2)] and

m−1
∑m

j=1 sin(t‖Xj‖2) → E[sin(t‖X‖2)] as m → ∞ for each t ∈ D1. Clearly, Ω1

has measure one, and it is readily seen that, for each fixed ω ∈ Ω1,

1

m

m∑
j=1

cos(t‖Xj‖2) → E[cos(t‖X‖2)],
1

m

m∑
j=1

sin(t‖Xj‖2) → E[sin(t‖X‖2)]

for each t ∈ R. Likewise, let Ω2 be the set (of measure one) of all ω ∈ Ω for

which Ȳn → 0, Tn → Id, n−1
∑n

k=1 ‖Yk‖4 → E‖Y ‖4, n−
1
2 max1≤k≤n ‖ZN,k‖2 → 0,

n−1
∑n

k=1 cos(t‖Yk‖2) → E[cos(t‖Y ‖2)] and n−1
∑n

k=1 sin(t‖Yk‖2) → E[sin(t‖Y ‖2)] for

each t ∈ R. Putting Ω0 = Ω1 ∩ Ω2, the following reasoning will be done for a fixed

ω ∈ Ω0.

As a first step, we prove that limN→∞ KN(s, t) = K(s, t) pointwise on R2 for

ω ∈ Ω0, where KN(s, t) = E[gN(s, ZN,1) gN(t, ZN,1)]. Using the Taylor expansion

cos(tDj) = cos(t‖Xj‖2)− t εjξj, sin(tDj) = sin(t‖Xj‖2) + t εjηj,

14



where |ξj| ≤ 1, |ηj| ≤ 1 and εj is defined in (3.8), we obtain

ϕN(t) = E
[
cos(t‖ZN,1‖2) + sin(t‖ZN,1‖2)

]

= E [cos(tD∗
1) + sin(tD∗

1)]

= N−1

(
m∑

j=1

(cos(tDj) + sin(tDj)) +
n∑

k=1

(cos(t∆k) + sin(t∆k))

)

−→ E[cos(t‖X‖2) + sin(t‖X‖2)] = ϕ∗(t)

as N →∞ for ω ∈ Ω0, where ϕN and ϕ∗ are defined in (3.1) and (4.1), respectively. Us-

ing similar arguments, we obtain limN→∞ ρN(t) = ρ(t) and, finally, limN→∞ KN(s, t) =

K(s, t) for ω ∈ Ω0.

Next, we verify conditions a) - c) of Lemma 4.1 for WN1, . . . , WNN , where WNj(t) =

gN(t, ZN,j)/
√

m, 1 ≤ j ≤ m and WNj(t) = 0, m + 1 ≤ j ≤ N . To this end, let CN be

the covariance operator of WN =
∑N

j=1 WNj (= U∗N,m) with kernel E [WN(s)WN(t)] =

KN(s, t).

As complete orthonormal set {ek} in L2, one can choose products of univariate

Hermite polynomials (see, e.g., Rayner and Best (1989), p. 100). Since, for ω ∈ Ω0 and

sufficiently large N , |KN(s, t)| ≤ c1|st| for some constant c1, dominated convergence

yields

lim
N→∞

〈CNek, el〉 = lim
N→∞

∫ ∫
KN(s, t)ek(s)el(t)Pa(ds)Pa(dt)

=

∫ ∫
K(s, t)ek(s)el(t)Pa(ds)Pa(dt)

= 〈Cek, el〉,

where Pa(dt) is shorthand for exp(−a‖t‖2)dt, and C is the covariance operator of W .

Here and in what follows, an unspecified integral denotes integration over the whole

space R. Setting akl = 〈Cek, el〉, this proves condition a) of Lemma 4.1.

To verify condition b) of Lemma 4.1, use monotone convergence, Parseval’s equal-
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ity and dominated convergence to show

lim
N→∞

∞∑

k=0

〈CNek, ek〉 = lim
N→∞

∞∑

k=0

E〈ek,WN〉2

= lim
N→∞

E‖WN‖2
L2

=

∫
lim

N→∞
KN(t, t)Pa(dt)

=

∫
K(t, t)Pa(dt)

= E‖W‖2
L2

=
∞∑

k=0

akk < ∞.

To prove condition c) of Lemma 4.1, notice that

|〈WNj, ek〉| = m− 1
2

∣∣∣∣
∫

gN(t, ZN,j)ek(t)Pa(dt)

∣∣∣∣

≤ m− 1
2

∫
|gN(t, ZN,j)ek(t)|Pa(dt)

≤ m− 1
2

(∫
|gN(t, ZN,j)|2 Pa(dt)

)1/2

‖ek‖L2 .

Using |ρN(t)| ≤ 2E‖ZN,j‖2 = 2(
∑m

j=1 Dj +
∑n

k=1 ∆k)/N → 2E‖X‖2 as m,n →∞ for

ω ∈ Ω0, and |gN(t, ZN,j)| ≤ 4 + |t| |ρN(t)|max1≤j≤m ‖ZN,j‖2, we obtain

|〈WNj, ek〉| ≤ m− 1
2

(
c2 + c3E‖ZN,j‖2 max

1≤j≤m
‖ZN,j‖2

)

for some positive constants c2, c3, which converges to zero for ω ∈ Ω0. Hence

E
(〈WNj, ek〉2 1{|〈WNj, ek〉| > ε}) = 0

for sufficiently large N , and thus limN→∞ LN(ε, ek) = 0. By Lemma 4.1, WN ⇒
N (0, C) in L2.

Finally, ‖Rm‖L2 = oPN
(1) as N →∞ can be proved as in Theorem 3.1.

5 Simulation results

To assess the actual level of the tests for affine equivalence based on Um,n,a, a simulation

study was performed for sample sizes N = 50 (m = n = 25) and N = 100 (m = n = 50)
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and dimensions d = 2 and d = 5. Besides Um,n,0.5, Um,n,1, Um,n,2 and Um,n,5, we included

the limit statistic of Proposition 2.2. We used the following distributions:

• MN1: the d-variate standard Normal distribution N (0, Id)

• MN2: the d-variate Normal distribution N (0, Σ1
d), where Σ1

2 = diag(2, 4) and

Σ1
5 = diag(2, 2, 2, 4, 4);

• MN3: a d-variate normal distribution with mean zero, unit variances and equal

correlation ρ = 0.5 between components; the covariance matrix is denoted by Σ2
d;

• MT1: the multivariate t distribution with 10 degrees of freedom td(10; 0, Id),

generated as U/
√

V , where U and V are independent, and U ∼ N (0, Id), V ∼
χ2

10/10;

• MT2,MT3: multivariate t distribution td(10; 0, Σ1
d) and td(5; 0, Σ2

d);

• MT4: the multivariate t distribution with 5 degrees of freedom td(5; 0, Id)

• MP1: the multivariate Pearson Type II distribution with shape parameter -1/2

• MP2: the multivariate Pearson Type II distribution with shape parameter 0

• MP3: the multivariate Pearson Type II distribution with shape parameter 1

Using these distributions, we simulated data from the following H0 cases:

• X ∼ MN1 and Y ∼ MNk (k = 1, 2, 3);

• X ∼ MT1 and Y ∼ MTk (k = 1, 2, 3);

• X ∼ MT4 and Y ∼ MT4;

• X ∼ MPk and Y ∼ MPk (k = 1, 2, 3).

For each fixed combination of N , d and underlying distributions as given above,

the following procedure was replicated 5 000 times:

1. generate random samples x1, . . . , xm and y1, . . . , yn
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2. compute Dj (1 ≤ j ≤ m), ∆k (1 ≤ k ≤ n) and Um,n,a(D1, . . . , Dm, ∆1, . . . , ∆n)

3. draw 500 samples D∗
1, . . . , D

∗
m, ∆∗

1, . . . , ∆
∗
n with replacement from the pooled sam-

ple D1, . . . , Dm, ∆1, . . . , ∆n; for each sample, generate random vectors V1, . . . , VN ,

uniformly distributed over the surface of the unit d-sphere, and put

ZN,j = Vj ·
√

D∗
j , j = 1, . . . , m,

ZN,m+k = Vm+k ·
√

∆∗
k, k = 1, . . . , n

4. calculate the corresponding 500 realizations UR
m,n,a(l), 1 ≤ l ≤ 500, (say) of the

resampling statistic UR
m,n,a

5. reject H0 if Um,n,a, computed on D1, . . . , Dm, ∆1, . . . , ∆n, exceeds the empirical

95%-quantile of UR
m,n,a(l), 1 ≤ l ≤ 500.

Table 1 shows the percentage of the number of rejections of H0 for sample sizes n =

m = 25 and n = m = 50 and dimensions 2 and 5. Table 2 shows the percentage of

the number of rejections of some H0 cases for large sample size (n = m = 100 and

n = m = 200) and dimension 2.

Notice that, for a = 1 and a = 2, the observed level is fairly close to the nominal

level 5% even for samples of size n = m = 25; for the cases a = 5.0 and a = ∞, how-

ever, the actual level is sometimes far below or above the nominal level. Particularly

for very long tailed distributions, the observed level of significance for a = ∞ seem

to approach its nominal value 5% only very slowly with increasing sample size, as the

simulation results in Table 2 indicate.

To assess the power of the different tests, we simulated data from the following

distributions:

• MN1 against MTk (k = 1, 4);

• MN1 against MPk (k = 1, 2, 3);

• MT1 against MT2;
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a = 0.5 a = 1.0 a = 2.0 a = 5.0 a = ∞
X ∼MN 1, n = m = 25 d = 2 4.4 5.2 5.8 6.1 5.9
Y ∼MN 1 d = 5 5.4 5.8 6.3 7.5 9.5

n = m = 50 d = 2 4.4 4.7 5.3 5.4 5.0
d = 5 5.4 5.0 6.0 6.1 7.8

X ∼MN 1, n = m = 25 d = 2 4.9 5.3 5.3 6.5 6.7
Y ∼MN 2 d = 5 5.6 5.4 6.4 7.4 9.1

n = m = 50 d = 2 4.0 5.3 4.9 5.7 5.5
d = 5 4.5 5.2 6.3 6.6 8.3

X ∼MN 1, n = m = 25 d = 2 5.2 5.4 5.6 6.3 6.5
Y ∼MN 3 d = 5 5.7 6.1 6.3 7.2 8.5

n = m = 50 d = 2 4.6 5.1 5.2 5.1 5.1
d = 5 5.4 5.6 5.8 6.7 7.9

X ∼MT 1, n = m = 25 d = 2 5.9 6.1 6.9 8.1 12.2
Y ∼MT 1 d = 5 5.6 6.0 7.3 8.8 16.8

n = m = 50 d = 2 5.2 5.6 5.8 7.1 11.2
d = 5 5.8 5.7 6.0 6.9 18.1

X ∼MT 1, n = m = 25 d = 2 5.5 5.7 6.7 8.0 12.4
Y ∼MT 2 d = 5 5.1 6.9 7.6 9.4 17.0

n = m = 50 d = 2 4.6 5.8 6.0 7.1 11.4
d = 5 5.4 5.3 6.5 7.6 18.7

X ∼MT 1, n = m = 25 d = 2 5.8 6.2 6.9 7.9 12.0
Y ∼MT 3 d = 5 5.9 6.3 6.6 9.8 17.3

n = m = 50 d = 2 5.2 5.7 6.0 7.2 11.6
d = 5 5.3 5.6 5.6 7.2 19.1

X ∼MT 4, n = m = 25 d = 2 6.4 7.4 8.1 10.2 21.3
Y ∼MT 4 d = 5 5.8 7.0 8.0 11.1 25.3

n = m = 50 d = 2 6.4 6.9 7.4 9.0 22.5
d = 5 6.3 7.0 7.1 8.4 31.2

X ∼MP1, n = m = 25 d = 2 7.6 6.3 4.4 3.1 1.4
Y ∼MP1 d = 5 5.2 4.7 3.3 2.9 1.5

n = m = 50 d = 2 9.2 7.1 5.9 4.4 2.5
d = 5 7.0 5.4 4.6 3.5 1.7

X ∼MP2, n = m = 25 d = 2 5.4 5.6 4.5 2.9 1.3
Y ∼MP2 d = 5 5.8 4.9 4.3 3.3 2.3

n = m = 50 d = 2 6.5 5.4 4.6 4.2 2.8
d = 5 5.8 5.4 5.2 3.9 2.5

X ∼MP3, n = m = 25 d = 2 4.7 4.5 4.4 3.9 1.9
Y ∼MP3 d = 5 5.0 5.2 4.5 4.1 3.2

n = m = 50 d = 2 5.0 5.6 5.4 4.3 2.9
d = 5 5.4 5.3 5.5 4.8 3.0

Table 1: Estimated level for the bootstrap test (nominal level: 5%)
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a = 0.5 a = 1.0 a = 2.0 a = 5.0 a = ∞
X ∼MN 1, n = m = 100 4.7 5.2 4.8 5.3 5.1
Y ∼MN 1 n = m = 200 4.9 4.9 4.9 4.8 4.9
X ∼MT 1, n = m = 100 4.8 5.3 5.9 6.6 9.3
Y ∼MT 1 n = m = 200 5.0 5.0 5.5 6.0 7.3
X ∼MT 4, n = m = 100 6.5 6.5 7.5 7.6 19.8
Y ∼MT 4 n = m = 200 6.2 6.4 6.2 7.1 15.3
X ∼MP1, n = m = 100 8.6 6.3 6.0 4.8 3.9
Y ∼MP1 n = m = 200 6.6 6.4 5.1 4.7 4.9
X ∼MP2, n = m = 100 6.7 6.0 5.7 4.6 4.2
Y ∼MP2 n = m = 200 5.6 5.9 5.4 4.7 3.9
X ∼MP3, n = m = 100 5.6 5.1 4.9 5.0 4.1
Y ∼MP3 n = m = 200 5.4 5.4 5.2 4.5 4.6

Table 2: Estimated level for d = 2 and large sample size (nominal level: 5%)

• MTk against MPl (k = 1, 4; l = 1, 2, 3);

• MPk against MPl (k, l = 1, 2, 3; k < l);

Table 3 and Table 4 show the percentages of rejection of H0. The main conclusions

that can be drawn from the power study are the following:

1. In all cases, power increases with the sample size.

2. For the alternatives MN 1 against MT 1, MN 1 against MT 4 and MT 1 against

MT 4, power is higher for d = 5 than for d = 2. In all other cases, power decreases

with increasing dimension.

3. Power of MN 1 against MT 4 is higher than for MN 1 against MT 1. Power of

MN 1, MT 1 and MT 4 against MPk increases with k.

4. In most cases, power depends heavily on the weight parameter a. Partly, power

increases with increasing values a; in other cases power decreases with a. There-

fore, no test is superior to the other tests in all cases.

5. If nothing is known about the alternative, the tests based on Um,n,1 or Um,n,2 can

be recommended since they maintain their level quite closely; furthermore, they

distribute their power more evenly over the range of alternatives.
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a = 0.5 a = 1.0 a = 2.0 a = 5.0 a = ∞
X ∼MN 1, n = m = 25 d = 2 6.2 7.0 8.0 9.4 12.9
Y ∼MT 1 d = 5 9.2 9.9 12.2 14.7 26.4

n = m = 50 d = 2 8.7 9.7 10.5 11.8 17.1
d = 5 14.4 17.7 21.1 26.5 44.8

X ∼MN 1, n = m = 25 d = 2 11.5 14.1 15.1 18.6 27.3
Y ∼MT 4 d = 5 17.3 21.9 27.2 34.7 54.6

n = m = 50 d = 2 22.3 24.2 27.8 29.9 42.4
d = 5 43.4 49.5 55.3 64.5 85.3

X ∼MN 1, n = m = 25 d = 2 34.0 25.6 18.0 9.9 4.4
Y ∼MP1 d = 5 2.4 1.9 1.6 0.9 0.1

n = m = 50 d = 2 91.3 88.7 86.0 81.2 75.6
d = 5 36.6 35.8 32.9 27.0 11.8

X ∼MN 1, n = m = 25 d = 2 70.2 65.3 60.0 48.5 32.1
Y ∼MP2 d = 5 14.1 13.6 11.7 8.7 3.0

n = m = 50 d = 2 99.4 99.2 98.9 99.4 99.0
d = 5 83.2 85.6 86.0 84.0 70.1

X ∼MN 1, n = m = 25 d = 2 86.8 84.4 81.8 78.2 69.9
Y ∼MP3 d = 5 36.0 38.9 38.4 35.3 22.3

n = m = 50 d = 2 100.0 99.9 99.8 99.8 99.9
d = 5 97.3 98.6 98.8 99.2 98.0

X ∼MT 1, n = m = 25 d = 2 7.8 8.8 9.8 12.4 20.3
Y ∼MT 4 d = 5 8.3 9.3 12.4 15.2 31.2

n = m = 50 d = 2 10.0 10.2 12.4 13.1 24.3
d = 5 13.4 16.0 17.8 20.1 45.2

Table 3: Estimated power for the resampling test
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a = 0.5 a = 1.0 a = 2.0 a = 5.0 a = ∞
X ∼MT 1, n = m = 25 d = 2 33.4 26.4 18.4 10.2 3.8
Y ∼MP1 d = 5 2.4 1.8 1.5 0.7 0.1

n = m = 50 d = 2 91.1 89.0 85.6 81.8 74.9
d = 5 36.0 36.7 36.0 27.4 12.6

X ∼MT 1, n = m = 25 d = 2 71.6 66.4 59.5 48.4 32.6
Y ∼MP2 d = 5 14.3 13.5 12.4 8.9 3.6

n = m = 50 d = 2 99.2 99.1 99.0 99.1 99.0
d = 5 82.7 86.2 85.3 84.5 71.2

X ∼MT 1, n = m = 25 d = 2 86.6 84.7 83.0 79.0 69.3
Y ∼MP3 d = 5 35.3 38.9 37.9 36.5 22.3

n = m = 50 d = 2 99.9 99.8 99.9 99.9 99.9
d = 5 97.5 98.5 98.8 99.0 97.8

X ∼MT 4, n = m = 25 d = 2 34.1 26.6 16.4 9.4 4.3
Y ∼MP1 d = 5 2.6 2.1 1.2 0.7 0.1

n = m = 50 d = 2 91.2 88.6 86.1 80.6 75.4
d = 5 37.1 36.3 33.8 27.3 11.6

X ∼MT 4, n = m = 25 d = 2 70.7 65.2 59.4 48.7 33.5
Y ∼MP2 d = 5 14.7 13.5 12.2 8.8 2.9

n = m = 50 d = 2 99.3 99.3 99.1 98.9 98.9
d = 5 82.2 85.3 85.9 82.6 71.0

X ∼MT 4, n = m = 25 d = 2 85.3 85.1 82.9 79.5 69.7
Y ∼MP3 d = 5 35.7 37.7 39.5 34.7 21.6

n = m = 50 d = 2 99.9 99.9 99.9 99.9 99.9
d = 5 97.6 98.5 98.6 99.1 97.5

X ∼MP1, n = m = 25 d = 2 70.2 65.9 59.2 49.0 33.0
Y ∼MP2 d = 5 14.1 14.9 11.4 8.4 2.8

n = m = 50 d = 2 99.2 99.3 99.2 98.9 99.0
d = 5 82.6 85.5 86.6 84.4 70.8

X ∼MP1, n = m = 25 d = 2 86.6 85.5 83.3 79.5 68.4
Y ∼MP3 d = 5 36.3 37.8 39.7 35.5 19.9

n = m = 50 d = 2 99.8 99.9 99.9 99.9 99.9
d = 5 97.4 98.6 98.9 99.3 98.0

X ∼MP2, n = m = 25 d = 2 87.4 84.4 83.6 78.3 68.1
Y ∼MP3 d = 5 35.1 37.4 39.4 36.2 21.7

n = m = 50 d = 2 99.9 99.9 99.9 100.0 99.9
d = 5 97.6 98.0 98.7 99.2 97.7

Table 4: Estimated power for the resampling test
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