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Abstract

This paper studies tests for exponentiality against the nonparametric classes M
and LM of life distributions introduced by Klar and Müller (2003). The test
statistics are integrals of the difference between the empirical moment generating
function of given data and the moment generating function of a fitted exponential
distribution. We derive the limit distributions of the test statistics in case of a
general underlying distribution and the local approximate Bahadur efficiency of
the procedures against several parametric families of alternatives to exponentiality.
The finite sample behavior of the tests is examined by means of a simulation study.
Finally, the tests under discussion are applied to two data sets, and we discuss the
applicability of the tests under random censorship.
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1 Introduction

Notions of positive aging play an important role in reliability theory, survival analysis

and other fields. Therefore a multitude of classes of distributions describing aging have

been introduced in the literature. Likewise, a large number of tests for exponentiality

against special classes of life distributions have been proposed. The rationale for using
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such tests instead of omnibus tests for exponentiality is well-known: omnibus goodness-

of-fit tests distribute their power over a rather small set of alternatives. Therefore, if one

has some knowledge about the class of distributions which may occur, it is reasonable to

use tests that are well adapted to detect the possible alternatives. On the other hand,

it may be even more dangerous to overly restrict the set of possible alternatives. Hence,

using a fairly large class of aging distributions seems to be a reasonable compromise.

One of the more commonly used classes is the so called L-class. It was introduced by

Klefsjö (1983) as a large class of distributions that contains most of previously known

classes like IFR, DMRL, NBU, NBUE or HNBUE. Tests for exponentiality against the

L-class have been proposed by Chaudhuri (1997), Henze and Klar (2001), Basu and

Mitra (2002) and Klar (2003). However, Klar (2002) gives an example of a distribution

belonging to class L having an infinite third moment and a hazard rate that tends to zero

as time approaches infinity. This example leads to serious doubts whether the L-class

should be considered as a reasonable notion of positive aging.

Therefore, in Klar and Müller (2003), a new so-called M-class of life distributions

is presented. It is defined similarly as the L-class; only the ordering of the Laplace

transforms is replaced by the ordering of the moment generating functions. The M-

class also contains the above listed classes of life distributions. However, it does not have

the property of the L-class mentioned above. In fact, if F is an absolutely continuous

distribution with hazard rate r and mean µ belonging to the M-class, then

lim sup
t→∞

r(t) ≥ 1

µ

(Klar and Müller (2003), Corollary 3.1).

Hence, if the data at hand come from an aging distribution, it seems worthwhile to

consider tests for exponentiality against the M-class. The formal definition of this class

is as follows.

1.1 Definition a) A non-negative random variable X with mean µ = EX > 0 and

distribution function F is said to be in the M-class if

EetX =

∫ ∞

0

etxF (dx) ≤ 1

1− µt
for all 0 ≤ t < 1/µ. (1)

Here, M(t, 1/µ) = (1 − µt)−1 is the moment generating function of an exponential

distribution with mean µ.

b) X is said to be in the L-class, if

Ee−tX =

∫ ∞

0

e−txF (dx) ≤ 1

1 + µt
for all t ≥ 0.
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c) X is said to be in the LM-class, if it is in the L-class and in the M-class.

For the LM-class the inequality in (1) must hold for all −∞ < t < 1/µ.

This paper proposes tests for exponentiality against the classes M and LM. The

procedures are based on the empirical moment generating function

Mn(t) =

∫ ∞

0

etXdFn(x) =
1

n

n∑
i=1

etXi ,

of a random sample X1, . . . , Xn of size n from F , where Fn(x) = n−1
∑n

j=1 1{Xj ≤ x}
is the empirical distribution function.

Let MF (t) = E[etX ] denote the moment generating function of X, and write F (t, λ) =

1 − e−λt, t ≥ 0, for the distribution function of an exponential distribution with mean

µ = 1/λ. In view of (1), it seems natural to base a test of

H0 : F ∈ E = {F (·, λ), λ > 0}

against the alternative

H1 : F ∈M and F /∈ E

or

H2 : F ∈ LM and F /∈ E

on the empirical counterpart Mn(t) − M(t, 1/Xn) of MF (t) − M(t, 1/µ). Here, Xn =

1/n
∑n

i=1 Xi denotes the sample mean.

As a class of test statistics for a test against H1 we propose (Tn,a), where

Tn,a = Xn

∫ a/Xn

0

(
Mn(t)−M(t, 1/Xn)

)
dt, (2)

and a ∈ (0, 1/2) is a positive constant. Since, for t ∈ [0, 1/µ), MF (t) − M(t, 1/µ) is

nonpositive for alternatives from the M-class, H0 is rejected for large negative values of

Tn,a. The statistic Tn,a takes the form

Tn,a =
1

n

n∑
j=1

exp(aYj)− 1

Yj

+ log(1− a), (3)

where Yj = Xj/Xn, 1 ≤ j ≤ n.
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A class of test statistics for a test against H2 is (T̃n,a)0<a<1/2, where

T̃n,a = Xn

∫ a/Xn

−a/Xn

(
Mn(t)−M(t, 1/Xn)

)
dt (4)

=
1

n

n∑
j=1

exp(aYj)− exp(−aYj)

Yj

+ log

(
1− a

1 + a

)
.

1.2 Remark If Yj is zero, then (exp(aYj) − 1)/Yj in (3) has to be replaced by its

limiting value a. Similarly, (exp(aYj)− exp(−aYj))/Yj has to be replaced by 2a. Note

that it is possible that an M-class distribution has a point mass at zero. In contrast,

one has X > 0 almost surely for distributions in class L or LM.

A test statistic based on supt |Mn(t) − M(t, 1/Xn)| has been studied in Csörgő and

Welsh (1989) as omnibus tests for exponentiality. However, there don’t exist simple

computational formulas for this and corresponding one sided statistics, contrary to the

usual supremum statistics based on the empirical distribution function. For this reason,

we prefer integral test statistics as defined above.

The paper is organized as follows. In Section 2 we state the asymptotic behavior of the

statistics Tn,a and T̃n,a as a → 0 and derive their limit distributions in case of a general

underlying distribution. A test for exponentiality rejecting H0 for large negative values of

Tn,a and T̃n,a is seen to be consistent against each fixed alternative from the class M and

LM, respectively. Section 3 is devoted to the calculation of local approximate Bahadur

efficiencies of the proposed tests of exponentiality with respect to some standard families

of alternative distributions from the class LM. In Sections 4, we present the results of a

simulation study. The tests are applied to two data sets in Section 5. In the last section,

we discuss the applicability of the tests under random censorship.

2 The asymptotic distribution of the test statistics

Our first result shows that both Tn,a and T̃n,a, when suitably scaled, approach the same

limit if the parameter a tends to 0.

2.1 Proposition For fixed n, we have

Tn ≡ lim
a→0

(
2Tn,a

a3
+

2

3

)
= lim

a→0

(
T̃n,a

a3
+

2

3

)
=

1

3n

n∑
j=1

Y 2
j .
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Proof: Series expansions yield

lim
a→0

(
Tn,a

a3
+

1

3

)
= lim

a→0

(
1

n

n∑
j=1

exp(aYj)− 1

a3Yj

+
log(1− a)

a3
+

1

3

)

= lim
a→0

(
1

n

n∑
j=1

(
1

a2
+

Yj

2a
+

Y 2
j

6
+ O(a)

)
− 1

a3

(
a +

a2

2
+

a3

3
+ O(a4)

)
+

1

3

)

=
1

n

n∑
j=1

Y 2
j

6
.

The proof of the second assertion is similar.

Up to one-to-one transformations, Tn coincides with Greenwood’s statistic Gn =

1/n2
∑n

j=1 Y 2
j (Greenwood (1946)), with the sample coefficient of variation CVn =

Sn/Xn, where S2
n = n−1

∑n
j=1(Xj − Xn)2 denotes the sample variance, and with the

first nonzero component of Neyman’s smooth test of fit for exponentiality (see, e.g.,

Koziol (1987)); it is asymptotically most powerful for testing H0 against the linear fail-

ure rate distribution (Doksum and Yandell (1984)).

However, since the exponential distribution is not characterized within the LM-class

by the property that V (X) = (EX)2 (Klar and Müller (2003)), a test based on Tn is

not consistent against the M- or LM-class.

It is well-known that
√

n(3Tn/2− 1) has a limiting unit normal distribution under H0.

The next theorem gives the asymptotic distribution of Tn,a for 0 < a < 1/2. Since

the representation of Tn,a in (3) shows that Tn,a is scale-invariant, we assume µ = 1 in

the following. For simplicity, we further assume P (Xj > 0) = 1. Otherwise, expres-

sions like (exp(ax)−1)/x have to be replaced by (exp(ax)−1)/x·I{x > 0}+a·I{x = 0}.

2.2 Theorem Assume X1, . . . , Xn is a random sample of a nonnegative nondegenerate

random variable X with E exp(cX) < ∞ for c < 1. Further, let 0 < a < 1/2. Then, as

n →∞,

√
n

(
1

n

n∑
j=1

exp(aYj)− 1

Yj

− E

(
exp(aX)− 1

X

))
D−→ N (0, σ2),

where

σ2 = E

(
κ1(X − 1) +

exp(aX)− 1

X
− µ1

)2

(5)
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and

κ1 = E

(
(1− aX) exp(aX)− 1

X

)
, µ1 = E

(
exp(aX)− 1

X

)
. (6)

Under H0, we have
√

nTn,a
D−→ N (0, σ2

0), where

σ2
0 = (1− 2a) log(1− 2a)− 2

(
1− a +

a

1− a

)
log(1− a)− 2(log(1− a))2 − a2

(1− a)2
.

(7)

Proof: Notice that

√
n

(
1

n

n∑
j=1

exp(aYj)− 1

Yj

− E

(
exp(aX)− 1

X

))
= Un,1 + Un,2,

where

Un,1 =
1√
n

n∑
j=1

(
exp(aXj)− 1

Xj

− µ1

)
, Un,2 =

1√
n

n∑
j=1

(
exp(aYj)− 1

Yj

− exp(aXj)− 1

Xj

)
.

A Taylor expansion of the function g(t) = (exp(aXj/t)− 1)/(Xj/t) around t = 1 yields

Un,2 =
√

n
(
Xn − 1

) 1

n

n∑
j=1

(1− aXj) exp(aXj)− 1

Xj

+ oP (1)

=
1√
n

n∑
j=1

(Xj − 1) κ1 + Rn + oP (1),

where

Rn =
√

n
(
Xn − 1

)
(

1

n

n∑
j=1

(1− aXj) exp(aXj)− 1

Xj

− κ1

)
.

Since Rn
P−→ 0, we obtain

Un,1 + Un,2 =
1√
n

n∑
j=1

(
exp(aXj)− 1

Xj

− µ1 + (Xj − 1) κ1

)
+ oP (1).

By the Central limit theorem and Slutsky’s lemma, Un,1 + Un,2
D−→ N (0, σ2), where

σ2 is given in (5). The formula (7) for σ2 in case of H0 follows from straightforward

calculations.

As a consequence, the asymptotic distribution of T ∗
n,a =

√
n Tn,a/σ0 is standard normal

under the hypothesis of exponentiality.

The next result states the asymptotic distribution of T̃n,a. The proof follows the reason-

ing given above and will thus be omitted.
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2.3 Theorem Assume X1, . . . , Xn is a random sample of a nonnegative nondegenerate

random variable X with E exp(cX) < ∞ for c < 1. Further, let 0 < a < 1/2. Then, as

n →∞,

√
n

(
1

n

n∑
j=1

exp(aYj)− exp(−aYj)

Yj

− µ2

)
D−→ N (0, σ̃2),

where

µ2 = E

(
exp(aX)− exp(−aX)

X

)
,

κ2 = E

(
(1− aX) exp(aX)− (1 + aX) exp(−aX)

X

)

and

σ̃2 = E

(
κ2(X − 1) +

exp(aX)− exp(−aX)

X
− µ2

)2

.

Under H0, we have
√

n T̃n,a
D−→ N (0, σ̃2

0), where

σ̃2
0 =

4a

1− a2
log

1 + a

1− a
− 2

(
log

1 + a

1− a

)2

− 4a2

(1− a2)2

+(1− 2a) log(1− 2a) + (1 + 2a) log(1 + 2a). (8)

We now consider the behavior of Tn,a and T̃n,a, 0 < a < 1/2, under fixed alternatives

to H0, with the aim of showing the consistency of the corresponding tests. To this

end, suppose that the distribution of X is from the M-class; in particular, X has finite

positive expectation µ. We then have M(t, 1/Xn) → M(t, 1/µ) almost surely, and by

Fatou’s Lemma, it follows that

lim inf
n→∞

−Tn,a

n
≥ µ

∫ a/µ

0

(M(t, 1/µ)− E[exp(tX)]) dt (9)

almost surely. Since the behaviour of the moment generating function on any interval

[0, a], 0 < a < 1/µ, completely specifies H0, the right-hand side of (9) is positive if the

distribution of X comes from class M but is not exponential. Hence, a test that rejects

H0 for small values of Tn,a is consistent against any such alternative.

The same reasoning yields the consistency of the test based on T̃n,a against alternatives

from the LM-class.

Note that the property of consistency of both tests continues to hold under the condi-

tion EX < ∞ and Eet0X = ∞ where t0 < a/µ, since, in this case, we have Mn(t) →∞
almost surely for t ≥ t0. An example is the Lognormal distribution which is used in the

simulation study in Section 4 as alternative distribution.
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3 Local approximate Bahadur efficiency

In this section, we investigate the efficiency of the tests for exponentiality based on Tn,a

and T̃n,a against several one-parametric families of distributions from the class LM. In

each case, the distributions have a density function f(x, ϑ), and the parameter space,

denoted by Θ, is some subinterval of (0,∞). Depending on the specific alternative family,

the unit exponential distribution corresponds either to the parameter value ϑ0 = 1 or

to the value ϑ0 = 0. As in Henze and Klar (2001), our measure of efficiency is the local

approximate Bahadur slope (see, e.g., Nikitin (1995), Section 1.2).

First, note that Pϑ0(T
∗
n,a ≤ t) = Pϑ0(

√
nTn,a/σ0 ≤ t) → Φ(t) as n → ∞, where Φ

denotes the standard normal distribution function. Further, log (1− Φ(t)) ∼ t2/2, t →
∞. Since

T ∗
n,a√
n

P−→ 1

σ0

{
Eϑ

(
exp(aX/µ(ϑ))− 1

X/µ(ϑ)

)
− Eϑ0

(
exp(aX)− 1

X

)}

under Pϑ, where µ(ϑ) = Eϑ[X], the approximate Bahadur slope c∗(·, a) of the sequence

(T ∗
n,a) of test statistics is (Nikitin (1995), p. 10)

c∗(ϑ, a) =

[
1

σ0

{
Eϑ

(
exp(aX/µ(ϑ))− 1

X/µ(ϑ)

)
− Eϑ0

(
exp(aX)− 1

X

)}]2

.

We now consider the local behavior of c∗(ϑ, a) as ϑ → ϑ0, assuming the one-parametric

family of alternative distributions to be sufficiently regular to allow a Taylor expansion of

order two of c∗(ϑ, a) with respect to ϑ. Moreover, differentiation of Eϑ[(exp(aX/µ(ϑ))−
1)/(X/µ(ϑ))] may be done under the integral sign. These assumptions hold for each of

the four families of distributions considered later in this section. After straightforward

calculations, one obtains

c∗(ϑ, a) ∼ (lFϑ
(Tn,a))

2

σ2
0

(ϑ− ϑ0)
2 as ϑ → ϑ0,

where

lFϑ
(Tn,a) =

∫ ∞

0

exp(aX)− 1

X

∂

∂ϑ
f(x, ϑ)

∣∣∣∣
ϑ=ϑ0

dx − µ′(ϑ0)

(
a

1− a
+ log(1− a)

)
,

and σ2
0 is given in (7). Here, µ′(ϑ0) = ∂

∂ϑ
µ(ϑ)|ϑ=ϑ0 . Then, the local approximate

Bahadur efficiency of Tn,a is given by

eFϑ
(Tn,a) =

(lFϑ
(Tn,a))

2

σ2
0

.
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Figure 1: Local approximate Bahadur efficiency of Tn,a (solid line) and T̃n,a (dashed)

against LFR (left) and Makeham alternatives (right)

Similarly, we have eFϑ
(T̃n,a) =

(
l̃Fϑ

(Tn,a)
)2

/σ̃2
0, where

l̃Fϑ
(Tn,a) =

∫ ∞

0

exp(aX)− exp(−aX)

X

∂

∂ϑ
f(x, ϑ)

∣∣∣∣
ϑ=ϑ0

dx

−µ′(ϑ0)

(
2a

1− a2
− log

1 + a

1− a

)
,

and σ̃2
0 is given in (8). We have calculated eF (Tn,a) and eFϑ

(T̃n,a) for linear failure rate

(LFR), Makeham, Weibull and gamma alternatives. All of them belong to the much

narrower class of IFR distributions. The pertaining distribution functions are

F
(1)
ϑ (x) = 1− exp

(− (
x + ϑx2/2

))
for x ≥ 0, ϑ ≥ 0,

F
(2)
ϑ (x) = 1− exp

(− (
x + ϑ

(
x + e−x − 1

)))
for x ≥ 0, ϑ ≥ 0,

F
(3)
ϑ (x) = 1− exp

(−xϑ
)

for x ≥ 0, ϑ > 0,

F
(4)
ϑ (x) = Γ(ϑ)−1

∫ x

0

tϑ−1e−t dt for x ≥ 0, ϑ > 0,

respectively. For F
(1)
ϑ and F

(2)
ϑ , H0 corresponds to ϑ = ϑ0 = 0, and for F

(3)
ϑ and F

(4)
ϑ ,

we have ϑ0 = 1.

Calculations give

lF (1)(Tn,a) =
a

1− a
− a2

2(1− a)2
+ log(1− a)
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and

lF (1)(T̃n,a) =
2a

1− a2
− 2a3

(1− a2)2
− log

1 + a

1− a

for 0 < a < 1/2. The efficiencies eF (1)(Tn,a) and eF (1)(T̃n,a) are plotted in Figure 1

(left). They have a maximum value at a∗ = 0 with eF (1) = 1. As noted above, the test

based on Tn is asymptotically most powerful for testing H0 against the linear failure rate

distribution.

Next, we obtain

lF (2)(Tn,a) = 2 log
2− a

2
− 3

2
log(1− a)− 2 log 2− a

2(1− a)

and

lF (2)(T̃n,a) = 2 log
2− a

2 + a
+

3

2
log

1 + a

1− a
− a

1− a2

for 0 < a < 1/2. eF (2) has a maximum value at a∗ = 0 with eF (2)(Tn,a∗) = eF (2)(T̃n,a∗) =

1/16. Note that 1/12 is the efficiency of the asymptotically most powerful test of ex-

ponentiality against the Makeham distribution (Doksum and Yandell (1984)). Figure 1

(right) shows the local approximate Bahadur efficiencies of Tn,a and T̃n,a against Make-

ham alternatives.

For F
(3)
ϑ , closed form expressions for lF (3)(Tn,a) and lF (3)(T̃n,a) do not exist; we have

lF (3)(Tn,a) =

∫ ∞

0

eax − 1

x
(1 + (1− x) log(x)) e−x dx + (1− γ)

(
a

1− a
+ log(1− a)

)

and

lF (3)(T̃n,a) =

∫ ∞

0

eax − e−ax

x
(1 + (1− x) log(x)) e−x dx + (1− γ)

(
2a

1− a2
− log

1 + a

1− a

)

for 0 < a < 1/2, where γ ≈ 0.577 is Euler’s constant. The maximum value of eF (3) is 1

at a∗ = 0.

For the family of gamma alternatives, the efficiencies are

lF (4)(Tn,a) =

∫ ∞

0

eax − 1

x
(log x + γ) e−x dx− a

1− a
− log(1− a)

and

lF (4)(T̃n,a) =

∫ ∞

0

eax − e−ax

x
(log x + γ) e−x dx− 2a

1− a2
+ log

1 + a

1− a
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Figure 2: Local approximate Bahadur efficiency of Tn,a (solid line) and T̃n,a (dashed)

against Weibull (left) and gamma alternatives (right)

for 0 < a < 1/2. Again, eF (4) has a maximum value at 0; here, eF (4)(Tn) = eF (4)(T̃n,0) =

1/4. Figure 2 displays the efficiencies of Tn,a and T̃n,a against Weibull and Gamma

alternatives for a ∈ (0, 1/2).

Obviously, local approximate Bahadur efficiency heavily depends on the value of a.

The shape of the curves in Figures 1 and 2 is always similar: for each of the four

distributions, efficiency decreases if a tends to 1/2. However, for fixed positive value of

a, the efficiency of T̃n,a is always above the efficiency of Tn,a.

The decrease of Bahadur efficiency with increasing a can be explained as follows. Since

the tail behavior of a distribution is reflected on the behavior of its moment generating

function around zero, choosing a small value of a renders the test statistics powerful

against distributions with markedly different tail behaviour than those in E . This is

the case for the IFR distribution used in this section. Hence, tests looking only at the

mean/variance ratio as Tn are well suited for these particular alternatives.

4 Simulations

This section presents the results of two Monte Carlo studies. The first simulation study

was conducted in order to obtain critical points of the statistics under discussion which

is necessary due to the slow convergence of the finite sample distributions of the test

statistics to their limit distribution.

Tables 1 and 2 show the p-quantiles of T ∗
n,a =

√
nTn,a/σ0 and T̃ ∗

n,a =
√

nT̃n,a/σ̃0
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T ∗n,a T̃ ∗n,a

a 0.05 0.1 0.2 0.3 0.4 0.45 0.05 0.1 0.2 0.3 0.4 0.45

n = 10 -1.05 -0.99 -0.89 -0.76 -0.60 -0.49 -1.08 -1.07 -1.00 -0.88 -0.70 -0.58
n = 20 -1.18 -1.13 -1.02 -0.88 -0.70 -0.59 -1.21 -1.19 -1.13 -1.00 -0.81 -0.68
n = 30 -1.24 -1.20 -1.09 -0.95 -0.77 -0.65 -1.28 -1.26 -1.19 -1.07 -0.88 -0.73
n = 50 -1.32 -1.28 -1.17 -1.04 -0.85 -0.72 -1.35 -1.34 -1.27 -1.15 -0.95 -0.81
n = 100 -1.40 -1.36 -1.27 -1.14 -0.96 -0.82 -1.43 -1.41 -1.36 -1.24 -1.05 -0.90
n = 200 -1.46 -1.44 -1.36 -1.24 -1.05 -0.91 -1.49 -1.48 -1.42 -1.32 -1.14 -0.99
n = 500 -1.53 -1.50 -1.44 -1.35 -1.17 -1.02 -1.55 -1.54 -1.51 -1.41 -1.25 -1.09
n = 1000 -1.57 -1.55 -1.50 -1.41 -1.25 -1.10 -1.58 -1.57 -1.53 -1.47 -1.31 -1.17

Table 1: Empirical 5%-quantiles of T ∗
n,a and T̃ ∗

n,a based on 100000 replications

T ∗n,a T̃ ∗n,a

a 0.05 0.1 0.2 0.3 0.4 0.45 0.05 0.1 0.2 0.3 0.4 0.45

n = 10 -0.95 -0.90 -0.89 -0.70 -0.55 -0.46 -0.97 -0.96 -0.90 -0.80 -0.64 -0.53
n = 20 -1.04 -1.00 -0.91 -0.79 -0.64 -0.54 -1.06 -1.05 -0.99 -0.89 -0.73 -0.61
n = 30 -1.08 -1.04 -0.96 -0.85 -0.69 -0.58 -1.11 -1.09 -1.04 -0.94 -0.78 -0.66
n = 50 -1.13 -1.10 -1.02 -0.91 -0.75 -0.64 -1.15 -1.14 -1.09 -0.99 -0.83 -0.71
n = 100 -1.18 -1.16 -1.08 -0.98 -0.83 -0.71 -1.20 -1.19 -1.14 -1.06 -0.91 -0.78
n = 200 -1.21 -1.20 -1.14 -1.05 -0.90 -0.78 -1.23 -1.22 -1.18 -1.11 -0.97 -0.84
n = 500 -1.25 -1.23 -1.18 -1.12 -0.99 -0.87 -1.25 -1.25 -1.23 -1.16 -1.04 -0.92
n = 1000 -1.26 -1.25 -1.22 -1.16 -1.04 -0.93 -1.26 -1.26 -1.24 -1.20 -1.09 -0.97

Table 2: Empirical 10%-quantiles of T ∗
n,a and T̃ ∗

n,a based on 100000 replications

under exponentiality for several sample sizes and p = 0.05 and 0.10, respectively. The

parameter a was chosen to be a = 0.05, 0.1, 0.2, 0.3, 0.4 and 0.45. The entries in Tables

1 and 2 are based on 100000 replications; here, we always used µ = 1.

The speed of convergence to the asymptotic values is generally quite low, and it

differs for different values of a. The asymptotic quantiles should not be used for a test

based on T ∗
n,a or T̃ ∗

n,a even for the sample size n = 1000. The finite sample quantiles

are not symmetric around 0.

A second simulation study has been conducted to examine the dependence of the power

of the tests on the exponent. As alternative distributions from the LM -class, we used the

Weibull, Gamma and Linear failure rate distribution with scale parameter 1 and shape

12



parameter ϑ, denoted by W (ϑ), Γ(ϑ) and LFR(ϑ), respectively. A further alternative

is the inverse Gaussian distribution IG(µ, λ) with mean µ = 1, denoted by IG(λ) which

belongs to the L-class for λ ≥ 1; it belongs to theM-class (and, hence, to the LM-class)

if λ ≥ 2.

In addition, we included the Birnbaum-Saunders distribution BS(γ, δ) with δ =

(γ2/2 + 1)−1 (and, hence, a mean value of one), denoted by BS(γ). A simple method

of generating BS(γ, δ) distributed random variables is to generate a standard normal

variate, Z, and then use the formula

X = δ
(
1 + γ2Z2/2 + γZ

(
γ2Z2/4 + 1

)1/2
)

(Rieck (2003)). The Birnbaum-Saunders distribution BS(γ) belongs to the L-class for

γ ≤ 1; it is a member of the class M if γ ≤
√

2/3 (Klar and Müller (2003)).

We finally considered the uniform distribution U(0, 1) which is symmetric and,

hence, in the M-class (Corollary 3.2 in Klar and Müller (2003)) and the Lognormal

distribution LN(0, τ 2). The latter is not in the M-class, but it belongs to the L-class if

τ 2 < log 2 (Klar (2002)). By the remark at the end of Section 2, the tests are consistent

against this alternative.

Table 3 shows power estimates of the tests based on T ∗
n,a and T̃ ∗

n,a for n = 30. All

entries are the percentages of 10000 Monte Carlo samples that resulted in rejection of

H0, rounded to the nearest integer. The nominal level of the test is α = 0.05.

The first three lines of Table 4 show three examples of power estimates of “contiguous”

alternatives for n = 500.

The results for the binomial distribution Bin(1, 1/2) are given in the last line of

Table 4. This distribution is symmetric and, hence, in the M-class. However, since

V (X) = (EX)2 = 1/4, a test based on T ∗
n or on T ∗

n,a for small values of a can not detect

this alternative. The values in Table 4 are computed as in Table 3.

The main conclusions that can be drawn from the simulation results are the following:

1. The tests based on T ∗
n,a and T̃ ∗

n,a behave fairly similar, whereby the power of the

tests depends only to a small extent on a. An exception is the binomial distribution.

2. For all distributions used in the simulation apart from the binomial distribution,

power decreases for increasing values of a.

3. Despite the strong decrease of local approximate Bahadur efficiency for W (ϑ), Γ(ϑ)

and LFR(ϑ) as a tends to 1/2, the results in Table 4 indicate that the actual loss

of power is small, even for n = 500.
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T ∗n,a T̃ ∗n,a

a 0.05 0.1 0.2 0.3 0.4 0.45 0.05 0.1 0.2 0.3 0.4 0.45

Exp(1) 5 5 5 5 5 5 5 5 5 5 5 5

W (1.3) 44 45 44 43 43 42 45 44 45 44 43 45
W (1.5) 78 77 77 77 76 75 78 79 79 78 77 78
W (1.7) 95 95 95 95 94 93 96 95 95 95 94 95

Γ(1.5) 34 35 33 33 33 31 34 35 34 34 33 34
Γ(2.0) 70 69 69 68 67 64 70 71 70 69 69 69
Γ(3.0) 97 97 97 96 96 95 97 97 97 97 96 97

LFR(0.5) 26 25 25 26 25 25 25 26 25 25 25 26
LFR(2.0) 61 60 60 61 59 58 60 60 60 60 59 60
LFR(5.0) 81 81 81 81 80 79 81 82 81 81 80 82

IG(1.2) 26 26 25 24 23 22 27 26 26 25 25 25
IG(1.5) 46 44 43 42 41 39 46 45 45 45 43 44
IG(2.0) 73 71 70 69 67 66 72 73 73 72 70 70
IG(3.0) 95 95 94 93 92 92 96 96 95 95 94 95

BS(1.2) 1 1 1 1 1 1 1 2 2 2 1 2
BS(1) 10 8 9 8 9 8 9 9 9 9 9 9

BS(
√

2/3) 39 38 37 37 34 32 38 38 37 37 36 37
BS(0.7) 70 69 67 66 65 63 70 71 70 69 67 69

U(0, 1) 98 98 98 98 98 98 97 97 98 98 98 98

LN(0, 0.6) 35 34 33 32 31 30 36 36 35 34 33 34
LN(0, 0.4) 76 74 74 72 70 69 76 76 75 74 73 74

Table 3: Empirical power of the tests based on T ∗
n,a and T̃ ∗

n,a, α = 0.05, n = 30, 10000

replications

T ∗n,a T̃ ∗n,a

a 0.05 0.1 0.2 0.3 0.4 0.45 0.05 0.1 0.2 0.3 0.4 0.45

W (1.1) 70.9 69.7 67.9 65.1 64.1 61.3 71.9 71.1 70.7 68.4 66.2 65.1
Γ(1.2) 67.4 66.3 65.4 60.7 58.7 56.8 69.0 68.5 66.7 65.4 61.2 59.8

LFR(0.2) 87.4 87.6 87.3 85.8 86.4 85.7 87.2 86.6 86.8 86.8 86.2 85.7

Bin(0, 1) 6.8 11.0 25.4 40.9 62.2 72.2 5.3 6.0 7.1 13.1 21.8 31.0

Table 4: Empirical power of the tests based on T ∗
n,a and T̃ ∗

n,a, α = 0.05, n = 500, 10000

replications
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Figure 3: Left: Empirical moment generating function of data set 1 (solid line) and

moment generating function under exponentiality (dashed).

Right: The same plots for data set 2.

4. In the majority of cases, the power of T̃ ∗
n,a in Table 4 is higher than the power of

T ∗
n,a for a fixed value of a which coincides with the results of Section 3.

5 Examples

We applied the tests under discussion to two data sets. The first example was also

considered by Pavur et al. (1992). The results recorded in the following table are the

number of revolutions (in millions) to failure of n = 23 ball bearings in a life test study.

17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84

51.96 54.12 55.56 67.80 68.64 68.64 69.88 84.12

93.12 98.64 105.12 105.84 127.92 128.04 173.40

Mean value and standard deviation of the data are 71.8 and 38.2, which results in a

coefficient of variation of 0.53. The empirical moment generating function lies below the

moment generating function under exponentiality, given by (1 − 71.8 t)−1 (see Figure

3, left). Therefore, it is plausible to assume that the distribution underlying the data

belongs to the LM-class.

The second data set consists of n = 16 intervals in operating hours between succes-

sive failures of airconditioning equipment in a Boeing 720 aircraft (see Edgeman et al.

(1988)).
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102 209 14 57 54 32 67 59 134 152 27 14 230 66 61 34

The mean value of 82.0 and the standard deviation of 66.3 yield a coefficient of

variation of 0.81. The plot on the right-hand side of Figure 3 looks similar as the plot

on the left; again, it is plausible to assume that the underlying distribution belongs to

the LM-class.

To assess wether the data could come from exponential distributions, we applied the

tests based on T ∗
n,a and T̃ ∗

n,a for several values of a to the two data sets. The values of

the test statistics are given in Table 5.

Comparing the values for the first data set with the 5%-quantiles for n = 30 in Table

1, we can see that all tests reject the hypotheses of exponentiality at the level 0.05.

However, the values for the second data set are always larger than the 10%-quantiles

for n = 10 in Table 2. Hence, the hypotheses of exponentiality is not rejected at the

10%-level.

Therefore, we can retain the exponential model for the second data set, whereas

it is necessary to look for other parametric distributions from class LM for a better

description of the data in the first example.

6 The test statistics under random censorship

In this section, we discuss how the test statistics for testing for exponentiality against

H1 have to be modified in the case of randomly censored data. Tests for exponentiality

against HNBUE alternatives under random censorship have been proposed by Aly (1992)

and Hendi, Al-Nachawati, Montasser, and Alwasel (1998).

Let X1, X2, . . . be a sequence of nonnegative independent lifetimes with d.f. F . Along

with the X-sequence, let Y1, Y2, . . . be a sequence of independent censoring random

variables with d.f. G also being independent of the X’s. We assume that F and G

are continuous. We observe the censored lifetimes Zi = min(Xi, Yi) together with δi =

T ∗n,a T̃ ∗n,a

a 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4

Data set 1 (n = 23) -1.59 -1.41 -1.19 -0.93 -1.71 -1.60 -1.40 -1.11
Data set 2 (n = 16) -0.73 -0.67 -0.59 -0.48 -0.76 -0.72 -0.66 -0.54

Table 5: Values of T ∗
n,a and T̃ ∗

n,a for the two data sets

16



1{Xi≤Yi} indicating the cause of death.

The nonparametric maximum likelihood estimate of F is given by the Kaplan-Meier

product-limit estimator F̂n defined by

1− F̂n(t) =
n∏

i=1

(
1− δ[i:n]

n− i + 1

)1{Zi:n≤t}
.

Here Z1:n ≤ . . . ≤ Zn:n are the ordered Z-values, and δ[i:n] is the concomitant of the i-th

order statistic, that is, δ[i:n] = δj if Zi:n = Zj.

If ϕ is integrable, one has the representation

∫
ϕ(x)dF̂n(x) =

n∑
i=1

Win ϕ(Zi:n),

where for 1 ≤ i ≤ n,

Win =
δ[i:n]

n− i + 1

i−1∏
j=1

(
n− j

n− j + 1

)δ[j:n]

.

In particular,

M̂n(t) =

∫
etxdF̂n(x) =

n∑
i=1

Win eZi:n

is a plausible estimate of the moment generating function M(t) under random cen-

sorship. Using the results of Stute and Wang (1993), it follows that M̂n(t) →∫
{x<τH} etxdF̂n(x) a.s. where τH = inf{x : H(x) = 1} and H is the d.f. of the Z’s,

i.e. (1−H) = (1− F )(1−G).

Consider first the special case of Type 1 censoring, i.e. Yi = t0, 1 ≤ i ≤ n. Then,

M̂n(t) is in general not a consistent estimator of M(t) since it is impossible to observe

the right tail of F . Hence, one could only test if the observable part of F corresponds to

an exponential distribution; the moment generating function and the M-class are not

suitable for this purpose.

We assume therefore τH = ∞ in the following. If F (t) = F (t, λ) is the exponential

distribution, the maximum likelihood estimator of λ under random censorship is given

by (see, e.g., Kalbfleisch and Prentice (1980), Section 3)

λ̂n =

∑n
i=1 δi∑n
i=1 Zi

.
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λ1 p n = 25 n = 100 n = 400 n = 1600 n = 6400 n = 25600

0.05 -2.62 -2.56 -2.41 -2.20 -1.99 -1.87
0.1 -2.05 -1.99 -1.86 -1.67 -1.56 -1.49
0.25 -0.34 -0.50 -0.69 -0.86 -0.90 -0.90

5 0.5 -0.17 -0.23 -0.28 -0.30 -0.29 -0.25
0.75 -0.03 0.04 0.12 0.21 0.31 0.40
0.9 0.15 0.34 0.54 0.73 0.90 1.00
0.95 0.30 0.55 0.83 1.09 1.26 1.37

0.05 -0.77 -1.12 -1.47 -1.59 -1.62 -1.65
0.1 -0.56 -0.84 -1.11 -1.26 -1.30 -1.31
0.25 -0.39 -0.56 -0.68 -0.73 -0.76 -0.74

25 0.5 -0.20 -0.22 -0.20 -0.15 -0.12 -0.07
0.75 0.03 0.19 0.35 0.50 0.55 0.61
0.9 0.32 0.67 1.00 1.14 1.20 1.24
0.95 0.58 1.03 1.38 1.58 1.63 1.63

0.05 -0.88 -1.18 -1.42 -1.49 -1.57 -1.59
0.1 -0.76 -0.99 -1.16 -1.21 -1.25 -1.23
0.25 -0.56 -0.67 -0.73 -0.71 -0.74 -0.67

100 0.5 -0.30 -0.25 -0.20 -0.11 -0.08 -0.04
0.75 0.08 0.28 0.43 0.56 0.59 0.65
0.9 0.57 0.94 1.11 1.27 1.25 1.32
0.95 0.98 1.39 1.57 1.69 1.71 1.71

Table 6: Empirical p-quantiles of
√

nT̂n,0.25/σ̂n based on 10000 replications, where σ̂2
n

is the empirical variance of T̂n,0.25

Hence, a suitable modification of the test statistics Tn,a for testing for exponentiality

against H1 is

T̂n,a = 1/λ̂n

∫ aλ̂n

0

(
M̂n(t)−M(t, λ̂n)

)
dt

=
n∑

j=1

Win
eaUi:n − 1

Ui:n

+ log(1− a),

where a ∈ (0, 1/2) and Ui:n = λ̂nZi:n, 1 ≤ j ≤ n.

Table 6 shows the p-quantiles of
√

nT̂n,0.25/σ̂n, where σ̂2
n is the empirical variance of

T̂n,0.25, for increasing sample sizes. The distributions of X1 and Y1 are exponential with

parameter λ1 and 1, respectively; hence, the censored portion of the data is 1/(λ1 + 1).

The entries in Tables 6 are based on 10000 replications.
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Looking at the critical values, they seem to converge to the quantiles of a standard

normal distribution. This is not unexpected in view of the central limit theorem under

random censorship (Stute (1995)). However, the limiting variance does not only depend

on a as in the case without censoring, but also on the d.f.’s F and G. Furthermore,

convergence is very slow, depending on the degree of censoring. To perform the test

in practice, estimating the unknown variance of T̂n,a, presumably by some resampling

procedure, would be necessary.
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