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Preface

The conference ’Fractal Geometry and Stochastics VI’ with 122 participants from 20
different countries took place inBadHerrenalb, Baden-Württemberg,Germany, from
September 30 to October 6, 2018. It was the sixth in a series of conferences, initiated
by Christoph Bandt, Siegfried Graf and Martina Zähle with the first conference in
1994. Since then the mathematics of fractal structures experienced a rapid expansion
and a growing diversification. Aiming to cover most recent developments while
representing a broad spectrum of topics, ’Fractal Geometry and Stochastics’ has
become widely recognized as one of the world leading conference series in the field,
and it continues to provide a vibrant platform for the exchange of new ideas. Main
contributions of each single conference have been published by Birkhäuser in their
series ’Progress in Probability’.

Continuing the tradition of the former conferences we invited representatives
of particularly active areas of research to give keynote and invited talks, including
promising young colleagues. The articles collected in this volume address a wide
range of different topics. Some are expositional, others contain original results, but
in style they all follow the philosophy of these conference proceedings to present
material highly interesting for specialists while remaining as accessible as possible
to newcomers in the field and to experts from related disciplines.

We express our gratitude to the Deutsche Forschungsgemeinschaft for their es-
sential financial support for the conference and gratefully acknowledge additional
support from the cluster of excellence SimTech, University of Stuttgart, and the
Karlsruhe Institute of Technology, Karlsruhe. We thank our Scientific Committee
(Christoph Bandt, Kenneth Falconer, Jun Kigami, Marc Pollicott, Martina Zähle)
for their advice, constant support and encouragement, and we thank a number of
referees for their generous help in preparing this volume.

Chemnitz,Oxford, Uta Freiberg
Bielefeld, Karlsruhe, Ben Hambly
July 2020 Michael Hinz
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Introduction

This book presents some of the recent developments in various areas of modern
mathematics naturally connected to ’Fractal Geometry and Stochastics’, although
the variety of ideas and results collected here goes well beyond the scope of this
modest label. The book consists of four parts.

Part I of the book contains four articles on topics at the heart of fractal geom-
etry. The article by J. Fraser discusses new ideas in dimension theory, namely the
Assouad spectrum, which interpolates between the upper box and the Assouad di-
mension, and the intermediate dimensions, which interpolate between the Hausdorff
and box dimensions. It is followed by an article by J. Lehrbäck on upper and lower
Assouad dimensions and their connections to the integrability of distance functions,
to Muckenhoupt weights and to thickness and thinness conditions for the validity
of Hardy-Sobolev inequalities on Euclidean open sets. The article by S. Seuret ex-
plains some of the latest results related to the idea of finding objects with prescribed
multifractal properties, such as local dimensions for measures, or singularity or mul-
tifractal spectra for functions and measures. Some connections to function spaces
are highlighted. A panorama of classical renewal theorems in probability and the
discussion of a contemporary renewal theorem in symbolic dynamics are the sub-
jects of the article by S. Kombrink, along with applications to counting problems
and Minkowski measurability in fractal geometry.

Part II of the book consists of two articles relating to random discrete structures.
The first one, by M. Heydenreich, reviews different dimension concepts for integer
lattices and more general graphs, such as fractal dimension (in the sense of volume
growth), spectral dimension and mass dimension. It also characterizes the various
dimensions for the incipient infinite cluster of (bond) percolation on integer lattices.
In the second one M. Hino surveys recent results and new ideas in the homology the-
ory of random simplicial complexes. A particular result is the asymptotic behaviour
of time integrals of Betti numbers for Linial-Mishulam complex processes, which
may be seen as higher dimensional analogs of Erdös-Renyi graph processes.

The two articles in Part III are related to trees and hyperbolicity. In an expository
article M. Bonk and H. Tran consider the continuum self-similar tree as the attractor
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of an iterated function system in the complex plane, show that trees in certain
classes are always homeomorphic to each other and provide an explicit proof of the
fact that the topology of the continuum random tree is almost surely constant. The
article by N. Shanmugalingam is a survey on ?-hyperbolicity and ?-parabolicity on
metric measure spaces of bounded geometry. It characterizes ?-hyperbolicity via
?-singular functions and discusses relationships with the ?-modulus of a family of
curves connecting a ball to infinity and to the existence of non-constant ?-harmonic
functions.

Part IV presents four articles on physical models (in a broad sense). The article
by O. Ovdat and E. Akkermans considers phase transitions in physics in which
continuous scale invariance is broken into discrete scale invariance, and the latter
is observed to have fractal features. These phase transitions are discussed in detail
for the Hamiltonian of a quantum particle in an attractive square potential (for
which the Efimov physics in the supercritical regime was repeatedly confirmed in
experiments) and for a massless Dirac Coulomb system (for which comprehensive
experimental observations have been made for graphene). In addition, connections
to universality are pointed out. The article by D. Croydon addresses recent results
on scaling limits for stochastic processes in terms of Kigami’s resistance forms. He
describes an application to random conductance models with heavy tails on nested
fractal graphs. He shows that rescaled variable speed and constant speed random
walks on the approximating graphs converge to the standard and to a singularly time
changed Brownian motion, a version of the Fontes-Isopi-Newman process, on the
fractal, respectively. A somewhat related topic is explained by P. Kern and S. Lage in
their contribution on the Zolotarev duality between stable densities and distributions
on the positive real line. This results in an equivalence of certain heat-type fractional
equations and time-fractional differential equations. After a review of known results
they present a new generalization to the semistable situation. The paper by E. Sava-
Huss reviews results on internal and external DLA (diffusion limited aggregation)
on infinite graphs, such as lattices, trees, cylindrical graphs and fractal graphs. For
external DLA known results on the growth of arms and the number of holes are
addressed, while for internal DLA the focus is on the limit shapes of the cluster.



Part I
Fractal dimensions and measures





Interpolating between dimensions

Jonathan M. Fraser

Abstract Dimension theory lies at the heart of fractal geometry and concerns
the rigorous quantification of how large a subset of a metric space is. There are
many notions of dimension to consider, and part of the richness of the subject
is in understanding how these different notions fit together, as well as how their
subtle differences give rise to different behaviour. Here we survey a new approach
in dimension theory, which seeks to unify the study of individual dimensions by
viewing them as different facets of the same object. For example, given two notions
of dimension, one may be able to define a continuously parameterised family of
dimensionswhich interpolates between them.An understanding of this ‘interpolation
function’ therefore contains more information about a given object than the two
dimensions considered in isolation. We pay particular attention to two concrete
examples of this, namely the Assouad spectrum, which interpolates between the box
and (quasi-)Assouad dimension, and the intermediate dimensions, which interpolate
between the Hausdorff and box dimensions.

Key words: dimension theory, Hausdorff dimension, box dimension, Assouad di-
mension, Assouad spectrum, intermediate dimensions
Mathematics Subject Classifications (2010). Primary: 28A80; Secondary: 37C45

1 Dimension theory and a new perspective

Roughly speaking, a fractal is an object which exhibits complexity on arbitrarily
small scales. Such objects are hard to analyse, and cannot be easily measured.
Dimension theory is the study of how to measure fractals, specifically aimed at
quantifying how they fill up space on small scales. This is done by developing

Jonathan M. Fraser
School of Mathematics and Statistics , The University of St Andrews, Scotland, e-mail: jmf32@
st-andrews.ac.uk
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4 Jonathan M. Fraser

precise mathematical formulations of dimension and then developing techniques
which can be used to compute these dimensions in specific settings, such as, for sets
invariant under a dynamical system or generated by a random process, see Figure 1.
There are many ways to define dimension which naturally extend our intuitive idea
that lines have dimension 1 and squares have dimension 2, etc. The box dimension
is a particularly natural and easily digested notion of dimension, which comes from
understanding how a coarse measure of size behaves as the resolution increases.
More precisely, given a bounded set � ⊆ R3 and a scale (resolution) A > 0, let
#A (�) denote the minimum number of sets of diameter A required to cover �, see
Figure 2. This should increase as A → 0 and it is natural to expect A ≈ A−X for some
X > 0, which can be readily interpreted as the ‘dimension’ of �. As such, the upper
box dimension of � is defined by

dimB� = lim sup
A→0

log #A (�)
− log A

.

If the lim sup is replaced by lim inf, one gets the lower box dimension dimB�.
However, often the lim sup and lim inf agree, in which case we refer to the common
value as the box dimension, denoted by dimB �. Despite how convenient and natural
this definition is, it has some theoretical disadvantages, such as not being countably
stable, see [8, page 40]. A more sophisticated notion, which is similar in spirit, is the
Hausdorff dimension. This can be defined, for any set � ⊆ R3 , by

dimH � = inf

{
U > 0 : for all Y > 0 there exists a cover {*8} of �

such that
∑
8

|*8 |U < Y
}
.

The key difference here is that sets with vastly different diameters are permitted
in the covers and their contribution to the ‘dimension’ is weighted according to
their diameter, denoted by |*8 |, see Figure 3. In particular, it is easily seen that the
Hausdorff dimension is countably stable. Both the Hausdorff and box dimension
measure the size of the whole set, giving rise to an “average dimension”. It is often
the case that more extremal information is required, for example in embedding
theory, see [29]. The Assouad dimension is designed to capture this information and
is defined, for any set � ⊆ R3 , by

dimA � = inf

{
U > 0 : there exists a constant � > 0 such that,

for all 0 < A < ' and G ∈ � we have

#A
(
�(G, ') ∩ �

)
≤ �

(
'

A

)U }
.
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Fig. 1 Three fractals: a self-affine set (left), a random set generated by Mandelbrot percolation
(centre), and the self-similar Sierpiński triangle (right).

The key point here is that one does not seek covers of the whole space, but only a
small ball, and the expected covering number is appropriately normalised, see Figure
4. The Assouad dimension has many useful applications outside the realm of fractal
geometry. For example, see the survey [23] (also published in these proceedings)
which considers applications of the Assouad dimension to problems in geometric
analysis. One of the joys of dimension theory is in understanding how these different
notions of dimension relate to each other and how they behave in different settings.
It is a simple exercise to demonstrate that

dimH � ≤ dimB� ≤ dimB� ≤ dimA �

for any bounded � ⊆ R3 , and that these inequalities can be strict inequalities or
equalities in any combination. Equality throughout can be interpreted as a mani-
festation of ‘strong homogeneity’. For example, if � is Ahlfors-David regular then
dimH � = dimB � = dimA �.

There are of course many other notions of dimension, each important in its own
right and motivated by particular questions or applications. We omit discussion of
these, but other examples include the packing, lower, quasi-Assouad, modified box,
topological, Fourier, among many others. We refer the reader to [2, 7, 8, 27, 29]
for more background on dimension theory, including a thorough investigation of the
basic properties of the various notions of dimension.

The main purpose of this article is to motivate a new perspective in dimension
theory. Rather than view these notions of dimension in isolation, we should try to
view them as different facets of the same object. This approach will give rise to a
continuum of dimensions, which fully describes the scaling structure of the space,
both locally and globally. Moreover, this will yield a more nuanced understanding
of the individual notions of dimensions as well as insight into the somewhat philo-
sophical question of how to define dimension itself. This sounds rather grand and
ambitious, but by focusing our attention slightly and applying this philosophy in
particular settings, an interesting and workable theory has started to emerge.
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Fig. 2 An efficient covering of
the self-affine set from Figure
1 by balls of the same radius.
Counting the number of balls
required for such a cover as
the radius tends to 0 gives rise
to the box dimension.

Fig. 3 An efficient covering
of the self-affine set from
Figure 1 by balls of arbitrarily
varying radii. Understanding
the weighted sum of diameters
of the sets in such a cover
gives rise to the Hausdorff
dimension.

More concretely, given dimensions dim and Dimwhich generally satisfy dim � ≤
Dim �, we wish to introduce a parameterised family of dimensions 3\ , with param-
eter \ ∈ [0, 1], which (ideally) satisfies:

• 30 = dim
• 31 = Dim
• dim � ≤ 3\ (�) ≤ Dim �, for all \ ∈ (0, 1) and all reasonable sets �
• for a given �, 3\ (�) varies continuously in \.

Moreover,

• the definition of 3\ should be natural, sharing the philosophies of both dim and
Dim

• 3\ should give rise to a rich and workable theory.

The most important of these points are the final two. One can achieve the first
four in any number of trivial and meaningless ways, but the key idea is that the
function \ ↦→ 3\ (�) should be ripe with easily interpreted, meaningful, and nuanced
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Fig. 4 An efficient covering
of a particular ball in the
self-affine set from Figure 1
by smaller balls of the same
radius. Counting the number
of balls required for such a
cover, optimised over all larger
balls and all pairs of scales,
gives rise to the Assouad
dimension.

information regarding the set �. If this can be achieved then the rewards are likely
to include:

• a better understanding of dim and Dim
• an explanation of one type of behaviour changing into another
• more information, leading to better applications
• a (large) new set of questions
• fun.

In the following subsections we describe two concrete examples of this philosophy
in action.

1.1 The Assouad spectrum

The Assouad spectrum, introduced by Fraser and Yu in 2016 [17], aims to interpolate
between the upper box dimension and the Assouad dimension. The parameter \ ∈
(0, 1) serves to fix the relationship between the two scales A < ' used to define the
Assouad dimension, by setting ' = A \ . As such, the Assouad spectrum of � ⊆ R3
is defined by

dim\
A � = inf

{
U > 0 : there exists a constant � > 0 such that,

for all 0 < A < 1 and G ∈ � we have

#A
(
�
(
G, A \

)
∩ �

)
≤ �

(
A \

A

)U }
.

At this point it might seem equally natural to bound the two scales away from each
other by considering all 0 < A ≤ '1/\ rather than fixing A = '1/\ . Rather than go
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into details here, we simply observe that fixing the relationship between the scales is
both easier to work with and provides strictly more information than the alternative,
see [13]. We also note that in [17] the scales were denoted by '1/\ and ', rather
than A and A \ . These two formulations are clearly equivalent but the notation we use
here seems a little less cumbersome, however, in certain situations it is more natural
to use '1/\ and '. It was established in [17] that dim\

A � is:

• continuous in \ ∈ (0, 1), see [17, Corollary 3.5]
• Lipschitz on any closed subinterval of (0, 1), see [17, Corollary 3.5]
• not necessarily monotonic (but often is), see [17, Proposition 3.7 and Section 8].

Moreover, we have the following general bounds, adapted from [17, Proposition 3.1].

Lemma 1.1. For any bounded set � ⊆ R3 ,

dimB� ≤ dim\
A � ≤ min

{
dimB�

1 − \ , dimA �

}
.

Proof. Let B > dimB�, G ∈ � and A ∈ (0, 1). By definition there exists � > 0
depending only on B such that

#A
(
�
(
G, A \

)
∩ �

)
≤ #A (�) ≤ �A−B = �

(
A \

A

)B/(1−\)
which implies dim\

A � ≤ B/(1 − \) and since B > dimB� was arbitrary, the upper
bound follows, noting that dim\

A � ≤ dimA � is trivial.
For the lower bound, we may assume dimB� > 0 and let 0 < C < dimB� < B.

Covering � with A \ -balls and then covering each of these A \ -balls with A-balls, we
obtain

#A (�) ≤ #A \ (�)
(
sup
G∈�

#A
(
�
(
G, A \

)
∩ �

) )
.

Again, by definition, there exist arbitrarily small A > 0 such that

sup
G∈�

#A
(
�
(
G, A \

)
∩ �

)
≥ #A (�)
#A \ (�)

≥ A−C

A−B\
=

(
A \

A

) B\−C
\−1

which establishes dim\
A � ≥

C−B\
1−\ and, since B and C can be made arbitrarily close to

dimB�, the lower bound follows. ut

A useful consequence of Lemma 1.1 is that dim\
A � → dimB� as \ → 0 for

any bounded �. However, dim\
A � may not approach dimA � as \ → 1. In fact,

it was proved in [13] that dim\
A � → dimqA � as \ → 1, where dimqA � is the

quasi-Assouad dimension. In many cases the quasi-Assouad dimension and Assouad
dimension coincide and so the intended interpolation is achieved. Moreover, the
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appearance of Assouad dimension in Lemma 1.1 may be replaced by the quasi-
Assouad dimension.

Generally, one has dimqA � ≤ dimA � and if this inequality is strict, then the
intended interpolation is not achieved. However, an approach for “recovering” the
interpolation was outlined in [17]. Let q : [0, 1] → [0, 1] be an increasing contin-
uous function such that q(') ≤ ' for all ' ∈ [0, 1]. The q-Assouad dimension,
introduced in [17], is defined by

dimq

A � = inf

{
U > 0 : there exists a constant � > 0 such that,

for all 0 < A ≤ q(') ≤ ' ≤ 1 and G ∈ � we have

#A
(
�(G, ') ∩ �

)
≤ �

(
'

A

)U }
.

The goal is now to identify precise conditions on q which guarantee dimq

A � =

dimA �. Resolution of this problem for a particular � gives precise information on
how the Assouad dimension of � can be witnessed and, moreover, completes the
interpolation between the upper box andAssouad dimension in a precise sense. Often
dim\

A � = dimA � for some \ ∈ (0, 1), in which case the threshold for witnessing
the Assoaud dimension is provided by the function q(') = '1/\ . The q-Assouad
dimension has been considered in detail by García, Hare, and Mendivil [19, 20] and
Troscheit [32].

Various other dimension spectra are introduced in [17], including the lower spec-
trum, which is the natural dual to the Assouad spectrum and lives in between the
lower dimension and the lower box dimension. This has been investigated, in con-
junction with the Assouad spectrum, by Chen, Wu and Chang [5, 6], Hare and
Troscheit [21] and Fraser and Yu [18].

1.2 Intermediate dimensions

The intermediate dimensions, introduced by Falconer, Fraser and Kempton in 2018
[9], aim to interpolate between the Hausdorff and box dimensions. The parameter
\ ∈ (0, 1) serves to restrict the discrepancy between the size of covering sets in the
definition of the Hausdorff dimension by insisting that |*8 | ≤ |* 9 |\ for all 8, 9 . As
such, the \-intermediate dimensions of a bounded set � ⊆ R3 are defined by

dim\ � = inf

{
U > 0 : for all Y > 0 there exists a cover {*8} of �

with |*8 | ≤ |* 9 |\ for all 8, 9 such that
∑
8

|*8 |U < Y
}
.
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In fact, [9] considers upper and lower intermediate dimensions, but we restrict our
attention here to the lower version. It was proved in [9] that dim\ � is:

• continuous in \ ∈ (0, 1), see [9, Proposition 2.1]
• monotonically increasing
• bounded between the Hausdorff and lower box dimension, that is, for bounded �

dimH � ≤ dim\ � ≤ dimB�

• and satisfies appropriate versions of the mass distribution principle and Frost-
man’s lemma, see [9, Propositions 2.2-2.3].

Next we establish general lower bounds for the intermediate dimensions which
involve the Assouad dimension, see [9, Proposition 2.4]. In the proof we rely on
the following mass distribution principle, first proved in [9, Proposition 2.2]. The
main difference between Lemma 1.2 and the usual mass distribution principle, see
[8, 4.2], is that a family of measures {`A } is used instead of a single measure.

Lemma 1.2. Let � be a Borel subset of R3 , 0 ≤ \ ≤ 1 and B ≥ 0. Suppose that there
are numbers 0, 2, A0 > 0 such that for all 0 < A ≤ A0 we can find a Borel measure `A
supported by � with `A (�) ≥ 0, such that

`A (*) ≤ 2 |* |B (1.1)

for all Borel sets* ⊆ R3 with A ≤ |* | ≤ A \ . Then dim\ � ≥ B.

Proof. Let {*8} be a cover of � such that A ≤ |*8 | ≤ A \ for all 8 and some A ≤ A0.
We may clearly assume the*8 are Borel (even closed). Then

0 ≤ `A (�) ≤ `A

(⋃
8

*8

)
≤

∑
8

`A (*8) ≤ 2
∑
8

|*8 |B ,

so that
∑
8 |*8 |B ≥ 0/2 > 0 for every admissible cover (by sets with sufficiently small

diameters) and therefore dim\ � ≥ B. ut

Lemma 1.3. For bounded � ⊆ R3 and \ ∈ (0, 1), we have

dim\ � ≥ dimA � −
dimA � − dimB�

\
.

Proof. Fix \ ∈ (0, 1) and assume that dimB� > 0, since otherwise there is nothing
to prove. Let

0 < B < dimB� ≤ dimA � < C < ∞

and A ∈ (0, 1) be given. Since B < dimB�, there exists a constant �0 such that there
is an A-separated set of points in � of cardinality at least�0A

−B . Let `A be a uniformly
distributed probability measure supported on this set of points.

Let * ⊆ R3 be a Borel set with |* | = AW for some W ∈ [\, 1]. Since dimA � < C,
there exists a constant �1 such that * intersects at most �1 (AW/A)C points in the
support of `A . Therefore
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`A (*) ≤ �1A
(W−1)C�−1

0 AB = �1�
−1
0 |* |

(WC−C+B)/W ≤ �1�
−1
0 |* |

(\C−C+B)/\ ,

which, using Lemma 1.2, implies that

dim\ � ≥ (\C − C + B)/\ = C −
C − B
\
.

Letting C → dimA � and B→ dimB� yields the desired result. ut

It follows from this lemma that dim\ � → dimB� as \ → 1. In contrast, it was
shown in [9] that dim\ � does not necessarily approach dimH � as \ → 0. Moreover,
a mechanism for constructing such examples is provided by the above lemma since
if dimB� = dimA �, then dim\ � = dimB� = dimA � for all \ ∈ (0, 1).

Lemma 1.3 should be compared with Lemma 1.1. For example, combining the
two results, one sees that if � ⊆ R3 and either dimB � = 0 or dimB � = 3, then
both the intermediate dimensions and Assouad spectrum are constant (and equal to
dimB �).

2 Examples

2.1 Countable sets

Fix ? > 0, and let �? = {=−? : = ∈ N}. It is straightforward to show that

dimH �? = 0 < dimB �? =
1

1 + ? < dimA �? = 1.

Moreover, it was shown in [17, Corollary 6.4] that

dim\
A �? = min

{
1

(1 + ?) (1 − \) , 1
}

and in [9, Proposition 3.1] that

dim\ �? =
\

\ + ? ,

see Figure 5. Therefore these simple examples provide a clear exposition of dimen-
sion interpolation in action, noting that genuine continuous interpolation between
the dimensions considered is achieved in each case.
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Fig. 5 Plots of dim\
A �? (red) and dim\ �? (solid blue) as functions of \ for different values of

?. On the left, ? = 4, in the centre ? = 1, and on the right ? = 1/10. For reference, the general
lower bounds from Lemma 1.3 for the intermediate dimensions are shown as a dashed blue line.
The general upper bounds from Lemma 1.1 for the Assouad spectrum are achieved.

2.2 Self-affine sets

Oneof themost natural and important families of setwhich exhibit distinctHausdorff,
box and Assouad dimensions are the self-affine carpets introduced by Bedford and
McMullen [1, 28]. These sets are constructed as follows. Divide the unit square
[0, 1]2 into an < × = grid, for integers = > < ≥ 2, and select a collection of # ≥ 2
rectangles formed by the grid. Label the rectangles 1, . . . , # and, for each rectangle
8, let (8 denote the affine map which maps [0, 1]2 onto 8 by first applying the map
(G, H) ↦→ (G/<, H/=) and then translating. The Bedford-McMullen carpet is defined
to be the unique non-empty compact set � satisfying

� =

#⋃
8=1

(8 (�).

The fact that this formula defines such a set uniquely is a well-known result in fractal
geometry concerning iterated function systems, see [8, Chapter 9] for the details.

In order to state known dimension formulae for �, let" ∈ [1, <] denote the num-
ber of distinct columns in the grid containing chosen rectangles 8,� 9 ∈ [1, =] denote
the number of chosen rectangles in the 9 th nonempty column for 9 ∈ {1, . . . , "},
and �max = max 9 � 9 . Bedford and McMullen independently computed the box and
Hausdorff dimensions of � in 1984 [1, 28] and theAssouad dimensionwas computed
by Mackay in 2011 [26]. The respective formulae are

dimH � =
log

∑
9 �

log</log =
9

log<
,

dimB � =
log"
log<

+ log(#/")
log =

,

and
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dimA � =
log"
log<

+ log�max
log =

.

Note that if � 9 < �max for some 9 , then the Hausdorff, box and Assouad dimensions
are all distinct. This is called the non-uniform fibres case and is the case of interest.
In fact, in the uniform fibres case, the three dimensions coincide. Therefore, from
now onwe restrict our attention to the non-uniform fibres setting, where computation
of the Assouad spectrum and intermediate dimensions is relevant. It was recently
proved in [18, Corollary 3.5] that, for \ ∈ (0, log</log =],

dim\
A � =

log" − \ log(#/�max)
(1 − \) log<

+ log(#/") − \ log�max
(1 − \) log =

and for \ ∈ [log</log =, 1)

dim\
A � = dimA �,

see Figure 6. In particular, a single phase transition occurs at \ = log</log =, and a
short calculation reveals that this is strictly greater than

1 − dimB�

dimA �

which is where the single phase transition occurs in the general upper bound from
Lemma 1.1. Therefore, the general upper bound for dim\

A � is never achieved by a
Bedford-McMullen carpet in the non-uniform fibres setting.

The intermediate dimensions of � were considered in [9], where it was established
that dim\ � → dimH � as \ → 0. Recall that this ‘genuine interpolation’ is not
satisfied for all sets. A precise formula for dim\ � currently seems out of reach, but
the following bounds were established in [9, Propositions 4.1 and 4.3], see Figure 7.

For 0 < \ <
(

log<
2 log =

)2
we have the upper bound

dim\ � ≤ dimH � +
2(log�max) log

(
log =
log<

)
−(log =) log \

,

which importantly establishes dim\ � → dimH � as \ → 0, but only improves on
the trivial bound of dim\ � ≤ dimB � for very small values of \. For example, for
the carpet considered in Figure 6 this improvement is only achieved for \ smaller
than around 10−13. Also, for all \ ∈ (0, log</log =) we have the lower bound

dim\ � ≥ dimH � + \
log # − ℎ

log =
,

where

ℎ = −<− dimH �
∑
9

�
log</log =
9

((
log<
log =

− 1
)

log� 9 − dimH � log<
)
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Fig. 6 Left: a plot of dim\
A � (solid blue) as a function of \ where = = 3, < = 2, # = 3, " = 2,

�1 = 2, �2 = 1 and �max = 2. For reference, the general upper and lower bounds for the Assouad
spectrum from Lemma 1.1 are shown as dashed blue lines. Right: an example of a self-affine carpet
constructed with the same data.

Fig. 7 Plots of the upper and
lower bounds for dim\ � for
the carpet shown in Figure 6.
The upper bound combines
the bound from [9] and the
trivial upper bound dimB � .
The lower bound is a piece-
wise function, with the first
increasing part coming from
the bounds established in [9],
the constant part coming from
monotonicity, and the final in-
creasing part coming from the
general bounds from Lemma
1.3.

is the entropy of the McMullen measure. A short calculation shows that 0 < ℎ ≤
log # with ℎ = log # if and only if � has uniform fibres. Therefore, in the non-
uniform fibres case we have dimH � < dim\ � for all \ ∈ (0, 1). This lower bound
improves on the general lower bound from Lemma 1.3 for the carpet considered in
Figure 6 for \ ≤ 0.95. In the absence of a precise formula, we ask the following
questions.

Question 2.1. For � a Bedford-McMullen carpet with non-uniform fibres, is it true
that dim\ � < dimB � for all \ ∈ (0, 1)? Moreover, is it true that dim\ � is strictly
increasing, differentiable, or analytic?
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2.3 Self-similar sets and random sets

The examples discussed so far (the countable sets, and self-affine carpets with non-
uniform fibres) are particularly well-suited to the models of interpolation we discuss
in this article. In particular, the Hausdorff, box, and Assouad dimensions are all
distinct, and the intermediate dimensions and Assouad spectrum achieve genuine
interpolation between these three dimensions. Recall that this is not always the case.
Here we discuss two natural families of sets, for which the desired interpolation is
not achieved: self-similar sets with overlaps, and Mandelbrot percolation.

We restrict our attention to self-similar sets in R, but interesting questions remain
open in higher dimensions. Let {(8}8 be a finite collection of contracting orienta-
tion preserving similarities mapping [0, 1] into itself. That is, for each 8, there are
constants 28 ∈ (0, 1) and C8 ∈ [0, 1 − 28] such that (8 is given by (8 (G) = 28G + C8 .
Similar to the setting of self-affine carpets, there exists a unique non-empty compact
set � ⊆ [0, 1] satisfying

� =
⋃
8

(8 (�).

Such sets � are known as self-similar, see [8, Chapter 9]. It is well-known that if
there exists a non-empty open set * ⊆ [0, 1] such that ∪8(8 (*) ⊂ * and the sets
(8 (*) are pairwise disjoint, then

dimH � = dimB � = dimA � = B

where B ∈ (0, 1] is the unique solution to Hutchinson’s formula ∑
8 2
B
8
= 1. In partic-

ular, this ‘separation condition’, known as the open set condition (OSC), guarantees
that the pieces (8 (�) do not overlap too much and thus the images of � under iterates
of the defining maps directly give rise to efficient covers of �, facilitating calculation
of dimension. It also guarantees sufficient homogeneity to ensure equality of the
three dimensions we discuss. In particular, self-similar sets satisfying the OSC are
not interesting from our dimension interpolation perspective. However, if the OSC
fails, then the Assouad dimension can strictly exceed the box dimension, see [11, 14].
On the other hand, the Hausdorff and box dimension always coincide for self-similar
sets, see [7, Corollary 3.3]. Thus, the natural object to consider here is the Assouad
spectrum. The following result was proved in [18, Corollary 4.2].

Theorem 2.2. Let � ⊆ R be a self-similar set which does not have ‘super-exponential
concentration of cylinders’. Then for all \ ∈ (0, 1)

dim\
A � = dimB �.

In particular, this result implies that genuine interpolation between the box dimen-
sion and the Assouad dimension is not achieved for these self-similar sets whenever
the Assouad dimension strictly exceeds its box dimension. It remains open whether
the conclusion of the above result is true for all self-similar sets. This theorem was
proved using a recent result of Shmerkin [30] and we refer the reader to this paper for
more details on the ‘super-exponential concentration’ assumption.We note, however,
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that this assumption is satisfied if the semigroup generated by the defining maps is
free (that is, there are no ‘exact overlaps’) and the parameters C8 and 28 defining the
maps are algebraic.

Mandelbrot percolation is a natural random process giving rise to fractals which
are statistically self-similar, see [8, Section 15.2]. We begin with the unit cube
"0 = [0, 1]3 , a fixed integer < ≥ 2, and a probability ? ∈ (0, 1). At the first step
of the construction we divide "0 into <3 (closed) cubes of side length <−1 and
for each cube we independently choose to ‘keep it’ with probability ?, or ‘throw it
away’ with probability (1 − ?). We let "1 be the collection of kept cubes and we
then repeat this process inside each kept cube independently, denoting the collection
of kept cubes at stage = by "=. The limit set is then defined by " = ∩="=, see
Figure 1 for an example with 3 = < = 2. It is well-known that if ? > <−3 , then
" is non-empty with positive probability. Moreover, if we condition on " being
non-empty, then

dimH " = dimB " = 3 + log ?
log<

∈ (0, 3)

almost surely. It was shown in [15, Theorem 5.1] that, conditioned on " being
non-empty,

dimA " = 3 (2.2)

almost surely, and therefore it is natural to consider the Assouad spectrum of " .
However, it was proved in [18, 31, 33] that, conditioned on " being non-empty,
almost surely

dim\
A " = dimB " (2.3)

for all \ ∈ (0, 1). Therefore, again we see that genuine interpolation between the
box dimension and Assouad dimension is not achieved by the Assouad spectrum
for Mandelbrot percolation. However, using the finer analysis introduced in [17] and
discussed in Section 1.1, it is possible to observe the interpolation by considering
dimq

�
" for different functions q. Troscheit proved the following dichotomy in [32].

Theorem 2.3. If
log('/q('))

log | log ' | → 0

as ' → 0, then, conditioned on " being non-empty, almost surely

dimq

A " = 3 = dimA ".

Moreover, if
log('/q('))

log | log ' | → ∞

as ' → 0, then, conditioned on " being non-empty, almost surely

dimq

A " = dimB " = 3 + log ?
log<

.
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Note that this result implies (2.3) by considering q(') = '1/\ and (2.2) by
considering q(') = '. A similar dichotomy, with the same threshold on q, was
obtained in a different random setting in [20]. The Assouad spectrum of random
self-affine carpets was considered in [16].

3 Applications: bi-Lipschitz and bi-Hölder distortion

A key aspect of this new perspective in dimension theory is in its applications. The
idea is that if we can interpolate between two given dimensions in a meaningful way,
then we will get strictly better information than when the dimensions are considered
in isolation. This better information should, in turn, yield stronger applications. For
example, see the recent papers [4, 3] which use the intermediate dimensions to obtain
new results concerning the box dimensions of orthogonal projections and images
under fractional Brownian motion, respectively.

A common application of dimension theory is derived from the fact that dimen-
sions are often invariant, or approximately invariant in a quantifiable sense, under a
family of transformations. For example, the Hausdorff, box and Assouad dimensions
are all invariant under bi-Lipschitz maps and therefore provide useful invariants in
the problem of classification up to bi-Lipschitz image. The Assouad spectrum and
intermediate dimensions are also invariant under bi-Lipschitz maps and therefore
provide a continuum of invariants in the same context. Recall that an injective map
5 : - → R3 is bi-Lipschitz if there exists a constant � ≥ 1 such that for all distinct
G, H ∈ -

�−1 |G − H | ≤ | 5 (G) − 5 (H) | ≤ � |G − H |. (3.4)

Here we assume that - is a bounded subset of R3 . In particular, for such 5 we have

dim\
A - = dim\

A 5 (-) and dim\ - = dim\ 5 (-)

for all \ ∈ (0, 1). This was proved for the Assouad spectrum in [17] and we prove it
for the intermediate dimensions here.
Lemma 3.1. For any bounded set - ⊆ R3 and bi-Lipschitz map 5 : - → R3 , we
have dim\ - = dim\ 5 (-) for all \ ∈ (0, 1).
Proof. Let B > dim\ - and Y > 0. It follows that there exists a cover {*8} of - with
|*8 | ≤ |* 9 |\ for all 8, 9 such that

∑
8 |*8 |B < Y. It follows that { 5 (*8)} is a cover of

5 (-) and that | 5 (*8) | ≤ � |*8 | ≤ � |* 9 |\ ≤ �1+\ | 5 (* 9 ) |\ for all 8, 9 , where� is the
constant from (3.4). Let X = inf 9 | 5 (* 9 ) |. For all 8 such that X\ < | 5 (*8) | ≤ �1+\X\ ,
cover the set 5 (*8) with balls of diameter X\ and replace the covering set 5 (*8) by
these balls. Note that we can always do this with fewer than 23�3 (1+\) balls where
23 ≥ 1 is a constant depending only on 3. This yields an allowable cover {+;} of
5 (-) and we have∑

;

|+; |B ≤ 23�3 (1+\)
∑
8

�B |*8 |B ≤ 23�3 (1+\)+BY
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which proves dim\ 5 (-) ≤ dim\ - by letting B → dim\ - . The reverse inequality
follows by replacing 5 by 5 −1 in the above. ut

An immediate consequence of the bi-Lipschitz invariance of the Assouad spec-
trum is that if �1 and �2 are Bedford-McMullen carpets associated with <1 × =1 and
<2 × =2 grids, respectively, and there exists a bi-Lipschitz map between �1 and �2,
then

log<1
log =1

=
log<2
log =2

.

This is because this ratio corresponds to the phase transition in the spectrum, and
is therefore a bi-Lipschitz invariant. This is not at all surprising, but serves as a
simple example of the spectrum yielding applications which are not immediate
when considering the dimensions in isolation. Classification of self-affine sets up to
bi-Lipschitz equivalence is an interesting problem in general, see [24].

Bi-Hölder maps are a natural generalisation of bi-Lipschitz maps where more
distortion is allowed. We say an injective map 5 : - → R3 is (U, V)-Hölder, or
bi-Hölder, for 0 < U ≤ 1 ≤ V < ∞ if there exists a constant � ≥ 1 such that for all
distinct G, H ∈ -

�−1 |G − H |V ≤ | 5 (G) − 5 (H) | ≤ � |G − H |U .

We note that being (1, 1)-Hölder is the same as being bi-Lipschitz. Dimensions
are typically not preserved under bi-Hölder maps, but one can often control the
distortion. For example, if dim is the Hausdorff, or upper or lower box dimension,
and 5 is (U, V)-Hölder, then

dim -

V
≤ dim 5 (-) ≤ dim -

U
, (3.5)

see [8, Proposition 3.3]. Notably, the Assouad dimension does not satisfy such
bounds, see [25, Proposition 1.2]. The Assouad spectrum, which is inherently more
regular than the Assouad dimension, can be controlled in this context but the con-
trol is more complicated than (3.5). The following lemma is adapted from [17,
Proposition 4.7].

Lemma 3.2. Suppose 5 : - → R3 is (U, V)-Hölder. Then, for all \ ∈ (0, 1),

1 − V\/U
V(1 − \) dimV\/U

A - ≤ dim\
A 5 (-) ≤ 1 − U\/V

U(1 − \) dimU\/V
A -

where dimV\/U
A - is taken to equal 0 if V\/U ≥ 1.

In order to motivate this result, we consider the winding problem. Given ? ≥ 1,
let

S? = {G−? exp(8G) : 1 < G < ∞}

which is a polynomially winding spiral with focal point at the origin. The winding
problem concerns quantifying how little distortion is required to map (0, 1) onto
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S? . For example, if G−? is replaced by 4−2G for some 2 > 0, then it is possible to
map (0, 1) onto the corresponding spiral via a bi-Lipschitz map, see [22]. However,
this is not possible for the spirals S? , see [10]. Therefore, it is natural to consider
bi-Hölder winding functions, and attempt to optimise the Hölder exponents.

Here there is a possible application of dimension theory: if the dimensions of S?
can be computed, and strictly exceed 1, then (3.5) (or similar) will directly lead to
bounds on the possible Hölder exponents for winding functions 5 : (0, 1) → S? .
However, since S? can be broken up into a countable collection of bi-Lipschitz
curves, it follows that dimH S? = 1.Moreover, it was proved in [12] that dimB S? = 1.
This does not follow from the countable decomposition since box dimension is not
countably stable. Therefore, neither the Hausdorff nor box dimensions give any
information on the Hölder exponents. It was proved in [12] that dimA S? = 2, but
despite this being strictly greater than dimA (0, 1) = 1, we also get no information
from the Assouad dimension since the change in dimension cannot be controlled by
the Hölder exponents. It was proved in [12] that

dim\
A S? = 1 + \

?(1 − \)

for 0 < \ < ?

1+? , and
dim\

A S? = 2

for ?

1+? ≤ \ < 1, see Figure 8. Therefore, since we do have some control on how
the Assouad spectrum distorts under bi-Hölder maps, this dimension formula does
yield non-trivial information. Specifically, we get that if 5 : (0, 1) → S? is an
(U, V)-Hölder map, then

U ≤ ?V + V
? + 2V

. (3.6)

This follows by applying the first inequality in Lemma 3.2 to 5 −1 for \ = U?/(V?+V).
In particular, if V = 1, then U ≤ ?+1

?+2 < 1, which is a stronger, quantitative, analogue
of the fact that (0, 1) cannot be mapped to S? via a bi-Lipschitz map.

It turns out that the bounds (3.6) are not sharp. The sharp relationship between U
and V is given by

U ≤ ?V

? + V ,

see [12] and Figure 9. We note the amusing resemblance of this relationship to that
of Sobolev conjugates. Recall the Sobolev embedding theorem which says that, for
1 ≤ ? < 3, one has

,1, ? (R3) ⊂ !@ (R3)

where @ is defined by
? =

3@

3 + @ ,

that is, @ is the Sobolev conjugate of ?.
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Fig. 8 Plots of dim\
A S? (solid blue) as a function of \ . On the left ? = 2 and on the right ? = 10.

For reference, the general upper and lower bounds for the Assouad spectrum from Lemma 1.1 are
shown as dashed blue lines.

Fig. 9 Left: a plot of the upper bounds for U as a function of ? where V = 1 is fixed. The sharp
upper bound is shown in blue and the upper bound given by the Assouad spectrum is shown in red.
Right: a plot of the upper bounds for U as a function of V where ? = 2 is fixed. The sharp upper
bound is shown in blue and the upper bound given by the Assouad spectrum is shown in red.

A further application of the Assouad spectrum in this context is that dim\
A S? ,

distinguishes spirals with different winding rates ?. Note that this is not achieved by
the Hausdorff, box, or Assouad dimensions, since these (somewhat surprisingly) do
not depend on ?. In particular, the Assouad spectrum shows that S? and S@ are not
bi-Lipschitz equivalent for ? ≠ @.
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4 Further remarks

We note that the Assouad spectrum of the spirals considered in the previous section
exhibits a single phase transition at ?

?+1 . Similar to the self-affine carpets, it is easy
to see that this phase transition occurs strictly to the right of the phase transition in
the general upper bound, provided ? > 1, and therefore the general upper bound is
not realised by these spirals. This gives rise to a similar form for the spectrum of the
carpets and the spectrum of the spirals. We observe that this similarity goes a little
deeper. In fact, in both cases we have the formula

dim\
A � = min

{
dimB � +

(1 − d)\
(1 − \)d (dimA � − dimB �) , dimA �

}
, (4.7)

where d is a constant which holds particular geometric significance for the object � .
Specifically, for carpets d = log<

log = , and for spirals d = ?

?+1 . Also note that d is the
value of \ at which the unique phase transition occurs. In both cases d captures some
fundamental scaling property of the set. For carpets, the :th level rectangles in the
standard construction of � are of size <−: × =−: and therefore d is the “logarithmic
eccentricity”. For spirals, the :th revolution, given by

{G−? exp(8G) : 1 + 2c(: − 1) < G ≤ 1 + 2c:},

has diameter comparable to :−? , while the distance between the end points (or,
outer radius minus inner radius) is comparable to :−(?+1) . These are fundamental
measurements considered in the winding problem, see [12], and measure how big
the :th revolution is and how tightly it is wound, respectively. Again the “logarithmic
eccentricity” is

log (:−?)
log

(
:−(?+1)

) = ?

? + 1
= d.

We wonder if this is a coincidence, or whether it is reflective of a more general
phenomenon. It would be interesting to identify other natural classes of set for which
this formula holds for a particular choice of “fundamental ratio” d. Finally, we note
that the Assouad spectrum does not generally satisfy an equation of the form (4.7),
see [13, 17, 18].
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Assouad type dimensions in geometric analysis

Juha Lehrbäck

Abstract We consider applications of the dual pair of the (upper) Assouad dimen-
sion and the lower (Assouad) dimension in analysis. We relate these notions to
other dimensional conditions such as a Hausdorff content density condition and an
integrability condition for the distance function. The latter condition leads to a char-
acterization of the Muckenhoupt �? properties of distance functions in terms of the
(upper) Assouad dimension. It is also possible to give natural formulations for the
validity of Hardy–Sobolev inequalities using these dual Assouad dimensions, and
this helps to understand the previously observed dual nature of certain cases of these
inequalities.

Key words: Assouad dimension, Lower dimension, Aikawa condition, Mucken-
houpt weight, Hardy–Sobolev inequality
Mathematics Subject Classifications (2010). Primary: 28A75; Secondary: 28A80,
35A23

1 Introduction

Mathematicians working in fractal geometry and related fields are well aware of the
fact that there can not be a unique definition for the concept of dimension of a set,
since different problems require different ways to deal with dimensional information.
In fact, what sometimes may seem like a negligible nuance in the definition might
actually lead to interesting discoveries concerning the fine structure of sets. On the
flip side, the multitude of the notions of dimension may easily create confusion, and
thus it is important to be able to justify the existence of all these concepts via natural
applications.
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The purpose of this article is to describe some recent observations concerning
the applications of the dual pair of the upper and lower Assouad dimension, often
simply called the Assouad dimension and the lower dimension, respectively. These
notions provide geometric information which is relevant not only in fractal geometry,
but also for instance in harmonic analysis, potential theory, and partial differential
equations. One manifestation of these connections can be seen via the validity of
the so-called Hardy–Sobolev inequalities. Our aim is not so much in presenting any
novelties on the level of the details or techniques, but rather in trying to illustrate
how a new point of view in terms of dimensional conditions may offer clarity and
reveal connections between known results. On the other hand, we do give proofs for
some basic results, hoping that these will help the reader to gain familiarity with the
relevant concepts.

We begin in Section 2 by recalling the definitions of the upper and lower Assouad
dimension and relating them to the more familiar Hausdorff dimension. In particular,
we explain the connection between the lower Assouad dimension and a Hausdorff
content density condition. In Section 3 we study integrability conditions for distance
functions F(G) = dist(G, �)−U, where � ⊂ R= and (usually) 0 < U < =. Such
conditions, originally introduced by Aikawa, can be used to characterize the upper
Assouad dimension, see Theorem 3.5. Next, in Section 4, we ask when a distance
functionF as above belongs to the important class ofMuckenhoupt �? weights. As it
turns out, the answer can be given in terms of the upper Assouad dimension, using the
integrability conditions from Section 3 as a helpful stepping stone. Finally, Section 5
completes the circle by showing how both upper and lower Assouad dimension play
an important role when examining the validity of the Hardy–Sobolev inequalities in
an open set Ω ⊂ R=. In particular, a previously observed duality between certain
cases of such inequalities becomes more transparent and natural when the conditions
are formulated in terms of suitable dimensions.

Much of the theory presented in this survey can be extended to more general
metric spaces satisfying standard structural assumptions. We give some comments
and remarks related to such extensions, but for simplicity we focus on the case of
the =-dimensional Euclidean space R=.

Notation

The open ball with center G ∈ R= and radius A > 0 is

�(G, A) = {H ∈ R= : |H − G | < A},

and �(G, A) is the corresponding closed ball. When � ⊂ R=, we write diam(�) for
the diameter of �, and dist(G, �) denotes the distance from a point G ∈ R= to the set
�. The complement of � is �2 = R= \ �. If � is (Lebesgue) measurable, then the
Lebesgue measure of � is denoted by |�|. If 0 < |�| < ∞ and 5 ∈ !1 (�), then the
mean value integral of 5 over � is
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�

5 (G) 3G = 1
|�|

∫
�

5 (G) 3G.

As usual, � denotes a constant whose exact value may change at each occurrence.
For simplicity, we use the following versions of Hausdorff contents and measures.

It is easy to see that these are comparable to the more standard definitions in e.g. [9,
30].

Definition 1.1. Let � ⊂ R= and _ ≥ 0. For 0 < X ≤ ∞, the _-dimensional Hausdorff
X-content of � is

H_
X (�) = inf

{ ∞∑
8=1

A_8 : � ⊂
∞⋃
8=1

�(G8 , A8), 0 < A8 ≤ X
}
.

(In the case _ = 0 we allow also finite summations. ) Then the (spherical) _-
dimensional Hausdorff measure of � is

H_ (�) = lim
X→0+

H_
X (�) = sup

X>0
H_
X (�),

and the Hausdorff dimension of � is defined as

dimH (�) = inf
{
_ ≥ 0 : H_ (�) = 0

}
= inf

{
_ ≥ 0 : H_

∞ (�) = 0
}
.

2 Assouad type dimensions

The definitions of the Assouad type dimensions of a set � ⊂ R= are based on simple
and natural local covering properties of � : we consider pieces � ∩ �(G, '), with
G ∈ � and 0 < ' < diam(�), and ask how many balls of radius 0 < A < ' are
needed at most (upper Assouad), or respectively at least (lower Assouad), to cover
such pieces. Thus these concepts reveal the most “extreme” local behavior of sets,
whereas other notions of dimension usually tell more about the “average” properties
of sets.

When � ⊂ R= is a bounded set and A > 0, we let # (�, A) denote the minimal
number of open balls of radius A that are needed to cover the set �.

Definition 2.1. Let � ⊂ R=. The upper Assouad dimension dimA (�) is the infimum
of _ ≥ 0 for which there exists a constant � such that

#
(
� ∩ �(G, '), A

)
≤ �

( A
'

)−_
= �

('
A

)_
(2.1)

for every G ∈ � and 0 < A < ' < diam(�).

In particular, the estimate in (2.1) holds whenever _ > dimA (�), and possibly
also when _ = dimA (�). If � ⊂ � ′, then clearly dimA (�) ≤ dimA (� ′). It is also
easy to see that 0 ≤ dimA (�) ≤ = for every � ⊂ R=.
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In the literature, the upper Assouad dimension is often called the Assouad di-
mension and denoted by dimA (�). This concept was used by Assouad in connection
with the bi-Lipschitz embedding problem between metric and Euclidean spaces, see
e.g. [4]. A nice account on the basic properties and history of the Assouad dimension
is given in [29]. See also the survey by Fraser [11] in this same volume (and the
references therein) for recent fractal geometric applications of the (upper) Assouad
dimension and its generalizations.

We illustrate the definition by proving the fact that the Hausdorff dimension
always gives a lower bound for the upper Assouad dimension.

Lemma 2.2. Let � ⊂ R=. Then dimH (�) ≤ dimA (�).

Proof. By the countable stability of the Hausdorff dimension it suffices to show that

dimH
(
� ∩ �(G, ')

)
≤ dimA (�)

for every G ∈ � and ' > 0. Let B > dimA (�), choose _ satisfying dimA (�) < _ < B,
and fix G ∈ � and ' > 0. Then � ∩ �(G, ') can be covered by

# ≤ �
('
A

)_
balls of radius A , for every 0 < A < '. Thus, by the definition of Hausdorff content,

H B
A

(
� ∩ �(G, ')

)
≤ #AB ≤ �1'

_AB−_.

Letting A → 0 givesH B
(
�∩�(G, ')

)
= 0, andwe conclude that dimH

(
�∩�(G, ')

)
≤

dimA (�). ut

Definition 2.3. Let � ⊂ R=. The lower Assouad dimension dimA (�) is the supre-
mum of _ ≥ 0 for which there exists a constant � such that

#
(
� ∩ �(G, '), A

)
≥ �

( A
'

)−_
= �

('
A

)_
(2.2)

for every G ∈ � and 0 < A < ' < diam(�).

In particular, the estimate in (2.2) holds whenever 0 ≤ _ < dimA (�), and possibly
also when _ = dimA (�). In the case � = {G0}, G0 ∈ R=, we remove the requirement
' < diam(�) from the definition and hence dimA ({G0}) = 0. It is easy to verify that
0 ≤ dimA (�) ≤ dimA (�) ≤ = for every � ⊂ R=. However, it should be noted that,
unlike (most) other natural concepts of dimension, the lower Assouad dimension is
not monotone. For instance, dimA ({0} ∪ [1, 2]) = 0, due to the isolated point 0, but
for the subset [1, 2] we have dimA ( [1, 2]) = 1.

The lower Assouad dimension is often called the lower dimension and denoted
by dim! (�). Thus the pair of Assouad-type dimensions can be referred to as the
(upper) Assouad dimension dimA (�) = dimA (�) and the lower (Assouad) dimen-
sion dimA (�) = dim! (�). Also other names, such as (uniform) metric dimension
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and minimal dimensional number, respectively, have been used. An early reference
concerning the lower (Assouad) dimension is [21], and more recently some basic
properties of this dimension have been discussed e.g. in [10] and [18].

Remark 2.4. It should be noted that in the literature there are some slight differ-
ences in the definitions of the upper and lower Assouad dimensions. In particular,
sometimes the covering inequalities in (2.1) and (2.2) are required to hold only for
0 < A < ' ≤ '0, for some fixed '0 < ∞. This change may affect the dimensions of
unbounded sets. Notice also that in (2.1) we may omit the upper bound ' < diam(�)
without altering the value of the upper Assouad dimension. On the other hand, if
we omit this upper bound in (2.2), then all bounded sets would have lower Assouad
dimension equal to zero, which is perhaps not so desirable.

Recall that a closed set � ⊂ R= is called (Ahlfors–David) _-regular, or a _-set,
for 0 ≤ _ ≤ =, if there is a constant � ≥ 1 such that

�−1A_ ≤ H_
(
� ∩ �(G, A)

)
≤ �A_ (2.3)

for every G ∈ � and 0 < A < diam(�); for _ = 0 the upper bound A < diam(�) is
omitted.

Examples of _-regular sets include subspaces of R= and self-similar fractals
satisfying the open set condition. It is not hard to see that for a _-regular set � ⊂ R=
the upper and lower Assouad dimensions agree. More precisely, if � ⊂ R= is _-
regular then

dimA (�) = dimA (�) = dimH (�) = _.

In order to examine the relation between the lower Assouad dimension and the
Hausdorff dimension for more general sets, we consider the following density con-
dition for Hausdorff contents.

Definition 2.5. Let 0 ≤ _ ≤ =. We say that a set � ⊂ R= satisfies the _-Hausdorff
content density condition if there exists a constant � such that

H_
∞
(
� ∩ �(G, ')

)
≥ �'_ (2.4)

for every G ∈ � and 0 < ' < diam(�).

Sometimes the upper bound ' < diam(�) is omitted in Definition 2.5, but then
a bounded set can not satisfy this condition for any _ > 0.

The _-Hausdorff content density condition holds for a set � ⊂ R= if and only if
there is a constant � such that if {�(G8 , A8) : 8 ∈ N} is a cover of � ∩ �(G, '), for
G ∈ � and 0 < ' < diam(�), then

∞∑
8=1

A_8 ≥ �'_. (2.5)

If we only use balls �(G8 , A) having a fixed radius 0 < A < ', then (2.5) reads as
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#∑
8=1

A_ ≥ �'_, or equivalently, # ≥ �
('
A

)_
, (2.6)

which is exactly (2.2) for � ∩ �(G, ').
Condition (2.6) might seem a priori much weaker than (2.5). However, when

required to hold uniformly for every G ∈ � and 0 < ' < diam(�), these conditions
are almost equivalent for closed sets. That is, the estimate in (2.7), for covers using
balls of fixed radii A , yields a corresponding estimate (2.8) for covers where balls of
all radii are allowed. The price to pay is a small drop in the dimensional parameter _.

Lemma 2.6. Let � ⊂ R= be a closed set. Assume that there exist 0 < _0 ≤ = and a
constant �1 such that

#
(
� ∩ �(G, '), A

)
≥ �1

('
A

)_0
(2.7)

for every G ∈ � and 0 < A < ' < diam(�). Then, for every 0 < _ < _0, there exists
a constant � such that

H_
∞
(
� ∩ �(G, ')

)
≥ �'_ (2.8)

for every G ∈ � and 0 < ' < diam(�).

The proof of Lemma 2.6 requires a bit work. Roughly speaking, the idea is to
construct a Cantor-type set � ⊂ � ∩ �(G, ') by using (2.7) iteratively, and then
deduce (2.8) with the help of the equally distributed probability measure ` on �. We
omit the details, which are similar to those in [17, Theorem 3.1] and [23, Lemma 4.1].

Lemma 2.6 has several important consequences. The following theorem shows
that the lower Assoaud dimension of closed sets can be characterized using the
Hausdorff content density condition.

Theorem 2.7. Let � ⊂ R= be a closed set and assume that 0 ≤ _ < dimA (�).
Then � satisfies the _-Hausdorff content density condition. Moreover, dimA (�) is
the supremum of the exponents _ ≥ 0 for which � satisfies the _-Hausdorff content
density condition.

Proof. Choose _0 satisfying 0 ≤ _ < _0 < dimA (�). The definition of the lower
Assouad dimension implies that (2.7) holds with a constant �1 for every G ∈ � and
0 < A < ' < diam(�). Thus we obtain from Lemma 2.6 that

H_
∞
(
� ∩ �(G, ')

)
≥ �'_

for every G ∈ � and 0 < ' < diam(�); that is, � satisfies the _-Hausdorff content
density condition.

Assume then that � satisfies the _-Hausdorff content density condition. Fix
G ∈ � and 0 < A < ' < diam(�), and let {�(G8 , A) : 8 = 1, . . . , #} be a cover of
� ∩ �(G, '). Then
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'_ ≤ �H_
∞
(
� ∩ �(G, ')

)
≤ �

#∑
8=1

A_ = �#A_,

and so # ≥ �
(
'
A

)_. Since this holds for all such covers, we have

#
(
� ∩ �(G, '), A

)
≥ �

('
A

)_
.

Thus dimA (�) ≥ _, and the proof is complete. ut

Theorem 2.7 yields a comparison between the Hausdorff dimension and the lower
Assouad dimension of a closed set. Such a comparison was first obtained in [21].

Corollary 2.8. Let � ⊂ R= be a closed set. Then

dimA (�) ≤ dimH
(
� ∩ �(G, A)

)
≤ dimH (�)

for every G ∈ � and A > 0.

Proof. The second inequality follows from the monotonicity of the Hausdorff di-
mension. For the first inequality we may clearly assume that dimA (�) > 0 and
0 < A < diam(�). Fix 0 ≤ _ < dimA (�). By Theorem 2.7, we then have
H_
∞
(
� ∩ �(G, A)

)
> 0. Hence _ ≤ dimH

(
� ∩ �(G, A)

)
, and the claim follows. ut

The assumption that � is closed is necessary in Corollary 2.8. Indeed, it is easy
to see that dimA (�) = dimA (�) for all � ⊂ R=, and hence for instance

dimA (Q
=) = dimA (R

=) = = � 0 = dimH
(
Q= ∩ �(G, A)

)
for every G ∈ Q= and A > 0.

For comparison, we recall also the definitions of theMinkowski (or box-counting)
dimensions of bounded sets. As before, we let # (�, A) be the minimal number of
open balls of radius A that are needed to cover the bounded set � ⊂ R=. Then
the upper Minkowski dimension of � , dimM (�), can be defined as the infimum
of all _ ≥ 0 for which there exists a constant � such that # (�, A) ≤ �A−_ for
every 0 < A < diam(�). Correspondingly, the lower Minkowski dimension of � ,
dimM (�), is the supremum of all _ ≥ 0 for which there exists a constant � such that
# (�, A) ≥ �A−_ for every 0 < A < diam(�).

It follows easily from these definitions that

dimA (�) ≤ dimM (�) ≤ dimM (�) ≤ dimA (�)

for all bounded sets � ⊂ R=. Moreover, if � ⊂ R= is compact, then

dimA (�) ≤ dimH (�) ≤ dimM (�) ≤ dimM (�) ≤ dimA (�).

A typical example with strict inequalities is the set � = { 1
:

: : ∈ N} ∪ {0} ⊂ R,
for which dimA (�) = dimH (�) = 0, dimM (�) = dimM (�) = 1

2 , and dimA (�) = 1.
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3 The Aikawa condition

The following integrability condition for the distance function creates a natural link
between the (upper) Assouad dimension and the Muckenhoupt �? properties of
distance weights, see Section 4. This condition was introduced and used by Aikawa
in connection with the so-called quasiadditivity property of Riesz capacities in [1],
see also [2, Part II, Section 7]. In [20] and [22] this condition was applied in the
context of Hardy inequalities.

Definition 3.1. Let � ⊂ R= be a non-empty set. We say that � satisfies the Aikawa
condition for U ∈ R, if there exists a constant � (depending on U) such that∫

� (G,A )
dist(H, �)−U 3H ≤ �A=−U (3.9)

or, equivalently, ∫
� (G,A )

dist(H, �)−U 3H ≤ �A−U (3.10)

for every G ∈ � and A > 0. Here we use the convention that 00 = 1, and if U > 0 then
we also require that |� | = 0.

We let A(�) denote the set of all U ∈ R for which � satisfies the Aikawa
condition.

It is easy to see that a non-empty set � ⊂ R= satisfies the Aikawa condition for
all U ≤ 0. On the other hand, if U ≥ =, then∫

� (G,A )
dist(H, �)−U 3H ≥

∫
� (G,A )

|H − G |−U 3H = ∞

for every G ∈ � and A > 0, and thus � does not satisfy the Aikawa condition for any
U ≥ =. Hence we may restrict our attention to the range 0 < U < = in the Aikawa
condition.

We now begin to examine the close connections between the upper Assouad
dimension and the Aikawa condition.

Lemma 3.2. Let � ⊂ R=. If U ∈ A(�), then dimA (�) ≤ = − U.

Proof. If U ≤ 0, then the claim is clear since dimA (�) ≤ =. Hence we may assume
that 0 < U < =. Fix G ∈ � and 0 < A < ', and write � = � ∩ �(G, '). By
the existence of maximal packings there are pairwise disjoint open balls �(G8 , A2 ),
8 = 1, . . . , # , with G8 ∈ �, such that � ⊂ ⋃#

8=1 �(G8 , A).
Let �A be the A-neighborhood of �, that is,

�A = {H ∈ R= : dist(H, �) < A} ⊂ �(G, 2').

Using the pairwise disjointness of the balls �(G8 , A2 ) ⊂ �A , the fact that dist(H, �) ≤
dist(H, �) < A for all H ∈ �A , and the assumed Aikawa condition (3.9), we obtain
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#�A= ≤
#∑
8=1

���(G8 , A2 )�� ≤ |�A | ≤ AU ∫
�A

3 (H, �)−U 3H

≤ AU
∫
� (G,2')

3 (H, �)−U 3H ≤ AU�'=−U = �A=
('
A

)=−U
.

Thus
#

(
� ∩ �(G, '), A

)
= # (�, A) ≤ # ≤ �

('
A

)=−U
,

and the claim dimA (�) ≤ = − U follows since = − U > 0. ut

For the converse direction we need to assume a strict upper bound for the dimen-
sion. See, however, also Theorem 3.5 below concerning the strict inequality in the
previous Lemma 3.2.

Lemma 3.3. Let � ⊂ R= be a non-empty set. If U ∈ R and dimA (�) < = − U, then
U ∈ A(�).

Proof. Again, the claim is clear if U ≤ 0, and so we may assume that U > 0. Choose
dimA (�) < _ < = − U, and let G ∈ � and A > 0. Define

�9 =
{
H ∈ �(G, A) : 3 (H, �) < 2− 9+1A

}
and � 9 = �9 \ �9+1,

for 9 ∈ N. Since _ > dimA (�), there is a constant �1 such that the set � ∩ �(G, 2A)
can be covered by # 9 ≤ �12 9_ balls of radius 21− 9A , for every 9 ∈ N. It follows that
each �9 can be covered by at most # 9 balls of radius 22− 9A . If � 9

8
, 8 = 1, . . . , # 9 , are

such balls, then

|�9 | ≤
# 9∑
8=1

��� 9
8

�� ≤ # 9� (22− 9A)= ≤ � (2− 9 )=−_A=. (3.11)

Since � ∩ �(G, A) ⊂ �9 for all 9 ∈ N and _ < = − U < =, by letting 9 → ∞ we see
in particular that |� ∩ �(G, A) | = 0. Here A > 0 is arbitrary, and thus |� | = 0.

If H ∈ � 9 , then 2− 9A ≤ 3 (H, �) < 2− 9+1A. In addition, � 9 ⊂ �9 for all 9 ∈ N and
the sets � 9 cover �(G, A) up to the set � ∩�(G, A), which has measure zero. By using
estimate (3.11) we obtain∫

� (G,A )
3 (H, �)−U 3H ≤ �

∞∑
9=1

∫
� 9

3 (H, �)−U 3H ≤ �
∞∑
9=1
|�9 | (2− 9A)−U

≤ �A=−U
∞∑
9=1
(2− 9 )=−_−U ≤ �A=−U,

where the geometric series converges since _ < = − U. This together with the fact
|� | = 0 shows that U ∈ A(�). ut
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In order to combine the two lemmas above into a characterization, we need the
following improvement property for the Aikawa condition, observed in [20]. It is
easy to see that the Aikawa condition, for 0 < U < =, implies a reverse Hölder
inequality, see (3.12) below. After that we can apply a suitable version of the so-
called Gehring lemma, see [13, Lemma 3], which is a deep result concerning the
improvement of reverse Hölder inequalities. This leads to the Aikawa condition for
an exponent larger than U. (Notice that conversely it is easy to see that the Aikawa
condition, for 0 < U < =, implies Aikawa conditions for all exponents smaller than
U.)

Theorem 3.4. Let � ⊂ R= and 0 < U < =. If U ∈ A(�), then there exists U < U′ < =
such that U′ ∈ A(�).

Proof. Fix a ball �(G, A) ⊂ R= and assume first that �(G, 2A) ∩ � ≠ ∅. Then
dist(H, �) ≤ 3A for every H ∈ �(G, A), and thus the assumed Aikawa condition (3.10)
implies∫

� (G,A )
dist(H, �)−U 3H ≤ �A−U = �

(
A−

U
2
)2 ≤ �

(∫
� (G,A )

dist(H, �)− U2 3H
)2
.

It is easy to see that the same conclusion holds also in the case �(G, 2A) ∩ � = ∅.
Writing 5 (H) = 3 (H, �)− U2 , we obtain the reverse Hölder inequality(∫

� (G,A )
5 (H)2 3H

) 1
2

≤ �
∫
� (G,A )

5 (H) 3H, (3.12)

for every ball �(G, A) ⊂ R=.
By the Gehring lemma, there exists ? > 2 such that(∫

� (G,A )
5 (H) ? 3H

) 1
?

≤ �
∫
� (G,A )

5 (H) 3H ≤ �
(∫
� (G,A )

5 (H)2 3H
) 1

2

,

for every ball �(G, A) ⊂ R=, where the second inequality is just the usual Hölder’s
inequality. Choose U′ = ?

2 U > U. Then the estimate above and the assumed Aikawa
condition give(∫

� (G,A )
dist(H, �)−U′ 3H

) U
2U′

≤ �
(∫
� (G,A )

dist(H, �)−U 3H
) 1

2

≤ �A− U2 ,

for every G ∈ � and A > 0, and this implies the Aikawa condition for U′ > U. ut

We are now prepared to characterize the upper Assouad dimension in terms of
the Aikawa condition. This result is essentially from [26], where corresponding
characterizations were obtained also in more general metric spaces.

Theorem 3.5. Let � ⊂ R= be a non-empty set and let U > 0. Then U ∈ A(�) if and
only if dimA (�) < = − U.
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Proof. If dimA (�) < = − U, then U ∈ A(�) by Lemma 3.3.
Assume then that 0 < U ∈ A(�). Since U < =, by Theorem 3.4 there is U′ > U

such that also U′ ∈ A(�). Thus Lemma 3.2 yields dimA (�) ≤ = − U′ < = − U, as
desired. ut

Notice that the assumption U > 0 in Theorem 3.5 is essential: if � ⊂ R= and
dimA (�) = =, then 0 ∈ A(�), but dimA (�) ≮ = − 0.

4 Muckenhoupt weights

A measurable function F : R= → R is called a weight in R= if F(G) > 0 for almost
every G ∈ R= and

∫
�
F(G) 3G < ∞ for all balls � ⊂ R=. When F is a weight in R=

and � ⊂ R= is a measurable set, we write

F(�) =
∫
�

F(G) 3G.

The following classes of Muckenhoupt weights are important tools for instance in
harmonic analysis; we refer to [12, Chapter IV] for a thorough discussion. Mucken-
houpt weighted R= is also an example of a metric space with a doubling measure
and supporting a ?-Poincaré inequality, which are the standard assumptions in anal-
ysis on metric spaces; see for instance [6, 14] and the references therein for more
information.

Definition 4.1. Let F be a weight in R=. We say that F belongs to the Muckenhoupt
class

(a) �? , for 1 < ? < ∞, if there is a constant � such that(∫
�

F(G) 3G
) (∫

�

F(G)−
1
?−1 3G

) ?−1
≤ � (4.13)

for every ball � ⊂ R=.
(b) �1, if there is a constant � such that(∫

�

F(G) 3G
)

ess sup
G∈�

1
F(G) ≤ �, (4.14)

for every ball � ⊂ R=.
(c) �∞, if there are constants �, X > 0 such that

F(�)
F(�) ≤ �

(
|� |
|� |

) X
whenever � ⊂ R= is a ball and � ⊂ � is a measurable set.
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It is easy to verify directly from the �? condition (4.13) that if 1 < ? < ∞ and F
is a weight in R=, then

F ∈ �? if and only if F
− 1
?−1 ∈ � ?

?−1
. (4.15)

Moreover, an application of Hölder’s inequality shows that if 1 ≤ ? < @ < ∞, then
�? ⊂ �@ .

The class �∞ can be characterized as the union of all �? , for 1 ≤ ? < ∞, that is,

�∞ =
⋃

1≤?<∞
�? . (4.16)

Neither of the inclusions in (4.16) is trivial. The main tool for establishing both of
them is a reverse Hölder inequality, but we omit the details; see e.g. [12, Chapter IV,
Section 2]. We do not really need the class �∞ below, since all statements “F ∈ �∞”
could be replaced by the statement “F ∈ �? for some 1 ≤ ? < ∞”.

Example 4.2. Consider the weight F(H) = |H |−U for every H ∈ R= \ {0}. It is
straightforward to verify by direct computations thatF ∈ �1 if and only if 0 ≤ U < =,
and F ∈ �? , for 1 < ? < ∞, if and only if (1 − ?)= < U < =.

Our main interest in this section is in the generalizations of Example 4.2 to more
general distance functions, that is, for weights of the type F(H) = dist(H, �)−U, with
� ⊂ R= satisfying |� | = 0. The Aikawa condition is tailor-made for the study of this
problem; see [1, 2], in particular [2, p. 151].

Theorem 4.3. Let � ⊂ R= and U ∈ R, and define F(H) = dist(H, �)−U for every
H ∈ R=. Then the following assertions hold.

1. If 0 ≤ U ∈ A(�), then F ∈ �? for every 1 ≤ ? ≤ ∞.
2. If U < 0 and 1 < ? < ∞ are such that −U

?−1 ∈ A(�), then F ∈ �? .

Proof. Consider first part 1. If U = 0, then F(H) = 1 for every H ∈ R=, and it follows
that F ∈ �? for every 1 ≤ ? ≤ ∞. Assume then that 0 < U < = and that (3.9) holds
with a constant �1, that is,∫

� (G,A )
F(H) 3H ≤ �1A

=−U < ∞

for every G ∈ � and A > 0. This implies that F is locally integrable. Since U ∈ A(�)
and U > 0, we have |� | = 0. Therefore F(G) > 0 for almost every G ∈ R=, and thus
F is a weight.

Since �1 ⊂ �? for every ? ≥ 1, it suffices to show that F ∈ �1. Fix a ball
�(G, A) ⊂ R= and assume first that �(G, 2A) ∩ � ≠ ∅. Then �(G, A) ⊂ �(I, 3A), for
some I ∈ � , and so the assumed Aikawa condition (3.10) implies∫

� (G,A )
F(H) 3H ≤ �

∫
� (I,3A )

dist(H, �)−U 3H ≤ � (3A)−U = �A−U .
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On the other hand, if H ∈ �(G, A) \ � , then

1
F(H) = dist(H, �)U ≤ 3 (H, I)U ≤ (3A)U = �AU,

since U > 0. By combining the estimates above and recalling that |� | = 0, we obtain(∫
� (G,A )

F(H) 3H
)

ess sup
H∈� (G,A )

1
F(H) ≤ �.

This shows that the �1 condition (4.14) holds for the ball �(G, A) if �(G, 2A) ∩� ≠ ∅.
Assume then that �(G, 2A) ∩ � = ∅. In this case

1
2 dist(H, �) ≤ dist(G, �) ≤ 2 dist(H, �)

for every H ∈ �(G, A), and thus(∫
� (G,A )

F(H) 3H
)

ess sup
H∈� (G,A )

1
F(H) ≤ � dist(G, �)−U dist(G, �)U ≤ �.

Hence (4.14) holds also in the case �(G, 2A) ∩ � = ∅, and the proof of part 1 is
complete.

In part 2, we let
f(H) = F(H)−

1
?−1 = dist(H, �)

U
?−1

for every H ∈ R=. By part 1 we have f ∈ �1 ⊂ � ?

?−1
, and the claim F ∈ �? follows

from the duality property (4.15) of �? weights. ut

There is also a partial converse of Theorem 4.3, see Theorem 4.5 below.We recall
that a set � ⊂ R= is porous, if there exists a constant � such that for every G ∈ R=
and A > 0 there exists I ∈ R= such that �(I, �A) ⊂ �(G, A) \ � . Porosity can also be
characterized using the upper Assouad dimension:

Theorem 4.4. A set � ⊂ R= is porous if and only if dimA (�) < =.

For the proof of Theorem 4.4, see for instance [29, Theorem 5.2]. Note that by
Theorem 3.5 the conditions in Theorem 4.4 hold if and only if there is U > 0 such
that U ∈ A(�).

Theorem 4.5. Assume that � ⊂ R= is a non-empty porous set. Let U ∈ R and define
F(H) = dist(H, �)−U for every H ∈ R=. Then the following assertions hold.

1. If U ≥ 0, 1 ≤ ? < ∞, and F ∈ �? , then U ∈ A(�).
2. If U < 0, 1 < ? < ∞, and F ∈ �? , then −U?−1 ∈ A(�).

Proof. In part 1 we may assume that ? > 1. Let �0 = �(G, A) be a ball. Since � is
porous, there is I ∈ �0 such that �(I, �A) ⊂ �(G, A) \ � . Then dist(H, �) ≥ �

2 A for
every H ∈ � = �(I, �2 A), and since the measures of �0 and � are comparable, we
obtain
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�0

F(H)−
1
?−1 3H

) ?−1
≥ �

(∫
�

F(H)−
1
?−1 3H

) ?−1

≥ �
(∫
�

A
U
?−1 3H

) ?−1
≥ �AU .

On the other hand, the �? condition (4.13) for F ∈ �? gives(∫
�0

F(H) 3H
) (∫

�0

F(H)−
1
?−1 3H

) ?−1
≤ �.

By combining the two estimates above we obtain∫
�0

dist(H, �)−U 3H =
∫
�0

F(H) 3H ≤ �
(∫
�0

F(H)−
1
?−1 3H

)1−?
≤ �A−U,

and thus U ∈ A(�).
Then we consider part 2. If F ∈ �? , for 1 < ? < ∞, we have by the �? duality

in (4.15) that

dist(·, �)−(
−U
?−1 ) = dist(·, �)

U
?−1 = F

− 1
?−1 ∈ � ?

?−1
.

Hence the claim follows from part 1. ut

For porous sets we now have a complete characterization of the �? properties of
the distance functions.

Theorem 4.6. Let 1 < ? < ∞ and assume that � ⊂ R= is a non-empty porous set.
Let U ∈ R and define F(H) = dist(H, �)−U for every H ∈ R=. Then the following
assertions hold.

1. F ∈ �1 if and only if 0 ≤ U < = − dimA (�).
2. F ∈ �? if and only if

(1 − ?)
(
= − dimA (�)

)
< U < = − dimA (�). (4.17)

Proof. Since � is porous, dimA (�) < = by Theorem 4.4.
We consider first part 2. If 0 ≤ U < = − dimA (�), we have U ∈ A(�) by

Lemma 3.3 and thus part 1 of Theorem 4.3 implies F ∈ �? . On the other hand, if

(1 − ?)
(
= − dimA (�)

)
< U < 0,

then
0 <

−U
? − 1

< = − dimA (�).

FromLemma3.3weobtain −U
?−1 ∈ A(�) and henceF ∈ �? bypart 2 ofTheorem4.3.

Conversely, assume that F ∈ �? . If U > 0, part 1 of Theorem 4.5 implies
U ∈ A(�), and so U < = − dimA (�) by Theorem 3.5. If U = 0, then (4.17) holds
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since dimA (�) < = by porosity. Finally, if U < 0, then −U
?−1 ∈ A(�) by part 2 of

Theorem 4.5. Theorem 3.5 gives

0 <
−U
? − 1

< = − dimA (�),

showing that (4.17) holds also in this case. The proof of part 2 is complete.
Consider then part 1. If 0 ≤ U < = − dimA (�), the claim F ∈ �1 follows from

Lemma 3.3 and part 1 of Theorem 4.3 just as in part 2. Conversely, if F ∈ �1 and
U > 0, then U < = − dimA (�) by part 1 of Theorem 4.5 and Theorem 3.5. If U = 0,
then 0 ≤ U < = − dimA (�) holds since dimA (�) < = by porosity. Finally, it is easy
to see that U ≥ 0 is necessary in part 1, and this completes the proof. ut

Remark 4.7. The fact that the �? properties of the weights F(H) = dist(H, �)−U
depend on the dimension(s) of � ⊂ R= has certainly been part of the mathematical
folklore, at least for suitably nice sets � . Aikawa [1, 2] mentions explicitly the con-
nections between the Aikawa condition and �? weights. Horiuchi [15, 16] used a
different dimensional condition, called property %(B), in the study of �? properties
of distance weights and in particular distance weighted Sobolev-type embeddings. It
was shown in [27, Theorem 3.4] that also this property %(B) can be characterized us-
ing the upper Assouad dimension. A sufficient condition in the spirit of Theorem 4.3
was given in [7, Lemma 3.3] for subsets of _-regular sets of R=.

Theorem 4.6 was formulated in [8], where corresponding results were also ob-
tained in metric spaces in terms of the so-called lower Assouad codimension. Metric
space results of this type were considered in [3], as well, but using a completely
different approach and under the stronger assumption that both the space - and the
set � ⊂ - satisfy Ahlfors–David regularity conditions; see [3, Theorems 6 and 7].

5 Hardy–Sobolev inequalities

Hardy–Sobolev inequalities interpolate between the Sobolev inequality and the ?-
Hardy inequality. Indeed, for @ = ?∗ = =?

=−? inequality (5.18) is the Sobolev inequal-
ity, while for @ = ? we recover the ?-Hardy inequality.

Definition 5.1. Let 1 < ? ≤ @ ≤ =?

=−? < ∞ and let Ω ( R= be an open set. We say
that the (@, ?)-Hardy–Sobolev inequality holds inΩ if there is a constant� such that(∫

Ω

|D(G) |@ dist(G,Ω2)
@

?
(=−?)−=

3G

) 1
@

≤ �
(∫
Ω

|∇D(G) |? 3G
) 1
?

(5.18)

for every D ∈ �∞0 (Ω).
We also consider weighted versions of these inequalities and say that the (@, ?, V)-

Hardy–Sobolev inequality holds in Ω, for V ∈ R, if there is a constant � such that
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Ω

|D(G) |@ dist(G,Ω2)
@

?
(=−?+V)−=

3G

) 1
@

≤ �
(∫
Ω

|∇D(G) |? dist(G,Ω2)V 3G
) 1
?

(5.19)
for every D ∈ �∞0 (Ω).

For @ = ?, the inequality in (5.19) is called the (?, V)-Hardy inequality.
In this final section we formulate (without proofs) sufficient and necessary con-

ditions for Hardy–Sobolev inequalities in Ω ⊂ R=, given in terms of the upper
and lower Assouad dimensions (and also other dimensions) of the complement
Ω2 = R= \Ω. It has been understood already for a long time that sufficient conditions
for these inequalities naturally split into two cases: either the complement Ω2 has to
be sufficiently “thick” or sufficiently “thin”. The thickness has been formulated, for
instance, using capacity density or Hausdorff content density, and thinness using the
Aikawa condition.With Assouad dimensions this duality becomes more transparent:
thickness means that Ω2 has large lower Assouad dimension, while thinness means
that Ω2 has small upper Assouad dimension.

It can also be shown that suitable combinations of such thick and thin parts give
sufficient conditions for Hardy–Sobolev inequalities, as well, but these cases will not
be discussed in this work; see e.g. [25, Section 7] for details.

In the case of thin complements, the Hardy–Sobolev inequalities can be obtained
by using the following general twoweight embedding result together with theAikawa
condition and the knowledge about the �? properties of the distance functions.

Theorem 5.2. Let 1 < ? ≤ @ < ∞ and let (F, E) be a pair of weights such that
F ∈ �∞ and f = E−

1
?−1 ∈ �∞. Assume that there exists a constant �1 such that(

1
|� |1− 1

=

) ?
F(�)

?

@ f(�) ?−1 ≤ �1 (5.20)

for all balls � ⊂ R=. Then there exists a constant � such that(∫
R=
|D(G) |@F(G) 3G

) 1
@

≤ �
(∫

R=
|∇D(G) |?E(G) 3G

) 1
?

for every D ∈ �∞0 (R
=).

Theorem 5.2 can be proved using the mapping properties of Riesz potentials
and maximal operators. Muckenhoupt and Wheeden [31, Theorem 1] gave a single
weight control for the Riesz potential �1 in terms of a fractional maximal operator,
and Pérez [32, Theorem 1.1] proved a two weight ! ?–!@ control for such maximal
operators under the assumption in (5.20). The claim of Theorem 5.2 then follows
from the the pointwise estimate |D(G) | ≤ ��1 |∇D | (G) for the Riesz potential and the
boundedness properties of the maximal operator. See also [33] and [8] for discussion
and generalizations of these results to metric spaces.

From Theorem 5.2 we obtain the following weighted global Hardy–Sobolev
inequalities where the integrals can be taken over the whole R=. This is possible
since dimA (�) < = by the assumptions, and consequently |� | = 0.
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Theorem 5.3. Let � ⊂ R= be a non-empty closed set and assume that

1 < ? ≤ @ ≤ =?

= − ? < ∞

and
dimA (�) < min

{
@

?
(= − ? + V), = − V

? − 1

}
.

Then the inequality(∫
R=
|D(G) |@ dist(G, �)

@

?
(=−?+V)−=

3G

) 1
@

≤ �
(∫

R=
|∇D(G) |? dist(G, �)V 3G

) 1
?

(5.21)
holds for every D ∈ �∞0 (R

=).

In particular, if � = Ω2 satisfies the assumptions in Theorem 5.3, then the
(@, ?, V)-Hardy inequality holds in Ω. The dimensional condition in Theorem 5.3,
together with Theorem 4.3, implies that the weights in (5.21) satisfy the �∞ con-
ditions in Theorem 5.2, and then (5.20) for these weights can be checked with the
help of the Aikawa condition; see [8, Section 4] for the computations (in the metric
setting).

Actually, by the results of Horiuchi [15] (see also [16] and [27, Section 5]) the
bound dimA (�) < = − V

?−1 can be removed if dimA (�) < = − 1, while by [27,
Example 4.4] this bound is really needed when dimA (�) ≥ = − 1 and also sharp at
least when dimA (�) = =−1. The proofs in [15] for the case dimA (�) < =−1 however
require a completely different approach based on relative isoperimetric inequalities.

On the other hand, it is not hard to show that for V ≥ 0 the bound dimA (�) <
@

?
(=− ? + V) is also necessary for the global Hardy–Sobolev inequality to hold with

respect to � (see [27, Theorem 6.1]). Thus we have the following characterization
in the case V = 0.

Theorem 5.4. Let 1 < ? ≤ @ < =?

=−? < ∞ and assume that � ⊂ R= is a non-empty
closed set. Then there exists a constant � such that(∫

R=
|D(G) |@ dist(G, �)

@

?
(=−?)−=

3G

) 1
@

≤ �
(∫

R=
|∇D(G) |? 3G

) 1
?

, (5.22)

for every D ∈ �∞0 (R
=), if and only if

dimA (�) <
@

?
(= − ?).

Under some additional conditions the bound dimA (�) < @

?
(=−?+V) is necessary

also for V < 0, see [27, Theorem 6.2] and compare also to Theorem 5.7 below.
We now turn to the case of thick complements. A well-known sufficient condition

for the unweighted ?-Hardy inequality in Ω ⊂ R= is the uniform ?-fatness of
the complement Ω2 , see e.g. [28, 34]. Uniform fatness is a density condition for the



42 Juha Lehrbäck

variational ?-capacity, but in factΩ2 is uniformly ?-fat if and only ifΩ2 is unbounded
and satisfies the _-Hausdorff density condition in Definition 2.5 for some _ > =− ?;
see [19, Section 2.4] for a discussion.

The Hausdorff content density condition is a natural assumption also for weighted
Hardy inequalities, but for V ≥ ? − 1 an additional accessibility condition for the
boundary mΩ is needed. This leads to the following theorem.We omit the details and
refer to [19] and [24] for the definitions and proofs; see also [5] for recent progress
concerning such accessibility conditions.

Theorem 5.5. Let 1 < ? < ∞, _ ≥ 0, and V ∈ R be such that _ > = − ? + V.
Assume that Ω ⊂ R= is an open set such that Ω2 is unbounded and satisfies the _-
Hausdorff content density condition.Moreover, if V ≥ ?−1, we assume an additional
accessibility condition for mΩ. Then the (?, V)-Hardy inequality holds in Ω.

Combining thiswith Theorem2.7 and an interpolation result in [27, Theorem2.1],
we obtain the corresponding Hardy–Sobolev inequalities under an assumption for
the lower Assouad dimension of the complement.

Theorem 5.6. Let 1 < ? ≤ @ ≤ =?

=−? < ∞ and V ∈ R and assume that Ω ⊂ R=

is an open set such that Ω2 is unbounded and dimA (Ω2) > = − ? + V. Moreover,
if V ≥ ? − 1, we assume an additional accessibility condition for mΩ. Then the
(@, ?, V)-Hardy–Sobolev inequality holds in Ω.

Proof. Let _ ≥ 0 be such that dimA (Ω2) > _ > = − ? + V. By Theorem 2.7 the
complementΩ2 satisfies the _-Hausdorff content density condition (2.4) and thus the
(?, V)-Hardy inequality holds in Ω by Theorem 5.5. The (@, ?, V)-Hardy–Sobolev
inequality then follows from [27, Theorem 2.1]. ut

We have seen in Theorems 5.3 and 5.6 that the “dual” conditions

dimA (Ω2) <
@

?
(= − ? + V) and dimA (Ω

2) > = − ? + V,

possibly together with some additional requirements, are sufficient for the (@, ?, V)-
Hardy–Sobolev inequality in Ω ⊂ R=. As was already mentioned, also suitable
combinations of these conditions suffice for Hardy–Sobolev inequalities, and this
rules out the possibility that the conditions above could characterize the validity
of Hardy–Sobolev inequalities. Nevertheless, these conditions are not that far from
being also necessary, and at least the dimensional bounds @

?
(=− ? + V) and =− ? + V

are optimal. This can be seen from the following result, which is [27, Theorem 4.6].
Interestingly, also the Hausdorff dimension and the (lower) Minkowski dimension
are needed here, and they can not be changed to dimA (Ω2) in the respective bounds.
However, in the case @ = ? the inequalities in these dimensional lower bounds can
be made strict, see [22]. From this it follows that if

dimH (Ω2) ≤ = − ? + V ≤ dimA (Ω2),

then the (?, V)-Hardy inequality can not hold in Ω.
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Theorem 5.7. Let 1 < ? ≤ @ < =?

=−? < ∞ and V ∈ R, and assume that the (@, ?, V)-
Hardy–Sobolev inequality (5.19) holds in an open set Ω ⊂ R=.
1. If V ≥ 0 and @

?
(= − ? + V) ≠ =, then either

dimA (Ω2) <
@

?
(= − ? + V) or dimH (Ω2) ≥ = − ? + V.

2. If V < 0 and Ω2 is compact and porous, then either

dimA (Ω2) <
@

?
(= − ? + V) or dimM (Ω

2) ≥ = − ? + V.

Examples in [27] show that for V < 0 the compactness assumption can not
be completely omitted. However, compactness can be relaxed to the condition that
G ↦→ dist(G,Ω2)V is locally integrable, which in turn holds, for instance, if we assume
that dimM (Ω2 ∩ �) < = + V for all balls � centered at Ω2 . It is not known if the
porosity assumption is necessary or if the lower Minkowski dimension (instead of
the Hausdorff dimension) is really needed in the case V < 0.

In conclusion, the moral of this final section is not so much in the actual for-
mulations of all these conditions for Hardy–Sobolev inequalities, but rather in the
fact that all five notions of dimensions mentioned in this article (Hausdorff, upper
and lower Assouad, and upper and lower Minkowski) have made an appearance.
Moreover, in the light of examples at least three of these (Hausdorff, upper and lower
Assouad) are certainly needed in order to state the optimal conditions for the validity
of Hardy–Sobolev inequalities in a somewhat uniform and condensed way.
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A survey on prescription of multifractal behavior

Stéphane Seuret

Abstract Multifractal behavior has been identified and mathematically established
for large classes of functions, stochastic processes and measures. Multifractality has
also been observed on many data coming from Geophysics, turbulence, Physics,
Biology, to name a few. Developing mathematical models whose scaling and multi-
fractal properties fit those measured on data is thus an important issue. This raises
several still unsolved theoretical questions about the prescription of multifractality
(i.e. how to build mathematical models with a singularity spectrum known in ad-
vance), typical behavior in function spaces, and existence of solutions to PDEs or
SPDEs with possible multifractal behavior. In this survey, we gather some of the
latest results in this area.

Key words: Hausdorff measure and dimension, fractals and multifractals, Hölder,
Sobolev and Besov spaces, wavelets, Baire category and spaces
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1 Multifractality between pure and applied mathematics

The Suppnotion of multifractal functions and measures can be traced back to the
interest of physicists in the Hölder singularities structure in fully developed turbu-
lence, which is described in terms of large deviations for the distribution at small
scales of Mandelbrot random multiplicative cascades in [35], and in a geometric
setting in the version of the so-called multifractal formalism for functions proposed
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by Frisch and Parisi [23], see Section 4. Another source leading to multifractal ideas
is provided by the works of Henschel & Procaccia [26] and Halsey & al. [25]. Since
then, multifractal analysis was further developed in dynamical systems theory and
geometric measure theory, and has become a standard tool to describe the fine geo-
metric structure of objects possessing nice invariance properties, such as self-similar
and self-affine measures and functions, many classes of stochastic processes such as
Lévy processes and more general Markov processes, as well as random measures
emerging from multiplicative chaos theory.

Let us recall the notion of singularity spectrum of a function, leading to multi-
fractals.

Let 3 ≥ 1 be an integer. Given a real function 5 ∈ !∞
;>2
(R3) and G0 ∈ R3 , 5 is

said to belong to C� (G0), for some � ≥ 0, if there exists a polynomial % of degree
at most b�c and a constant � > 0 such that

for G close to G0, | 5 (G) − %(G − G0) | ≤ � |G − G0 |� .

Definition 1.1. The pointwise Hölder exponent of 5 ∈ !∞
;>2
(R3) at G0 is

ℎ 5 (G0) = sup
{
� ≥ 0 : 5 ∈ C� (G0)

}
,

and 5 is said to have a Hölder singularity of order ℎ 5 (G0) at G0.
The singularity spectrum � 5 of 5 is the map:

� 5 : � ∈ [0,∞] ↦−→ dim � 5 (�), where � 5 (�) := {G0 ∈ R3 : ℎ� (G0) = �}.

The notation dim stands for the Hausdorff dimension, and by convention dim ∅ =
−∞.

The multifractal spectrum � 5 encapsulates key information on a given function
5 , in particular it carries a description of the distribution of the singularities of 5 .
But the computation of � 5 often raises deep mathematical questions (for instance,
it took almost 130 years to find the multifractal spectrum of the famous Riemann

series
+∞∑
==1

sin(=2cG)
=2 ), and in most cases the exact value of � 5 happens to be not

directly accessible, neither theoretically nor numerically.
Fortunately, the notion of multifractal formalism furnishes a clever way to cir-

cumvent this difficulty and to compute the explicit value of the spectrum of large
classes of measures and functions. Also, multifractal formalism provides ideas to
develop numerical algorithms able to estimate � 5 on real-life data. The main idea
is that for very large classes of functions 5 (and also for other mathematical objects
like measures, stochastic processes - such examples will be given in this paper), � 5

is equal to the Legendre transform of the so-called !@-spectrum g 5 of 5 : this !@-
spectrum is computed directly using the values of 5 , and is numerically accessible.
When these two quantities (� 5 and the Legendre transform of g 5 ) coincide, it is
said that 5 satisfies the multifractal formalism. Examples of !@-spectra for functions
(and measures) based on increments, wavelet coefficients or wavelet leaders, are
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Fig. 1 Image and estimated multifractal spectrum of different color levels of a satellite image.
Courtesy H. Wendt.

given in the upcoming sections (see (4.2), (4.3), (4.9) or (4.10)). The intuition that
a multifractal formalism should hold is due to U. Frisch and G. Parisi, we refer the
reader to Section 4 for an account on the ideas leading to this formula.

The multifractal formalism, and its validity for many mathematical models, ex-
plains the success of the multifractal approach used as classification tool in signal
and image processing. Indeed, algorithms have been developed (mainly based on
wavelet theory, see [38] for the original WTMMmethod and more recently [1] for a
mathematical study of the wavelet leaders algorithm and the latest developments and
algorithms based on wavelet leaders) to estimate numerically !@-scaling functions,
the stability and efficiency of these algorithms being mathematically grounded. Us-
ing these algorithms, it is now established that many data coming from Geophysics,
turbulence, Physics, Biology, exhibit non-linear !@-scaling functions, which for a
given function 5 is interpreted thanks to the Frisch-Parisi heuristics as a non-trivial
singularity spectrum � 5 of 5 . Examples of data and estimated singularity spectra
are plotted in Figure 1 and 2.

Resuming the above, we have on one side many mathematical objects 5 with
non-linear !@-scaling functions and a non-trivial singularity spectrum � 5 , and
on the other side an impressive quantity of signals, images and multivariate, multi-
dimensional data whose estimated !@-spectra and singularity spectra are non-trivial.
It is worth asking which mathematical objects are indeed the most relevant to model
the observed data, and how to create models with any reasonable multifractal behav-
ior.

This general problematics can be understood in various ways, and raises several
theoretical questions, most of them still being open:

1. What are the mappings f : R+ → [0, 3] ∪ {−∞} that are admissible to be a
multifractal spectrum, i.e. there exists a function 5 : R3 → R such that� 5 = f?
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Fig. 2 Two FMRI signals of a resting (in black) and acting (in red) patient. Comparison between
their estimated multifractal spectrum. Courtesy H. Wendt.

2. What are the mappings f : R+ → [0, 3] ∪ {−∞} that are admissible to be a
homogeneous multifractal spectrum, i.e. there exists a function 5 : R3 → R
such for every cube � ⊂ R3 with non-empty interior, � 5� = f where 5� stands
for the restriction of 5 on �?

3. Given an admissible (homogeneous or not) singularity spectrum f : R+ →
[0, 3] ∪ {−∞}, is there a functional space in which Baire typical functions have
f as singularity spectrum?Do typical functions satisfy amultifractal formalism?

4. Given an admissible (homogeneous or not) singularity spectrum f : R+ →
[0, 3] ∪ {−∞}, is there a differential equation, a PDE or a stochastic (P)DE
whose solution has f as singularity spectrum?

These problems have their counterpart in terms of !@-spectra: replacing every-
where f : R+ → [0, 3] ∪ {−∞} by g : R → R, one may ask for the admissible
g that can be the !@-spectrum of a function (homogeneous or not), and if such an
!@-spectrum is typical in some functional space.

The same questions arise when considering probability measures instead of func-
tions. The main difference with the function setting is that there are additional
constraints when dealing with measures, see Sections 2 and 4.1. Although the tools
used in the two contexts (functions and measures) are of different nature, a connec-
tion between the two situations is provided by the following theorem from [9], based
on wavelet analysis.

Theorem 1.2. Let ` be a probability measure on R3 such that there exist U,� > 0
satisfying that for every G ∈ R3 and 0 ≤ A ≤ 1, `(�(G, A)) ≤ �AU.

Consider the function �` : R3 → R whose wavelet coefficients are given by
3_ = `(_) for every dyadic cube _ ∈ Λ (see Section 4.2 for definitions).

Then the multifractal spectra of ` and �` coincide.

Our purpose here is to provide a survey on recent results and on some open
problems related to these various research directions, which combine many ideas
coming from (and having applications to) geometric measure theory, functional
and harmonic analysis, and real analysis, as well as ergodic theory and dynamical
systems.
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2 Prescription of exponents and local dimensions

For a given mapping 5 : R3 → R belonging to !∞
;>2
(R3), its associated pointwise

Hölder exponent mapping ℎ 5 : G ↦→ ℎ 5 (G) may be very erratic, changing violently
from one point to the other. Nevertheless ℎ 5 (viewed as a function) is quite well
understood, as confirmed by the following theorem by S. Jaffard which provides
a full characterization of ℎ 5 [27, 29]. Recall that � log (R3) is the space of those
functions 5 : R3 → R satisfying that there exists� > 0 such that for every G, H ∈ R3
with |G − H | ≤ 1/2, | 5 (G) − 5 (H) | ≤ � | log |G − H | |−1.

Theorem 2.1. When 5 ∈ � log (R3), the mapping ℎ 5 is a liminf of a sequence of
continuous functions.

Conversely, let � : R3 → R+ ∪ {+∞} be a liminf of a sequence of continuous
functions. There exists a function 5 : R3 → R, 5 ∈ � log (R3), such that for every
G ∈ R3 , ℎ 5 (G) = � (G).

Let us also mention that in [5] the authors build a continuous nowhere differen-
tiable stochastic process ("G)G≥0 whose pointwise Hölder exponents have the most
general form, i.e. the mapping G ↦→ ℎ" (G) ∈ (0, 1) can be any liminf of a sequence
of continuous functions.

It is a natural question to investigate the same issues for local dimensions for
measures.

Definition 2.2. LetM( ) be the set of Borel probability measures on a Borel set
 ⊂ R3 .

For ` ∈ M(R3), the support of ` is the set

Supp(`) = {G ∈ R3 : `(�(G, A)) > 0 for every A > 0}.

The (lower) local dimension of ` at G ∈ Supp(`) is

ℎ` (G) = lim inf
A→0+

log `(�(G, A))
log A

(2.1)

and the singularity spectrum of ` is defined for � ∈ R ∪ {+∞} by

�` (�) = dim �` (�) where �` (�) = {G ∈ Supp(`) : ℎ` (G) = �}.

It is common (and in many situations, relevant and important) to look at points
G at which (2.1) turns out to be a limit (and not only a liminf). Nevertheless, in this
article only lower local dimensions are considered (we will forget the term "lower"
in the following), since we are interested in quantities defined for all G ∈ Supp(`).

Definition 2.3. A function 5 (resp. a measure `) on R3 is called homogeneous (in
short: HM) if the restriction of 5 (resp. `) on any finite subcube � ⊂ R3 has the
same singularity spectrum as 5 (resp. `).

The same definition applies to a function or measure when R3 is replaced by
[0, 1]3 .
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One could expect that an analog of Theorem 2.1 should hold for local dimensions
of measures. Unfortunately, the situation is not as clear, as proved by the next lemma
[17].

Lemma 2.4. Let ` ∈ M(R3) with a support containing a cube * ⊂ R3 . If the
mapping G ↦→ ℎ` (G) is continuous on *, then ℎ` is locally constant and equal to 3
on*.

Last lemma leads to the two following open problems: What are the admissible
mappings � : R3 → R+ satisfying � = ℎ` for some probability measure `? Given
an admissible mapping �, can one explicitly build a measure ` ∈ M(R3) such that
ℎ` = �?

Even if all these questions aremathematically relevant and raise delicate questions
(in geometric measure theory for instance), in many situations it is even more
important to construct functions with prescribed singularity spectrum. This is the
case in particular when trying to model real-life data, for which essentially only
global quantities (like the !@-spectrum) are accessible.

3 Prescription of multifractal behavior

As expected, the prescription of singularity spectrum for functions or measures is
more involved than that of exponents. Indeed, there is no obvious characterization
for the admissible singularity spectrum for functions. Yet, using wavelet techniques,
S. Jaffard was able to prove the following theorem [28]. Let

R =
{
f : R+ → [0, 3] ∪ {−∞} :

{
∃ bounded interval � ⊂ R+ and U ∈ [0, 3]
such that f = U11� + (−∞)11R+\�

}
.

Theorem 3.1. Letf : R+ → [0, 3]∪{−∞} be the supremumof a countable sequence
of functions (f=)=≥1 ∈ R. Then there exists a continuous function 5 : R3 → R such
that � 5 = f.

Although probably not optimal, this theorem already covers a large class of singu-
larity spectra, certainly sufficient to mimic precisely all the singularity spectra that
can be estimated on real data.

In particular, any concave mapping f : R+ → [0, 3] ∪ {−∞} can be written as
sup=∈N f= for some well chosen functions f= ∈ R, hence it is possible to build a
function 5 : R3 → R such that � 5 = f.

The same questions were addressed for measures first in [17] and then in [7]. The
admissible singularity spectra for measures are not characterized either, but when
compared to spectra of functions, there are additional constraints: if 3` = f for some
` ∈ M(R3), then f(ℎ) ≤ min(ℎ, 3) (see [13, 39]).

Another surprising constraint obtained in [17] is that the support of the singularity
spectrum of a 1-dimensional HMmeasure contains an interval. We call Supp(f) the
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support of a function f : R3 → R, and by abuse of notation, if f : R→ R+∪{−∞},
Supp(f) = {� : f(�) ≥ 0}.

Proposition 3.2. For any non-atomic HM probability measure ` ∈ M(R), the set
Supp(�`) ∩ [0, 1] is necessarily an interval of the form [U, 1], where 0 ≤ U ≤ 1.

This proposition leads to the following notation: for f : R+ → [0, 1] ∪ {−∞},
consider the mapping

f† (�) = max
(
f(�), 0 · 11[inf (Supp(f)) ,sup(Supp(f)) ] (�)

)
.

Essentially, f† fills the gaps in the support of f by replacing the value −∞ by 0.
The result concerning the prescription of singularity spectrum of measures ob-

tained in [17] is the following.

Theorem 3.3. Letf : R+ → [0, 1]∪{−∞} be the supremumof a countable sequence
of functions (f=)=≥1 ∈ R satisfying in addition that for every = ≥ 1, calling �= the
interval on which f= is not −∞,

• �= ⊂ [0, 1],
• �= is closed,
• f= (G) ≤ G for G ∈ �=.

Then:

1. There exists ` ∈ M(R) such that �` = f.
2. There exists a HM measure ` ∈ M(R) with support equal to [0, 1] such that
�` = f

†, and �` (1) = 1.

Observe that although the class of singularity spectra obtained here is quite large,
only local dimensions less than 1 are dealt with, and only the one-dimensional case
is covered. Theorem 3.3 is completed by the result by Barral [7].

Theorem 3.4. Let f : R+ → [0, 3] ∪ {−∞} be an upper semi-continuous function
with support included in [U, V] for some 0 < U < V < +∞, satisfying f(ℎ) ≤ ℎ for
every ℎ ∈ [U, V], and such that f(ℎ) = ℎ for some ℎ. Then there exists ` ∈ M(R3)
such that �` = f.

In the last theorem, Barral was also able to build measures that were "homoge-
neous" in the sense that the restriction of ` to any bounded cube � ⊂ R3 such that
`(�) ≠ 0 has the same singularity spectrum as ` itself. A comparison between The-
orems 3.3 and 3.4 yields that (at least) in dimension 1, the measures constructed by
Barral are necessarily not supported by a full interval (their support is a Cantor-like
set), otherwise f should be replaced by f†.

Theorems 3.1, 3.3 and 3.4 are not entirely satisfying. Indeed,

• the construction used in Theorem 3.1 does not guarantee that the corresponding
spectrum is homogeneous. Homogeneous spectra are yet very common (for in-
stance, trajectories of stationary processes usually exhibit homogeneous spectra).
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• in the three previous theorems, even if the prescribed spectrum is concave, the
corresponding function or measure a priori does not satisfy a multifractal for-
malism.

• the functions and measures built along the proofs of Theorems 3.1 and 3.3 are not
"typical" in any sense, and may essentially appear, from the modeling standpoint,
as mathematical extreme toy examples.

These issues will be addressed in the next sections.

4 Prescription of multifractal formalisms

Let us very quickly recall the intuition by Frisch & Parisi [23], who studied the
velocity E of a turbulent fluid in a bounded domainΩ ⊂ R3. More precisely, inspired
by the seminal works by Kolmogorov on turbulent fluids and the study of the local
fluctuations of their velocity, Frisch and Parisi were interested in the moments of the
increments of E defined by

for every @ ∈ R, (E (@, ;) =
∫
Ω

|E(G + ;) − E(G) |@3G. (4.2)

For real data, @ being fixed, it has been observed that when |; | becomes small,
(E (@, ;) obeys a scaling law:

(E (@, ;) ∼ |; |ZE (@) for some exponent ZE (@) ∈ R.

The mapping @ ↦→ ZE (@) is called the scaling function of the velocity of the
fluid. It can be seen that if E is modeled at small scales by a fractional Brownian
motion of index �0 (as did Kolmogorov for instance), then ZE (@) is linear with
slope �0. However, in the 1980’s, numerical experiments for the velocity show that
ZE (@) is non-linear and concave. The seminal idea by Frisch and Parisi consists
in interpreting this non-linearity in terms of multifractality of E, via the following
heuristic argument.

Replacing Hausdorff by box dimension, and making all kind of rough approxima-
tions (i.e. assuming that limits exist, etc), for all points G ∈ R3 at which ℎE (G) = �,
one has |E(G + ;) −E(G) | ∼ |; |� for small ;. Since dim �E (�) = �E (�), there should
exist approximately |; |−�E (� ) cubes of size ; in the domain Ω containing points G
which are singularities of order � for the velocity E. All these intuitions lead to the
estimates

((@, ;) =
∫
Ω

|E(G + ;) − E(G) |@3G ∼
∑
�

|; |@� |; |−�E (� ) |; |3 ∼
∑
�

|; |@�−�E (� )+3.

When |; | → 0, the greatest contribution is obtained for the smallest exponent:

ZE (@) = inf
�
(@� − �E (�) + 3).
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The corresponding mapping @ ↦→ ZE (@) is called the !@-spectrum or the scaling
function of E - soon we will see more relevant formulas for ZE (@) and how to define
it for measures. By inverse Legendre transform, one deduces that

�E (�) = inf
@∈R
(@� − ZE (@) + 3)

which justifies that �E has a concave shape.
It is striking that despite the series of crude approximations, this intuition has

proved to hold true in many (if not most of) situations, after some renormalization
and suitable choices for the scaling functions.

Definition 4.1. We call multifractal formalism any formula relating the singularity
spectrum of a function (or a measure) to a scaling function via a Legendre transform.

For almost 30 years now, many efforts have been made to prove the validity of
multifractal formalism(s) in various functional spaces, for many mathematical ob-
jects (self-similar or self-affine functions and measures) including random processes
(Mandelbrot cascades, Gaussian multiplicative chaos, Lévy processes). This line of
research was constantly followed and fostered by applications which gave mathe-
maticians lots of signals and physical phenomena to study and work on, see Figures
1 and 2. In particular, stable algorithms to estimate !@-spectra of data have been
developed, furnishing to the scientific community many robustly analyzed sets of
data [1].

A remaining question though lies in the existence of a functional setting in which
a given multifractal behavior would be "generic". This is known after [30] as the
Frisch-Parisi conjecture, which can be formulated as follows:

Conjecture 4.2. Given any admissible concave mapping f : R+ → [0, 3] ∪ {−∞},
is there a functional space in which typical functions have f as singularity spectrum
and satisfy a multifractal formalism?

Notice that ideas leading to a multifractal formalism can also be found in thermo-
dynamics (see [25, 26] and the large literature around thermodynamical formalism).
This outlines the universality of the approach consisting in describing local fluctua-
tions via the (Legendre transform of) global statistical quantities computed directly
on the object (function, measure, random process) under consideration.

Fromnowon, andwithout loss of generality,we restrict our statements tomeasures
and functions supported in the cube [0, 1]3 .

4.1 Prescription of multifractal formalism for measures

In case of measures ` ∈ M([0, 1]3), the formula for the !@-spectrum is quite
standard and given by
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g` (@)

@
0

−3

1

�` (� ) = g∗̀ (� )

�

0

3

Fig. 3 Left: !@-spectrum of ameasure ` on [0, 1].Right:The corresponding singularity spectrum
of ` when it satisfies a multifractal formalism.

g` (@) = lim inf
9→+∞

1
− 9 log2

∑
_∈D 9 : ` (_)≠0

`(_)@ , (4.3)

whereD 9 stands for the set of dyadic cubes _ 9 ,: = 2− 9 : + [0, 2− 9 ]3 , : ∈ Z3 , of gen-
eration 9 ∈ Z (i.e. dyadic cubes with side-length equal to 2− 9 ). It is easily seen that g`
is always concave, non-decreasing, and that −3 ≤ g` (0+) ≤ g` (1) = 0. In addition,
the support of g` is equal to R when lim supA→0+

log(inf {` (� (G,A )): G∈Supp(`) })
log A < +∞,

and it is [0, +∞) when the same quantity is infinite [7].
Recall that the Legendre transform of a mapping g : R→ R (used in the previous

section) is defined for � ≥ 0 as

g∗ (�) := inf
@∈R
(@� − g(@)).

Barral solved in [7] the following inverse problem.

Theorem 4.3. Let g : R → R be concave, non-decreasing, with −3 ≤ g(0+) ≤
g(1) = 0. There exists a probability measure ` ∈ M([0, 1]3) compactly supported,
such that g` = g and ` satisfies the multifractal formalism, i.e. �` = g∗.

See Figure 3 for an illustration.
The drawback of this first important step is that the measure constructed by

Barral in [7] has again a Cantor-like set as support (so it is not fully supported on
[0, 1]3), hence is not suitable to model any real-life signal supported by, say, an
interval. The result is reinforced in the upcoming paper [10], in which we build
fully supported measures satisfying a prescribed multifractal formalism, which in
addition are almost-doubling in the following sense.

A Borel set function is a mapping ` associating with every Borel set � ⊂ [0, 1]3
a positive real number `(�) ∈ [0, +∞]. A Borel set function ` is almost-doubling
when there exists a non increasing function \ : (0, 1] → R+ \ {0} such that :
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• \ (1) = 0 and limA→0+
\ (A )

log(A ) = 0
• there is a constant � ≥ 1 such that for all G ∈ [0, 1]3 and A ∈ (0, 1] one has

�−14−\ (A )`(�(G, A)) ≤ `(�(G, 2A)) ≤ �4\ (A )`(�(G, A)). (4.4)

When \ ≡ 0, then ` is said to be doubling.
Doubling and almost-doubling measures occupy a special place in geometric

measure theory since they are easier to deal with in many situations - such properties
guarantee a certain stability of the values of ` in the sense that `(�) and `(�′) have
comparable values as soon as � and �′ are two balls of comparable radii that are
close to each other. It is thus important to investigate the possible combination of
these properties with the multifractal ones, as done in the following theorem proved
in [10].

Theorem 4.4. Let g : R → R be concave, non-decreasing, with −3 = g(0+) ≤
g(1) = 0.

Then there exists an HM almost doubling measure ` ∈ M([0, 1]3) with full
support in [0, 1]3 such that g` = g and ` satisfies the multifractal formalism, i.e.
�` = g

∗.

Although Gibbs measures associated with Hölder regular potentials and smooth
maps provide examples of doubling measures with non-trivial multifractal behavior,
it may seem surprising that the almost doubling property (which, as said above, limits
the local variations of ameasure) does not constitute a constraint from themultifractal
formalism standpoint: every (admissible) concave mapping can be obtained as the
singularity spectrum of a compactly supported probability measure satisfying the
multifractal formalism.

Theorem 4.4 leaves open interesting questions in ergodic theory and dynamical
systems, and geometric measure theory, which to the best of our knowledge are not
completely addressed yet:

1. Can the almost doubling property be simplified in a "simple" doubling property
in Theorem 4.4?

2. Given an almost doubling measure `, is there a doubling measure ˜̀with same
multifractal behavior as `?

3. Is it possible to find a Hölder potential on a suitable dynamical system such
that the associated invariant measure satisfies the multifractal formalism with a
!@-spectrum given in advance?

Remark 4.5. In Theorem 4.4, it is possible to impose additional conditions on the
measures ` so that the same result (�` = g∗) holds. One useful condition, which
will be used later, is the following.

Definition 4.6. Let Θ be the set of non decreasing functions \ : N→ R∗+ such that:

1. \ ( 9) = >( 9) as 9 →∞
2. \ (0) = 0
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3. for all Y > 0, there exists 9Y ∈ N such that for all 9 ′ ≥ 9 ≥ 9Y , \ ( 9 ′) − \ ( 9) ≤
Y( 9 ′ − 9).

A measure ` ∈ M([0, 1]3) (or ` ∈ M(R3)) satisfies property (P) if there exist
�, B1, B2 > 0 such that:

(P1) for all 9 ∈ N and _ ∈ D 9 , if `(〈) ≠ 0, then

�−12− 9B2 ≤ `(_) ≤ �2− 9B1 . (4.5)

(P2) There exists \ ∈ Θ such that for all 9 , 9 ′ ∈ Nwith 9 ′ ≥ 9 , and all _, _̃ ∈ D 9 such
that `(〈) ≠ 0, `( 〈̃) ≠ 0, m_ ∩ m_̃ ≠ ∅, and _′ ∈ D 9′ such that _′ ⊂ _:

�−12−\ ( 9)2( 9
′− 9)B1`(_′) ≤ `(_̃) ≤ �2\ ( 9)2( 9

′− 9)B2`(_′). (4.6)

Heuristically, this last condition yields for every dyadic cube 〈∈ D 9 a control of
the `-mass of the cubes 〈̃ ∈ D 9̃ with 9̃ ≥ 9 and 〈̃ ⊂ 3〈. It is easily checked on
self-similar measures satisfying an open-set condition for instance.

In [10], it is proved that there existmeasures satisfying (P) forwhich the conclusion
of Theorem 4.4 holds.

4.2 Prescription of multifractal formalism for functions

While the definition of the !@-spectrum for measures is quite standard and intuitive,
finding a suitable formula for the !@-spectrum of functions is not straightforward.
Indeed, one easily sees that equation (4.2) does not allow one to catch and describe
the local regularity characteristics of smooth functions (with pointwise exponents
greater than 1). Many alternative formulas have been proposed, and most of them
are based on wavelets. It is thus useful at this point to set the notation concerning
wavelets coefficients and wavelet leaders.

Let Φ : R3 → R be a scaling function and consider an associated family of
smooth wavelets Ψ = {k (8) }8=1,...,23−1 belonging to �A (R3), with A ∈ N∗ (for a
general construction, see [37, Ch. 3]). For simplicity, we assume that Φ and the
wavelets Ψ are compactly supported [19]. For every 9 ∈ Z, recall that D 9 is the set
of dyadic cubes of generation 9 , i.e. if : = (:1, ..., :3) ∈ Z3 and

_ 9 ,: :=
∏

8=1,...,3
[:82− 9 , (:8 + 1)2− 9 ) ⊂ R3

then D 9 = {_ 9 ,: : : ∈ Z3} (see the beginning of Section 4.1). Further we consider
the set

Λ 9 = {_ = (8, 9 , :) : : ∈ Z3 , 8 ∈ {1, ..., 23 − 1}},

and Λ =
⋃
9∈Z Λ 9 . By abuse of notation, _ ∈ Λ 9 will still be called a dyadic cube of

generation 9 and identified with _ = _ 9 ,: ∈ D 9 .



A survey on prescription of multifractal behavior 57

For every cube _ = (8, 9 , :) ∈ Λ, we denote by k_ the function G ↦→ k (8) (2 9G−:).
The set of functions 23 9/2k_, 9 ∈ Z, _ ∈ Λ 9 , forms a Hilbert basis of !2 (R3), so
that every 5 ∈ !2 (R3) can be expanded as

5 =
∑
9∈Z

∑
_∈Λ

3_k_, with 3_ =

∫
R3

23 9k_ (G) 5 (G) 3G,

where equality holds in !2 (we will work with smooth functions, so equality will
also hold pointwise). Observe that we choose an !∞ normalization for the so-called
wavelet coefficients (3_)_∈Λ of 5 ∈ !2 (R3) (more generally, of 5 ∈ ! ? (R3) for
some ? ∈ [1,∞]). For 5 ∈ !2 (R3), define also for : ∈ Z3

V(:) =
∫
R3
5 (G)Φ(G − :) 3G. (4.7)

Finally, for a function 5 ∈ ! ? (R3) with ? ∈ [1,∞] whose wavelet coefficients
are denoted by (3_)_∈Λ, the wavelet leader associated with _ ∈ D 9 is

3!_ = sup
_′∈Λ, _′⊂3_

|3_′ |,

where for _ ∈ D 9 , 3_ stands for the cube with same center as _ and radius 3
2 2− 9

(it is the cube that contains _ as well as its 23 − 1 neighbors in D 9 ). While wavelet
coefficients are usually sparse (only a few coefficients carry the important information
about 5 ), wavelet leaders possess a strong hierarchical structure since 0 ≤ 3!

_′ ≤ 3!_
when _′ ⊂ _.

Remark 4.7. Although the notations for wavelet coefficients and wavelet leaders do
not mention the function 5 , they highly depend on 5 and we should never forget
about it!

Wavelet coefficients and wavelet leaders characterize the pointwise Hölder ex-
ponents: indeed, if 5 ∈ � n (R3) for some n > 0, then for every G0 ∈ [0, 1]3 one
has

ℎ 5 (G0) = lim inf
9→∞

log 3!
_ 9 (G0)

log(2− 9 ) , (4.8)

where _ 9 (G0) is the unique cube _ ∈ D 9 that contains G0 (see [31]).
It was quite clear from the beginning that a formula based on increments like (4.2)

was not stable neither mathematically nor numerically. To circumvent this difficulty,
the idea of introducing wavelets (whose computation requires local means, bringing
simultaneously a numerical stability crucial for applications and a natural connection
with characterizations of standard functional spaces, see Section 5) was introduced
by Alain Arnéodo and his collaborators. Two formulations are nowadays recognized
to be the most relevant:

• Formula based on wavelets:
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) 5 (@, 9) =
∑

_∈Λ 9 :3〈≠0
|3_ |@ −→ [ 5 (@) = lim inf

9→+∞

log2 ) 5 (@, 9)
− 9 . (4.9)

• Formula based on wavelet leaders:

! 5 (@, 9) =
∑

_∈D 9 :3!〈 ≠0

|3!_ |@ −→ ! 5 (@) = lim inf
9→+∞

log2 ! 5 (@, 9)
− 9 . (4.10)

Even if wavelets brought some stability in the computations, wavelet leaders are
now recognized as the most efficient, relevant and numerically exploitable mea-
surements of local and global regularity. In particular, the hierarchical structure of
wavelet leaders (i.e. 0 ≤ 3_ ≤ 3_′ as soon as _ ⊂ _′) makes all computations easier
and more stable [1].

Definition 4.8. The wavelet multifractal formalismWMF (resp.wavelet leader mul-
tifractal formalism WLMF) is satisfied for a function 5 on an interval � ⊂ R+ when
� 5 (�) = ([ 5 )∗ (�) (resp. � 5 (�) = (! 5 )∗ (�)) for every � ∈ �.

We also say that a function 5 satisfies the weak wavelet leader multifractal
formalism (weak-WLMF) on an interval � ⊂ R+ when there exists an increasing
sequence ( 9=)=≥1 of integers such that if !̃ 5 (@) = lim inf=→+∞

log2 ! 5 (@, 9=)
− 9= , then

� 5 (�) = ( !̃ 5 )∗ (�) for every � ∈ �.

Remark 4.9. The above definition of formalisms depends a priori on the chosen
waveletsΨ. Actually it does not depend onΨ in the increasing part of the multifractal
spectrum [31], but it does in the decreasing part. For simplicity, we do not mention
this dependence in the notations.

Let S3 be the set of admissible singularity spectra for functions satisfying a
multifractal formalism, i.e.

S3 =
{
f : R+ → [0, 3] ∪ {−∞} :

{
f is compactly supported in (0, +∞),
concave, with maximum equal to 3.

}
.

(4.11)
We are now able to state the result on multifractal formalism prescription for

functions.

Theorem 4.10. For every mapping f ∈ S3 , there exists a function 5 ∈ !2 (R3)
satisfying the WLMF and whose singularity spectrum is equal to f.

Proof. Observe that if a function 5 has its wavelet coefficients 3_ given by `(_) for
some probability measure ` ∈ M([0, 1]3), then for every choice of U, V > 0, the
function 5U,V whose wavelet coefficients are 3̃_ := 3U

_
2− 9V satisfies

for every � ≥ 0, � 5U,V (�) = � 5

(
� − V
U

)
.

This simply follows from (4.8) and the fact that ℎ 5 U,V (G0) = Uℎ 5 (G0) + V for all G0.
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Let f : R+ → [0, 3] ∪ {−∞} ∈ S3 be a mapping satisfying the conditions to be
a singularity spectrum of a function satisfying a multifractal formalism.

Let U, V be two strictly positive real numbers such that the mapping fU,V (�) =
f(U�+ V) satisfies fU,V (�) ≤ � and there exists �0 > 0 such that fU,V (�0) = �0.
The existence of (U, V) is an exercise (notice that (U, V) need not be unique).

Theorem 4.4 provides us with a measure ` satisfying the multifractal formalism
for measures and �` = fU,V .

Then, Theorem1.2 yields that the function�` whosewavelet coefficients are given
by 3_ = `(_) has the same singularity spectrum as `. In addition, comparing (4.3)
with (4.10), and using the hierarchical structure of the measure (i.e. `(_′) ≤ `(_)
whenever _′ ⊂ _), one sees that g` (@) = !�` (@) for every @ ∈ R, hence �` satisfies
the WLMF.

Finally, using the first remark of this proof, the function � whose wavelet coef-
ficients equal `(_)U2− 9V has its singularity spectrum equal to f and satisfies the
WLMF.

We thus have a complete answer for the prescription of multifractal formalism
for functions. But at this point, one may have the feeling that the functions we
built are mathematical toy examples. The purpose of the last sections is to explain
that for any choice of concave admissible mapping f, there are natural functional
spaces in which typical functions have exactly f as singularity spectrum. This
confirms and strengthens the overall presence of multifractals in most of science
fields, and reinforces the position of multifractal machinery as legitimate tool in
signal processing and data analysis.

5 Typical multifractal behavior in classical functional spaces

As emphasized above, it is possible to find mathematical models that mimic large
classes of multifractal behavior, in particular including all concave singularity spec-
tra. This last part of the results is key, since for real-life data (multi-dimensional and/or
multivariate signals, images, ...) only estimates for the !@-spectrum are numerically
accessible (based on log-log plots on a well-chosen range of scales). Indeed, the
standard paradigm is to assume that the discrete data 5 (say, a signal) is obtained
from discrete samples of a mathematical model obeying a multifractal formalism,
and to consider that the Legendre transform of the estimated !@-spectrum contains
relevant information regarding the distribution of the singularities of 5 (somehow
extrapolating on Frisch-Parisi heuristics). This Legendre transform is thus viewed
as an "approximation" of the singularity spectrum of the data, although the meaning
of the singularity spectrum of a discretized signal is not made precise. The obtained
estimated singularity spectrum of the data 5 possesses various characteristics (values
of the largest and the smallest exponents, locations of the maximum, curvature of
the concave spectrum at its maximum,...) which are then used as classification tools
between numerous samples of a physical, medical,... phenomenon. This has proven
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to be relevant in various fields going from medicine (heart-beat rate and X-ray anal-
ysis) and turbulence [32] to, recently, more surprising areas (paintings analysis [2],
text analysis [33]).

Inspired by these applications, it is thus key to investigate whether the mathe-
matical objects we regularly meet satisfy a multifractal formalism (so that all these
heuristics described above lie on solid mathematical grounds). In this survey, we
focus on "typical" objects in the sense of Baire: in a Baire space � , a property P
of elements G ∈ � is typical or generic when the set {G ∈ � : G satisfies P} is a
residual set, i.e. its complement is included in a first Baire category set (a union of
countably many nowhere dense sets in �).

Regularity properties of typical functions have been explored since the pioneer
works of Banach [6] or Mazurkiewicz [36] for instance. The seminal result concern-
ing multifractal properties of typical functions is due to Buczolich and Nagy, who
proved the following [14].

Theorem 5.1. Let M>=( [0, 1]) be the set of continuous monotone functions 5 :
[0, 1] → R equipped with the supremum norm of functions. Typical functions in
M>=( [0, 1]) are multifractal with singularity spectrum equal to � 5 (�) = � ·
11[0,1] (�) + (−∞) · 11(1,+∞] (�).

Theorem 5.1 was the starting point of an abundant literature on the subject,
examples of which are given in the following. The method consists first in finding an
upper bound for the singularity spectrum of all functions inM>=( [0, 1]) (here, the
diagonal f(�) = �)), then an explicit function �C H ? whose local behavior is the one
suspected to be typical, and finally to construct a countable sequence (�=)=≥1 of sets
of functions, dense inM>=( [0, 1]), which are for a given =, really close to �C H ? at a
given scale (depending on =). If the parameters are correctly settled, the intersection
of the (�=)=≥1 will be the set of typical functions with multifractal behavior similar
to that of �C H ? .

The proof is based on a careful analysis on local oscillations of functions, and
simultaneous constructions of Cantor-like sets � 5 (�) carrying the sets of points
with pointwise Hölder exponent equal to �, for every 5 ∈ ⋂

=≥1 �=.
After Theorem 5.1, the first direction consisted in exploring the typical behavior

in other standard functional spaces. The first, spectacular, results were obtained by
Jaffard [30], who implemented the same strategy as [14] but added wavelet tools to
deal with the important examples of Hölder and Besov spaces.

Theorem 5.2. 1) Let U > 0 and consider the space �U ( [0, 1]3) of U-Hölder func-
tions on [0, 1]3 . Typical functions in �U ( [0, 1]3) are monofractal and satisfy

� 5 (�) = 3 · 11{U} (�) + (−∞) · 11[0,+∞]\{U} (�).

2) Let ? ≥ 1 and B > 3/?, and consider the Besov space �B, ?@ ( [0, 1]3). Typical
functions in �B, ?@ ( [0, 1]3) are multifractal and satisfy

� 5 (�) = ?(� − (B − 3/?)) · 11[B−3/?,B] (�) + (−∞) · 11[0,+∞]\[B−3/?,B] (�).
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Fig. 4 Typical singularity spectra of measures supported on [0, 1]3 (Left) and of functions in
�
B,?
@ (R3) (Right).

In addition, typical functions satisfy the WLMF.

See figure 5 for an illustration.
Theorems 5.1 and 5.2 are striking since they underline the preeminence of mul-

tifractal properties for "everyday" functions. Jaffard also described the multifractal
behavior of typical functions belonging to countable intersections of Besov spaces,
leading to a first answer to the Frisch-Parisi conjecture. Although these results were
a giant step in the domain, only increasing singularity spectra with restricted shapes
can be obtained and the typical functions do not obey a satisfactory multifractal
formalism. Let us also mention that Besov spaces with indices B < 3/? were also
considered in [30].

Other directions have been investigated. The most natural one concerns proba-
bility measures: typical multifractal properties were explored in [15] for measures
supported on [0, 1]3 and these results were extended by Bayart [11] for measures
supported on general compact sets.

Theorem 5.3. Let  ⊂ R3 be a compact set, and letM( ) be the set of probability
measures on  .

A typical measure ` ∈ M( ) satisfies for any � ∈ [0, dim( )), �` (�) = �.
In addition, when the dim( )-Hausdorff measure of  is strictly positive, then

typical measures satisfy �` (dim( )) = dim( ) and obey the multifractal formal-
ism.

Another extension of typical monotone functions is provided by the set of mono-
tone increasing in several variables: A function 5 : [0, 1]3 → R is continuous
monotone increasing in several variables (in short: MISV) if for all 8 ∈ {1, ..., 3},
the coordinate functions

5 (8) (C) = 5 (G1, ..., G8−1, C, G8+1, ..., G3)
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Fig. 5 Typical singularity spectra for measures, MISV and convex functions.

are continuous monotone increasing. The set of MISV functions is denoted by
MISV3 . With Z. Buczolich, we also investigated the set CC3 of continuous convex
functions 5 : [0, 1]3 → R. Equipped with the supremum norm ‖ · ‖, CC3 and
MISV3 are separable complete metric spaces. In [16] and [18] we obtained the
following results.

Theorem 5.4. 1) Typical functions in MISV3 satisfy

� 5 (�) = (3 − 1 + �) · 11[0,1] (�) + (−∞) · 11[0,+∞]\[0,1] (�).

2) Typical functions 5 ∈ CC3 satisfy

� 5 (�) = (3 − 1) · 11{0} (�) + (3 − 2 +�) · 11[1,2] (�) + (−∞) · 11[0,+∞]\[1,2]∪{0} (�).

See Figure 5 for a comparison between typical multifractal behavior in various
functional spaces. This shall also be compared to Figure 3. It appears clearly that in
all the previous situations, the singularity spectra of typical functions have the same
shape: it is an affine, increasing, mapping, with no decreasing part.

Other functional spaces, called (a spaces were built in [3], in which typical
functions all exhibit a singularity spectrum which is visibly increasing in the sense
of [34], enlarging the class of possible typical multifractal behavior in functional
spaces. In addition, these typical functions do not satisfy a multifractal formalism in
the sense of Definition 4.1.
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In order to break this limitation (no decreasing part in the singularity spectrum),
new (and natural) functional spaces have been introduced in [10].

6 Besov spaces in multifractal environment

Since standard functional spaces do not fulfill our requirements (i.e. typical functions
in such spaces do not exhibit concave singularity spectra), it is natural to ask whether
there are other functional spaces in which typical functions have any singularity
spectrum given in advance, and satisfy a multifractal formalism. This solves the
Frisch-Parisi conjecture as stated in Conjecture 4.2.

Let B(R3) be the Borel sets included in R3 , and let us introduce the set of Hölder
set functions

C(R3) :=

{
` : B(R3) → R+ such that

{
∃ B1, B2 ≥ 0, ∀ � ⊂ R3 with |� | ≤ 1,
|� |B2 ≤ `(�) ≤ |� |B1

}
.

(6.12)
For ` ∈ C(R3) and B ∈ R, we write

`B (�) = `(�)B ,
` (B) (�) = `(�) |� |B .

Wewill use the following notation: for G, H ∈ R3 , �[G, H] is the smallest Euclidean
ball that contains G and H.

Definition 6.1. Let ℎ ∈ R3 , 5 : R3 → R, and consider the finite difference operator
Δℎ 5 : G ↦→ 5 (G + ℎ) − 5 (G). Define for = ≥ 2 by iteration Δ=

ℎ
5 := Δℎ (Δ=−1

ℎ
5 ).

For every set function ` ∈ C(R3), let us introduce for = ≥ 2

Δ
`,=

ℎ
5 (G) =

Δ=
ℎ
5 (G)

`(�[G, G + =ℎ]) . (6.13)

The `-adapted =-th order modulus of continuity of 5 on R3 is defined for C > 0
by

l
`
= ( 5 , C)? = sup

C/2≤ |ℎ | ≤C
‖Δ`,=

ℎ
5 ‖!? (R3) . (6.14)

It is trivial to check that that when `(�) = 1 for every set �, then l`= ( 5 , C)?
coincides with the so-called homogeneous =-th order modulus of continuity of 5

l= ( 5 , C)? = sup
C/2≤ |ℎ | ≤C

‖Δ=ℎ 5 ‖!? (R3) .

Definition 6.2. Let ` ∈ C(R3) associated with exponents 0 < B1 ≤ B2 in (6.12).
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Let = ≥ B2. For 1 ≤ ?, @ ≤ +∞, the Besov space in `-environment �`,?@ (R3) is
the space of those functions 5 : R3 → R such that ‖ 5 ‖!? (R3) < +∞ and

| 5 |�`,?@ = ‖2 93/? (l`= ( 5 , 2− 9 )?) 9≥1‖ℓ@ (N) < +∞. (6.15)

Finally, let us introduce the spaces

�̃
`,?
@ (R3) =

⋂
0<Y<B1/2

�
` (−Y) , ?
@ (R3). (6.16)

The reader can check that �`,?@ (R3), when endowed with the topology induced
by the norm ‖ 5 ‖�`?@ = ‖(V(:)):∈Z3 ‖ ? + | 5 |�`,?@ , forms a Banach space (recall (4.7)
for the definition of V(:)).

The intuition behind Definition 6.2 consists in introducing some space-dependent
constraints that will create heterogeneity at all scales. Indeed, when a function 5

belongs to �`,?@ (R3), its oscillations Δ=ℎ 5 (G) must be very small in certain regions
(around points G where `(�(G, A)) ∼ AU with U large), while in other regions (where
`(�(G, A)) ∼ AU with U small) the control of the oscillations can be relaxed.

In [10], a wavelet characterization of �`,?@ (R3) and �̃`,?@ (R3) is proved when `
is an almost-doubling set function satisfying condition (P) (recall equation (4.4) and
Remark 4.5). Observe indeed that Definition 4.6 of the condition (P) for measures
can easily be extended for set functions ` ∈ C(R3).

For this, let us introduce a second semi-norm for 5 ∈ ! ? (R3) : we set

| 5 |?,@,` = ‖(� 9 );≥1‖ℓ@ (N) , where � 9 =
©­«
∑
_∈Λ 9

���� 3_`(_) ����?ª®¬
1/?

.

The following inequalities are proved in [10].

Theorem 6.3. Let ` ∈ C(R3) be an almost doubling set function satisfying condition
(P), and let Φ be a scaling function associated with wavelets Ψ (see Section 4.2).

Let ? ≥ 1, and @ ∈ [1, +∞].
Assume that the wavelets Ψ are compactly supported, belong to the standard

Besov space �B, ?@ (R3) for some B > 3/?+ B2, and possess at least bB2c +1 vanishing
moments (B1 and B2 are the exponents associated with ` in (6.12)).

For every 0 < Y < B1, there exists a constant � > 1 (not depending on 5 ) such
that

‖ 5 ‖!? + | 5 |�`,?@ ≤ � (‖ 5 ‖!? + | 5 |` (+Y) , ?,@) (6.17)

‖ 5 ‖!? + | 5 |`,?,@ ≤ � (‖ 5 ‖!? + | 5 |
�
` (+Y) , ?
@

). (6.18)

Moreover, when ` is doubling, (6.17) and (6.18) hold for Y = 0, and the norms
‖ 5 ‖!? + | 5 |?,@,` and ‖ 5 ‖!? + | 5 |�`,?@ are equivalent.
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Last theorem supports the idea that �̃`,?@ (R3) is the right space to work with,
since it is characterized by wavelet coefficients, while the spaces �`,?@ (R3) are not
(unless ` is doubling).

The main theorem in [10] is the following.

Theorem 6.4. Let f ∈ S3 be an admissible singularity spectrum (recall (4.11)).
Call �B the smallest value at which f(�) = 3.

There exists an almost doubling set function ` ∈ C(R3) satisfying condition (P)
and ? ∈ [1, +∞] such that for every @ ∈ [1, +∞], typical functions 5 ∈ �̃`,?@ (R3)
possess the following properties:

• � 5 = f

• 5 satisfies the WLMF for every � ≤ �B .
• 5 satisfies the weak-WLMF for every � > �B .

In addition:

• when ? = +∞, typical functions in �̃`,?@ (R3) satisfy � 5 = �`.
• when ` is doubling, the same holds for �`,?@ (R3) instead of �̃`,?@ (R3).

Also, given f ∈ S3 , from the proof in [10] it can be checked that the couple
(`, ?) in Theorem 6.4 is not unique.

Theorem 6.4 brings a solution to the Frisch-Parisi conjecture (Conjecture 4.2).
The fact that the (strong) multifractal formalism holds only for the increasing part
of the singularity spectrum (when � ≤ �B) seems to be unavoidable. A heuristic
explanation of the weak validity of the multifractal formalism in the decreasing part
of the spectrum (and not the full validity) is that functions have usually sparse wavelet
representations, generating very large values for negative values of @ for ! 5 (@, 9)
on some values of 9 .

Let us conclude this section by mentioning that a deeper study of the �`,?@ and
�̃
`,?
@ spaces is performed in [10], leading to results that have their own interest.

More precisely, a uniform upper bound for the singularity spectrum of all functions
in �`,?@ and �̃`,?@ is found, as well as the singularity spectrum of typical functions
in these spaces for large classes of almost-doubling measures `. Without giving
details on the results, it appears that the singularity spectra � 5 of typical functions
5 may have very different shapes depending on the initial measure `, and the proofs
involve many arguments coming from geometric measure theory, ergodic theory and
harmonic analysis.

7 Perspectives

First of all, we are far from being exclusive on generic dimensional results in analysis
(see for instance [22, 24]), and many other regularity properties shall definitely be
studied from the Baire genericity standpoint.

In this survey we focused on the notion of Baire genericity - the same issues can
(and must) be addressed in the prevalence sense. Many results regarding prevalent
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multifractal properties have been obtained, see [4, 21, 20, 40, 41] amongst many
references, and asking whether prevalent properties coincide with generic ones can
sometimes bring some surprises (when they do not coincide).

Finally, one challenging research direction consists in establishing multifractal
properties for (classes of) solutions to ordinary or partial differential equations, as
well as for the stochastic counterparts. Indeed, multifractal ideas originate from the
study of turbulence and other physical phenomena that are ruled by ODEs, SDEs or
(S)PDEs, and it would be a fair return to demonstrate the multifractality of (some of)
those functions that are solutions to such equations. A few examples already exist
(i.e., Burgers equation with a Brownian motion as initial condition [12] and large
classes of stochastic jump diffusions [8, 42]), but they are only a first step toward a
systematic multifractal analysis of solutions to (partial) differential equations, which
will certainly require the development of new techniques and approaches.
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Renewal theorems and their application in
fractal geometry

Sabrina Kombrink

Abstract A selection of probabilistic renewal theorems and renewal theorems in
symbolic dynamics are presented. The selected renewal theorems have been widely
applied. Here, we will show how they can be utilised to solve problems in fractal
geometry with particular focus on counting problems and the question of Minkowski
measurability. The fractal sets we consider include self-similar and self-conformal
sets as well as limit sets of graph-directed systems consisting of similarities and
conformal mappings.
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1 Introduction

Renewal theorems have found wide applicability in various areas of mathematics
(such as fractal and hyperbolic geometry), economics (such as queuing, insurance
and ruin problems) and biology (such as population dynamics). Classically, they
describe the asymptotic behaviour of waiting times in-between occurrences of a
repetitive pattern connected with repeated trials of a stochastic experiment. These
probabilistic renewal theorems have been extended and generalised in several ways,
resulting in an even broader applicability.
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The purpose of this article is to provide an overview of a selection of renewal
theorems and to highlight in which situation which renewal theorem is natural to
be applied. This will be done by considering two questions in fractal geometry in
different settings. These motivating questions will be stated in Sec. 2. Subsequently,
a selection of probabilistic renewal theorems is introduced in Sec. 3 and applied
to obtain answers to the previously raised questions in the setting of similarities. In
Sec. 4 renewal theorems in symbolic dynamics are presented and applied to solve the
questions raised in Sec. 2 in more general settings. Additionally, in an appendix we
provide background material and address the relationships between the mentioned
renewal theorems.

2 Some questions in Fractal Geometry

In fractal geometry various notions of dimension such as Minkowski-, Hausdorff-
and packing dimension are well-established tools to describe the fractal nature of a
given set. Characterising sets beyond their dimension is one of the many applications
of renewal theorems. In Sec. 2.1 we raise two questions which we answer by means
of renewal theory in Sec. 3 and 4 for the classes of sets that we introduce in Sec. 2.2.

2.1 Characterising sets beyond dimension

Our first question relates to counting problems. The most basic counting problems
associated with fractal sets � arise in the situation when � is a subset of [0, 1].
Letting {�ℓ }ℓ∈! denote the family of connected components of [0, 1] \ � a natural
question is:

Question 2.1. What is the asymptotic behaviour as A → 0 of the number of intervals
�ℓ whose lengths lie in the interval [A, Aℎ) for some ℎ > 1, i. e. of

#log ℎ (A) := #{ℓ ∈ ! | Aℎ > |�ℓ | ≥ A}?

Here # denotes cardinality and |�ℓ | denotes the length of the interval �ℓ .

An example of a more advanced counting problem is to count the number of closed
geodesics on manifolds related to Schottky groups that do not exceed a given length.
This problem can also be treated by means of renewal theory. We refer the interested
reader to [Lal89].

Before addressing how the answer to Question 2.1 helps our understanding of the
fine geometric structure of a set in Remark 2.3 we turn to the second question, which
relates to the asymptotic behaviour of the volume function.

For arbitrary 3 ∈ N the 3-dimensional Lebesgue measure shall be denoted by _3 .
Further, for A > 0 we let �A := {G ∈ R3 | dist(G, �) ≤ A} denote the A-parallel set
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of � ⊂ R3 , where dist(G, �) := infH∈� |G − H | denotes the distance of G to � with
respect to the euclidean metric |·| on R3 .

Question 2.2. What is the asymptotic behaviour as A → 0 of the volume of the
A-parallel set of � , i. e. of

_3 (�A ) as A → 0?

Supposing that the Minkowski dimension dim" (�) := 3 − limA→0
log_3 (�A )

log A of �
exists, the above question can be reformulated as follows. How does the function
5 : (0,∞) → R, 5 (A) := Adim" (�)−3_3 (�A ) behave as A → 0? If limA→0 5 (A) exists,
we call the limit theMinkowski content of � and denote it byM(�). If limA→0 5 (A)
exists, is positive and finite, then we say that � is Minkowski measurable. In recent
years the question of Minkowski measurability of a given set has attracted much
attention and is for instance related to the question ’Can you hear the shape of a
drum with fractal boundary?’, see for instance [LP93].

Remark 2.3. Knowledge of the asymptotic behaviour of #log ℎ (A) and _3 (�A ) as
A → 0 provides insight to the fine structure of � and can for instance be used to
describe the lacunarity of � . The word lacunarity originates from the Latin word
lacuna which means gap. According to [Man95] ’a fractal is to be called lacunar if
its gaps tend to be large, in the sense that they include large intervals (discs or balls)’.
A nice exposition of lacunarity, its geometric meaning and its relationship to the
above introduced counting function and asymptotic behaviour of _3 (�A ) is provided
in [Man95], see also [Kom13]. We will provide further insight to the geometric
meaning of the Minkowski content in Remark 3.6.

2.2 Classes of fractal sets

We address the above questions for the following classes of fractal sets.

Self-similar and self-conformal sets

LetΦ := {q1, . . . , q" } denote an IFS of" ≥ 2 contractingmaps q8 : - → - acting
on a compact subset - ofR3 . The famous Hutchinson-Hata Theorem states that there
exists a unique, non-empty and compact subset � ⊂ - , which is invariant under Φ,
that is � =

⋃"
8=1 q8 (�). If all the maps q8 are similarities, i. e. there exist A8 ∈ (0, 1)

such that |q8 (G) −q8 (H) | = A8 |G− H | for any G, H ∈ - , then the invariant set � is called
self-similar. If all the maps q8 extend to conformal maps on an open neighbourhood
* of - , i. e. q8 : * → * is a �1-diffeomorphism whose total derivative at every
point is a similarity, then the invariant set � is called self-conformal. For background
we refer the reader to [Fal03].
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Below, self-similar and self-conformal sets appear as special cases if �8, 9 = 1 for
all 8, 9 ∈ Σ and all q8 are similarities resp. extend to conformal maps.

Limit sets of graph-directed systems

Here, we restrict to a special class of graph-directed systems, namely those which
arise from iterated function systems (IFS) by forbidding certain transitions. However,
the results presented below are not limited to this special class but also hold for
general graph-directed systems as defined in [MU03]. We will provide references at
the appropriate places.

LetΦ := {q1, . . . , q" } denote an IFS of finitelymany contractingmaps q8 : - →
- acting on a compact subset - ofR3 . Further, let � be an irreducible"×" matrix
of zeros and ones, i. e. for each pair 8, 9 ∈ Σ := {1, . . . , "} there exists = ∈ N such
that (�=)8, 9 > 0. We allow to concatenate q8 ◦ q 9 if and only if �8, 9 = 1. Let
Σ=
�

:= {(l1, . . . , l=) ∈ Σ= | �l8 ,l8+1 = 1 ∀ 8 ∈ {1, . . . , = − 1}}. The limit set of this
type of graph-directed system is defined to be

� :=
⋂
=∈N

⋃
l∈Σ=

�

ql (-),

where ql := ql1 ◦ · · · ◦ ql= for l = (l1, . . . , l=). We in particular study the cases
in which all the maps q8 are similarities, and in which all the maps q8 extend to
conformal maps on an open neighbourhood* of - .

3 Probabilistic Renewal Theorems and their applications to
Questions 2.1 and 2.2 for self-similar sets and limit sets of
graph-directed systems of similarities

Probabilistic renewal theory is concerned with waiting times in-between occurrences
of a repetitive pattern connected with repeated trials of a stochastic experiment. In
classical renewal theory, it is assumed that after each occurrence of the pattern,
the trials start from scratch. This means that the trials which follow an occurrence
of the pattern form a replica of the whole stochastic experiment. In other words,
the waiting times in-between successive occurrences of the pattern, also called
inter-arrival times, are assumed to be mutually independent random variables with
the same distribution (see [Fel68, Ch. XIII] and [Fel71]). The classical renewal
theorems have been extended in various ways and to various different settings. One
such extension, which we focus on here is given byMarkov renewal theory, where the
independence condition is weakened. The literature on classical andMarkov renewal
theory is vast. Therefore, we abstain from presenting a complete list of references
but instead refer the reader to the following monographs and fundamental articles,
where further references can be found: [Fel68, Fel71, Çin75, Als91, Asm03, MO14].
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The aim of this section is to present the afore-mentioned renewal theorems and
to demonstrate to which question in which setting the respective renewal theorems
are natural to apply. We will present a solution to a selection of the problems, focus
on the ideas and provide references for the details. More precisely, we study the
fundamental setting of renewal theory in Sec. 3.1 and 3.3 and show how its results
can be utilised to answer Questions 2.1 and 2.2 for self-similar sets in Sec. 3.2 and
Sec. 3.4. Subsequently, in Sec. 3.5 we turn to Markov renewal theory and apply
Markov renewal theorems to answer Questions 2.1 and 2.2 for limit sets of graph-
directed systems of similarities in Sec. 3.6.

3.1 Expected number of renewals – Blackwell’s Renewal Theorem

In the afore-mentioned setting it is of interest how many occurrences of the pattern
(renewals) are expected in a given time interval, if the process has been going on for
a long time.

Let,,,1,,2, . . . denote independent identically distributed (i. i. d.) non-negative
random variables on a common probability space (Ω,A, P). We interpret,8 as the
waiting time between the (8 − 1)-st and the 8-th occurrence of the pattern and set
,0 := 0. For = ∈ N0 := N ∪ {0} define (= :=

∑=
8=0,8 , which is the epoch of the

(= + 1)-st occurrence of a renewal, the origin counting as a renewal epoch. Further,
introduce the renewal function # : [0,∞) × (0,∞) → R ∪ {∞} by

# (C, ℎ) := E

( ∞∑
==0
1{C−ℎ<(=≤C }

)
= E

( ∞∑
==0
1[0,ℎ) (C − (=)

)
, (3.1)

where E denotes expectation. Thus, # (C, ℎ) gives the expected number of renewals
in the time interval (C − ℎ, C].

The asymptotic behaviour of # (C, ℎ) as C →∞ depends on whether the common
distribution � of the,8 is lattice or non-lattice. Recall that a distribution function is
called lattice if its set of discontinuities lies in a discrete subgroup of R, i. e. in 0Z
for some 0 > 0. If 0 is maximal as such, we say that the distribution is 0-lattice. If
no such 0 exists, then it is called non-lattice.

Intuitively, in the non-lattice situation we would expect ℎ renewals in a time
interval of length ℎE(,) if the process has been going for a long while. Thus, in
a time interval of length ℎ intuition yields ℎ/E(,) to be the expected number of
renewals. In the 0-lattice situation the same is plausible with ℎ replaced by 0.

This intuition was made rigorous in a series of publications, in which different
situations were covered, see [Kol36, Bla48, EFP49, Bla53, Fel71] and references
therein, resulting in the following renewal theorem, which sometimes is referred to
as Blackwell’s renewal theorem.

We say that 5 , 6 : R→ (0,∞) are asymptotic and write 5 (C) ∼ 6(C) as C → ∞ if
limC→∞ 5 (C)/6(C) = 1.
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Theorem 3.1. Suppose the setting of the current subsection. In particular, assume
that � is supported on [0,∞). Further, interpret E(,)−1 as 0 if E(,) = ∞.

(i) If � is 0-lattice then

# (C, 0) ∼ 0E(,)−1 as C →∞.

(ii) If � is non-lattice then

# (C, ℎ) ∼ ℎE(,)−1 as C →∞

for any ℎ > 0.

3.2 Question 2.1 for self-similar sets – Application of Blackwell’s
renewal theorem

We fix the following notation. Φ := {q1, . . . , q" } shall denote an IFS of finitely
many contracting similarities q8 with similarity ratio A8 acting on [0, 1] with invariant
set � ⊂ [0, 1]. For ease of exposition,we assume that {0, 1} ⊂ � and that q8 ( [0, 1])∩
q 9 ( [0, 1]) = ∅ for distinct 8, 9 , however, note that the open set condition is sufficient.
(If we assume the milder open set condition to be satisfied with a bounded feasible
open set $, i. e. q8$ ∩ q 9$ = ∅ for 8 ≠ 9 and q8$ ⊆ $ for all 8, then we would
consider the connected components of$ \⋃"

8=1 q8$ below, of which there might be
infinitely many.)

Let �1, . . . , �@ denote the connected components of [0, 1] \ ⋃"
8=1 q8 ( [0, 1]).

Then the connected components of [0, 1] \ � are precisely the intervals ql (� 9 ).
Recall, ql := ql1 ◦ · · · ◦ ql= and Al := Al1 · · · Al= for l = (l1, . . . , l=). Thus,

#log ℎ (A) =
@∑
9=1

∞∑
==0

#{l ∈ Σ= | ℎA > Al |� 9 | ≥ A} =
@∑
9=1

"log ℎ

(
A
|� 9 |

)
, (3.2)

where Σ := {1, . . . , "}, "log ℎ (A) :=
∑∞
==0 #{l ∈ Σ= | ℎA > Al ≥ A} and

Σ0 := {∅}, with ∅ denoting the empty word and A∅ := 1. For applying Blackwell’s
renewal theorem, we introduce random variables,8 in the following. By the Moran-
Hutchinson formula, 1 =

∑"
8=1 A

�
8

where � is the Hausdorff dimension of � . Thus,
P(, = − log A8) = A�8 for 8 ∈ Σ defines the distribution of a non-negative random
variable, . With,,,1,,2, . . . being i.i.d. the distribution of (= := ,1 + · · · +,=
is given by P((= = − log C) = ∑

l∈Σ=:C=Al A
�
l for C > 0. With this notation

e−�C"log ℎ (e−C ) = E
( ∞∑
==0

I(C − (=)
)
, (3.3)

where I : R→ R, I(C) := 1[0,log ℎ) (C)e−�C .
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3.2.1 The lattice case

If − log A1, . . . ,− log A" lie in the discrete subgroup 0Z of R with 0 > 0 maximal
as such, then , is 0-lattice. As − log Al ∈ 0Z for each l, it follows that C − 0 <
− log Al ≤ C is equivalent to− log Al/0 = bC/0c := max{: ∈ Z | : ≤ C/0}.Whence,
Thm. 3.1 implies for C →∞

"0 (e−C )e−0� bC/0c =
∞∑
==0

∑
l∈Σ=

A�l1(C−0,C ] (− log Al)

= E
( ∞∑
==0
1(C−0,C ] ((=)

)
∼ 0

E(,) ,

yielding

#0 (e−C ) ∼
0

−∑"
8=1 A

�
8

log A8

@∑
9=1

e0� b (C+log |� 9 |)/0c as C →∞.

3.2.2 The non-lattice case

If − log A1, . . . ,− log A" do not generate a discrete subgroup of R then , is non-
lattice. Let ℎ > 0 be arbitrary. Thm. 3.1 implies for C →∞

"log ℎ (e−C )e−�C ≤
∞∑
==0

∑
l∈Σ=

A�l1(C−ℎ,C ] (− log Al) = E
( ∞∑
==0
1(C−ℎ,C ] ((=)

)
∼ ℎ

E(,) ,

"log ℎ (e−C )e−�C > e−ℎ�
∞∑
==0

∑
l∈Σ=

A�l1(C−ℎ,C ] (− log Al) ∼
ℎe−ℎ�

E(,) .

We abstain from gaining the precise asymptotics here as these can be easily deduced
from the key renewal theorem, see Rem. 3.8.

3.3 The key renewal theorem

The considerations of Sec. 3.1 are intimately related to the asymptotic behaviour of
the solution / : R→ R of the renewal equation

/ (C) = I(C) +
∫ ∞

−∞
/ (C − H) d� (H) = (I + � ★ /) (C) (3.4)

with given I : R→ R, where ★ denotes convolution and � is a distribution on R.
For obtaining statements on the uniqueness and on the asymptotic behaviour of

/ (C) as C →∞ it is required that I be directly Riemann integrable.
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Definition 3.2. For a function 5 : R→ R, ℎ > 0 and : ∈ Z set

<
:
( 5 , ℎ) := inf{ 5 (C) | (: − 1)ℎ ≤ C < :ℎ} and

<: ( 5 , ℎ) := sup{ 5 (C) | (: − 1)ℎ ≤ C < :ℎ}.

The function 5 is called directly Riemann integrable (d. R. i.) if for some sufficiently
small ℎ > 0

'( 5 , ℎ) :=
∑
:∈Z

ℎ · <
:
( 5 , ℎ) and '( 5 , ℎ) :=

∑
:∈Z

ℎ · <: ( 5 , ℎ)

are finite and tend to the same limit, denoted by
∫
5 ()) d) , as ℎ→ 0.

Direct Riemann integrability excludes wild oscillations of the function at infinity
and is stronger than Riemann integrability. For further insights into this notion we
refer the reader to [Fel71, Ch. XI] and [Asm03, Ch. B.V].

As before, ,,,1,,2, . . . shall denote i. i. d. random variables with common
distribution �. Note that here the ,8 are not necessary non-negative. Recall that
(= :=

∑=
8=0,8 with,0 := 0.

Lemma 3.3 ([Als91, Ch. 3.2]). If I is d. R. i. then the function / : R→ R given by

/ (C) := E

( ∞∑
==0

I(C − (=)
)

(3.5)

is the unique solution of the renewal equation (3.4) that satisfies limC→−∞ / (C) = 0.

Being a solution of the renewal equation (3.4), / from (3.5) is called renewal function.
Setting I = 1[0,ℎ) and assuming that � is concentrated on [0,∞) we recover the
renewal function # (·, ℎ) of Sec. 3.1, see Eq. (3.1). Thus, it is apparent that the
present setting is much more general than that of Sec. 3.1.

Theorem 3.4 ([Als91, Satz 3.2.2]). Denote by I : R → R a d. R. i. function. Let
� be a distribution supported on R with positive mean and let / be the unique
solution (3.5) of the renewal equation (3.4) which satisfies limC→−∞ / (C) = 0. Then
the following hold.

(i) If � is non-lattice, then as C →∞

/ (C) ∼ E(,)−1
∫ ∞

−∞
I()) d).

(ii) If � is 0-lattice, then as C →∞

/ (C) ∼ 0E(,)−1
∞∑

ℓ=−∞
I(0ℓ + C).
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Notice, directRiemann integrability of I ensures convergence of the series
∑∞
ℓ=−∞ I(0ℓ+

C) in the above theorem, which can be seen as follows. If < ∈ N is minimal such that
'(I, 0/<) < ∞ then '(I, 0) ≤ <'(I, 0/<) < ∞. Thus, < = 1 and we are done.

Remark 3.5. A nice exposition of the key renewal theorem tailored to fractal ge-
ometry can be found in [Fal97, Ch. 7], where it is applied to obtain results on the
asymptotic behaviour of the covering number of a self-similar subset of R3 , and to
Questions 2.1 and 2.2 for self-similar subsets of R.

3.4 Questions 2.1 and 2.2 for self-similar sets – Application of the
key renewal theorem

In the setting of self-similar sets both Question 2.1 and 2.2 can be solved by means
of the key renewal theorem and the ideas below stem from [Win15]. We focus on
the solution to Question 2.2 and briefly discuss Question 2.1 in Rem. 3.8. We fix
the following notation. Φ := {q1, . . . , q" } shall denote an IFS of finitely many
contracting similarities q8 with similarity ratio A8 acting on - ⊂ R3 with invariant
set � . We suppose that the open set condition (OSC) is satisfied and that $ is a
feasible open set for Φ, i. e. q8 ($) ⊂ $ and q8 ($) ∩ q 9 ($) = ∅ for 8 ≠ 9 . Assume
w. l. o. g. that $ is bounded.

Often, depending on the shape of $, the expression _3 (�A \ $) is very easy to
determine. For the Sierpiński carpet � for instance, (i.e. for the invariant set � of
the IFS {G ↦→ G/3 + (8/3, 9/3)}8, 9∈{0,1,2}2\{(1,1) } acting on - = [0, 1]2) one can
choose $ = (0, 1)2, giving _3 (�A \ $) = 4A + cA2. Moreover, it is known that
_3 (�A \$) = o(A3−dim" (�) ) as A → 0 for general self-similar sets � under the OSC
with the little Landau symbol o, see [Win15]. (For functions 5 , 6 : R→ R we write
5 = o(6) as C → ∞ if limC→∞ 5 (C)/6(C) = 0.) Therefore, we consider _3 (�A ∩ $)
and let Γ := $ \ Φ($), where the action of Φ on a subset * of - is defined via
Φ(*) :=

⋃"
8=1 q8 (*). Then $ can be decomposed as

$ =

∞⋃
==0

⋃
l∈Σ=

qlΓ ∪
∞⋂
==0

Φ=$,

where the unions are disjoint. We have Φ

(⋂∞
==0Φ

=$

)
=

⋂∞
==0Φ

=$. Thus,⋂∞
==0Φ

=$ is either empty or coincides with � by uniqueness of the self-similar
set. Therefore, _3

(⋂∞
==0Φ

=$
)
≤ _3 (�). Let � denote the Minkowski dimension

of � . If � < 3 then _3 (�) = 0 and whence _3
(⋂∞

==0Φ
=$

)
= 0. Suppose that $ is

chosen in such a way that �A ∩ qlΓ = (ql�)A ∩ qlΓ for each l. This condition
is known as the locality property and it is shown in [Win15] that to each IFS of
similarities satisfying the OSC there is a feasible open set $ which satisfies the
locality property, namely the central open set as introduced in [BHR06]. Thus,
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_3 (�e−C ∩$) =
∞∑
==0

∑
l∈Σ=

_3 (�e−C ∩ qlΓ)

=

∞∑
==0

∑
l∈Σ=

_3 ((ql�)e−C ∩ qlΓ)

=

∞∑
==0

∑
l∈Σ=

A3l_3 (�e−C−log Al ∩ Γ).

Let,,,1,,2, . . . denote i. i. d. randomvariableswith commondistribution given
by P(, = − log A8) = A�8 as in Sec. 3.1. In [Win15] it is shown that C ↦→ I(C) :=
e−C (�−3)_3 (�e−C ∩ Γ) is d. R. i., which allows to apply the key renewal theorem to

/ (C) := e−C (�−3)_3 (�e−C ∩$) =
∞∑
==0

∑
l∈Σ=

A�l I(C + log Al) = E
( ∞∑
==0

I(C − (=)
)
.

3.4.1 The lattice case

If − log A1, . . . ,− log A" lie in the discrete subgroup 0Z of R with 0 > 0 maximal as
such, then, is 0-lattice. Thus, Thm. 3.4 yields for C →∞

/ (C) ∼ 0E(,)−1
∞∑

ℓ=−∞
I(0ℓ + C)

=
−0∑"

8=1 A
�
8

log A8

∞∑
ℓ=−∞

e−(0ℓ+C) (�−3)_3 (�e−0ℓ−C ∩ Γ) =: 6(C). (3.6)

Note that 6(C) is periodic in C with period 0. In general it is not known whether
6 is strictly periodic (implying that � is not Minkowski-measurable) or constant
(implying Minkowski-measurability of �). For self-similar subsets of R arising
from lattice IFS � being not Minkowski measurable has been shown in [KW20],
building on [LvF00, KK15, KPW16]. In the higher dimensional setting the analogue
statement has been verified under further assumptions in variousworks, see [KPW16]
and references therein.

3.4.2 The non-lattice case

If − log A1, . . . ,− log A" do not generate a discrete subgroup of R then , is non-
lattice and Thm. 3.4 gives for C →∞
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/ (C) ∼ E(,)−1
∫ ∞

−∞
I()) d)

=
−1∑"

8=1 A
�
8

log A8

∫ ∞

−∞
e−) (�−3)_3 (�e−) ∩ Γ) d). (3.7)

Thus, (3.7) implies that � is Minkowski measurable in the non-lattice setting. Fur-
thermore, the Minkowski content of � is given by the right hand side of (3.7).

Remark 3.6. Just like there is a variety of sets of the same topological dimension,
e.g. 3-dimensional balls and cubes, there are various distinct fractal sets of the same
Minkowski dimension. The formula in (3.7) shows that we can use the Minkowski
content to distinguish between such sets. The value that the Minkowski content
takes highly depends on the geometric structure of Γ. Equation (3.7) shows that if
Γ includes large intervals (discs or balls), i.e. is highly lacunar, then M(�) will
be relatively small, compared to the case when Γ is made up of several connected
components of smaller size. We refer the interested reader to [Man95, Kom13] for
further details.

Remark 3.7. In the setting of self-similar sets, Question 2.2 has been studied by var-
ious authors. References include [LP93, Fal95, Gat00, LvF06, DcKÖ+13, LPW13,
Win15] and several related articles by the same authors. Related to the Minkowski
measurability question is the question of existence of fractal curvature measures, see
e. g. [WZ13, BZ13, RZ19].

Remark 3.8. Combining the methods presented above with those of Sec. 3.2 leads
to an answer of Question 2.1 in the setting of Sec. 3.2: Combining (3.2) with (3.3)
gives

e−�C#log ℎ (e−C ) =
@∑
9=1
|� 9 |�E

( ∞∑
==0

I(C + log|� 9 | − (=)
)

with I : R→ R, I(C) := 1[0,log ℎ) (C)e−�C . In the 0-lattice situation an application of
the key renewal theorem leads to

e−�C#0 (e−C ) ∼
0

−∑"
8=1 A

�
8

log A8

@∑
9=1
|� 9 |�e0� {(C+log |� 9 |)/0},

where {G} := G − |G | ∈ [0, 1) for G ∈ R. In the non-lattice situation an application of
the key renewal theorem yields

e−�C#log ℎ (e−C ) ∼
1 − ℎ−�

�
∑"
8=1 A

�
8

log A8

@∑
9=1
|� 9 |� .
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3.5 Markov Renewal Theory

In Markov renewal theory one is concerned with the asymptotic behaviour of solu-
tions of theMarkov renewal equation, which is a system of coupled renewal equations
that we will introduce momentarily. Before, let us allude to the stochastic motivation.

By a Markov random walk, we understand a point process for which the inter-
arrival times,0,,1, . . . are not necessarily i. i. d. (as in the preceding subsections),
but Markov dependent on a Markov chain (-=)=∈N0 with finite or countable state
space Σ. This means that ,= is sampled according to the current and proximate
values -=, -=+1 but is independent of the past values -=−1, . . . , -0 of the underlying
Markov chain. Thus, (-=+1,,=)=∈N0 has an interpretation as a stochastic process
with state space Σ × R and transition kernel* : Σ × (P(Σ) ⊗ B(R)) → R given by

* (8, { 9} × (−∞, C]) := P(-=+1 = 9 ,,= ≤ C | -= = 8) =: �8, 9 (C). (3.8)

Here P(Σ) denotes the power set of Σ and B(R) denotes the Borel f-algebra
on R and �8, 9 defines a distribution function of a finite measure with total mass
‖�8, 9 ‖∞ := P(-1 = 9 | -0 = 8) for given 8, 9 ∈ Σ.

The system of equations

# (C, 8) = 58 (C) +
∑
9∈Σ

∫ ∞

−∞
# (C − D, 9)�8, 9 (dD), (3.9)

for varying 8 ∈ Σ and given 58 : R → R is called a Markov renewal equation,
multivariate renewal equation or system of coupled renewal equations. This system
of equations is a direct analogue of (3.4) to the current setting, taking the Markov
dependence into account.

The Laplace transform of �8, 9 at B ∈ R is given by

�8, 9 (B) := (L�8, 9 ) (B) :=
∫ ∞

−∞
e−B) d�8, 9 ()).

Setting �(B) := (�8 9 (B))8, 9∈Σ, and assuming thatΣ is of finite cardinality, the Perron-
Frobenius theorem for matrices yields a unique B for which �(B) has spectral radius
one.

Theorem 3.9 (A Markov renewal theorem). Let " ≥ 2 be an integer and assume
that Σ = {1, . . . , "}. For 8, 9 ∈ Σ let �8, 9 (C) be as in (3.8) and suppose that
� := (‖�8, 9 ‖∞)8, 9∈Σ is irreducible. Let X > 0 denote the unique positive real number
for which the matrix �(X) given by �8, 9 (X) :=

∫
e−XD�8, 9 (dD) has spectral radius

one. For 8 ∈ Σ let 58 : R → R denote d. R. i. functions. Suppose that there exist
�, B > 0 such that e−XC | 58 (C) | ≤ �eBC for C < 0 and 8 ∈ Σ. Choose vectors a, ℎ with
a�(X) = a, �(X)ℎ = ℎ and a8 , ℎ8 > 0 for 8 ∈ Σ. Let # (C, 8) for 8 ∈ Σ solve the Markov
renewal equation (3.9).

(i) If �8, 9 is non-lattice for some (8, 9) ∈ Σ2 , then
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e−XC# (C, 8) ∼
ℎ8

∑"
9=1 a 9

∫
e−X) 5 9 ())d)∑"

:, 9=1 a:ℎ 9
∫
)e−X) �:, 9 (d))

=: � (8).

(ii) We always have

lim
C→∞

C−1
∫ C

0
e−) X# (), 8)d) = � (8).

A statement for the lattice situation, i. e. when all �8, 9 are lattice, can be deduced
from Thm. 4.2.

Remark 3.10. The above theorem is presented in a similar form in [Asm03, VII.
Thm. 4.6]. More general versions of Markov renewal theorems can be found in the
literature (see e. g. [Als91]). The precise version of Thm. 3.9 is a direct consequence
of the more general Renewal Theorem 4.2, which we present in the next section. In
Appendix B.2 we allude to how Thm. 3.9 can be deduced from Thm. 4.2.

3.6 Questions 2.1 and 2.2 for limit sets of graph-directed systems of
similarities – Application of Markov renewal theory

We demonstrate how to apply Markov renewal theory by considering the following
example. Let - := [0, 1] and let q1, q2, q3 : - → - be given by

q1 (G) =
G

4
, q2 (G) =

G

6
+ 5

12
, q3 (G) =

G

4
+ 3

4
and � =

©­«
1 1 1
1 0 1
1 1 1

ª®¬ .
Further, let � denote the limit set of Φ := {q1, q2, q3} associated with �. The first
two steps in the construction of � are depicted in Fig. 1.
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Fig. 1 First two steps in the construction of the limit set of the graph-directed system studied in
Sec. 3.6.

For a given ℎ > 1 let #1 (A), #2 (A), #3 (A) respectively denote the number of
connected components of [0, 1/4] \ �, [5/12, 7/12] \ �, [3/4, 1] \ � of lengths
between A and Aℎ. We have that

#1 (A) = #3 (A) = 2 · 1( 1
24ℎ ,

1
24 ]
(A) + #1 (4A) + #2 (4A) + #3 (4A),

#2 (A) = 2 · 1( 1
12ℎ ,

1
12 ]
(A) + #1 (6A) + #3 (6A).
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Setting

# (C, 8) := #8 (e−C ),
51 := 53 := 2 · 1(log(24) ,log(24ℎ) ] , 52 := 2 · 1(log(12) ,log(12ℎ) ] , and

�8, 9 =


1[log 4,∞) : (8, 9) ∈ {1, 3} × {1, 2, 3}
0 : (8, 9) = (2, 2)
1[log 6,∞) : (8, 9) ∈ {2} × {1, 3}

we see that # (C, 8) = 58 (C) +
∑
9∈Σ

∫ ∞
−∞ # (C−D, 9)�8, 9 (dD) for 8 ∈ Σ. Thus, the system

of coupled renewal equations (3.9) is satisfied. As we are in the non-lattice situation
and all hypotheses of Thm. 3.9 are cleary satisfied, Thm. 3.9 thus yields

e−XC# (C, 1) = e−XC# (C, 3) ∼ (1 − ℎ−X) (1 + 2−X)
2X[log 4(1 + 6X) + log 6] =

: � and

e−XC# (C, 2) ∼ 6−X�

as C → ∞, where X ≈ 0.6853. Now the asymptotics of the total number of comple-
mentary intervals of lengths between e−C and ℎe−C can be obtained from the above
through evaluating

# (C, 1) + # (C, 2) + # (C, 3) + 2 · 1[log 6,∞) (C).

There is nothing particular about this example and the general setting, assuming
q8 (int(-)) ∩ q 9 (int(-)) = ∅ for 8 ≠ 9 , can be treated analogously. Here, int(-)
denotes the topological interior of - .

The author is not aware that this approach has been carried out in the literature.
However, general results in the current setting were obtained in [KK15] for the more
general class of limit sets of conformal graph-directed systems, by means of the
renewal theorems that we turn to in the following section.

4 Renewal Theory in symbolic dynamics

The renewal theorem which is presented in the current section was developed in
[Kom18] and extended to the setting of infinite state space in [KK17a]. Here, the
focus lies on the situation of finite state space.

Now, the assumption of the previous section that (-=)=∈N0 is a Markov chain and
that,= is Markov dependent on (-=)=∈N0 is dropped. Instead, we consider a time-
homogeneous (i. e. stationary increments) stochastic process (-=)=∈Z with finite
state space Σ = {1, . . . , "} and time-set Z and extend to the setting that ,= may
depend on the current values -=+1, -= as well as on the whole past -=−1, -=−2, . . .
of the stochastic process (-=)=∈Z.



Renewal theorems in fractal geometry 83

In this situation it is of interest to study the limiting behaviour as C → ∞ of the
renewal function # : R × Δ→ R given by

# (C, G) := EG

[ ∞∑
==0

5-= · · ·-1G

(
C −

=−1∑
:=0

,:

)]
, (4.10)

where { 5H : R → R | H ∈ Δ} is a family of functions, EG is the conditional
expectation given -0-−1 · · · = G, for = = 0 we interpret 5-= · · ·-1G (C −

∑=−1
:=0,: )

to be 5G (C), and Δ is a subset of ΣN. For instance, if 5H = 1[0,∞) , then # (C, G) gives
the expected number of renewals in the time-interval (0, C] given -0-−1 · · · = G.

In view of the questions in fractal geometry that we raised in Sec. 2 we impose
some assumptions, which turn the renewal function from (4.10) into a deterministic
one. For this well-known terminology and theorems from symbolic dynamics are
used. For convenience, these are introduced in Appendix A and referred to at the
appropriate places.

4.1 Setting

The admissible transitions of the stochastic process (-=)=∈N0 are assumed to be
governed by an irreducible (" × ")- incidence matrix � of zeros and ones. Hence
infinite paths of the process are encoded by elements of the code space Σ� := {G ∈
ΣN | �G: ,G:+1 = 1 ∀ : ∈ N}, see Sec. A.1. Thus, we consider the renewal function
# : R × Σ�→ R from (4.10) acting on R × Σ�.

A natural assumption in applications is that the recent history of (-=)=∈N0 has
more influence on which state will be visited next than the earlier history. This is
reflected in the assumption that the function [ : Σ�→ R given by

[(8G) := logPG (-1 = 8)

belongs to the class FU (Σ�) of real-valued U-Hölder continuous functions on Σ� for
some U ∈ (0, 1), see Sec. A.2. Here, 8 ∈ Σ and PG is the distribution corresponding
to EG . Note that PG (-1 = 8) := P(-1 = 8 | -0-−1 · · · = G) > 0 if 8G ∈ Σ�
by the definition of Σ�. Similarly, it is assumed that the dependence of ,= on
-=+1, -=, . . . is described by a Hölder continuous function. That is we assume
existence of b ∈ FU (Σ�) with

,= = b (-=+1-=-=−1 · · · ).

This notation allows us to evaluate the conditional expectation and express # (C, G)
in a deterministic way. Let f denote the left-shift on Σ� and (= the =-th Birkhoff
sum, see Sec. A.1 and A.3. Since

∑=−1
:=0,: = (=b (-=-=−1 · · · ) and, for G, H ∈ Σ�

with f=H = G, we have P(-=-=−1 · · · = H | -0-−1 · · · = G) = exp((=[(H)) it follows
that
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# (C, G) =
∞∑
==0

∑
H∈Σ�:f=H=G

5H (C − (=b (H))e(=[ (H) . (4.11)

From this, one can deduce the renewal-type equation

# (C, G) =
∑

H∈Σ�:fH=G
# (C − b (H), H)e[ (H) + 5G (C),

which justifies calling # a renewal function. Intuitively, inter-arrival times are non-
negative and probabilities take values in [0, 1]. However, when considering the
deterministic form (4.11), b is allowed to take negative values, provided there exists
= ∈ N for which (=b is strictly positive. Note that this condition is equivalent to
b being co-homologous (see Def. A.2) to a strictly positive function, see [Kom18,
Rem. 2.1]. Moreover, [ is allowed to be chosen freely from the class FU (Σ�).

4.2 The Renewal Theorem

For H ∈ Σ� and C ∈ R write

5H (C) = j(H) · 6H (C)

with non-negative but not identically zero j ∈ FU (Σ�), where 6H : R → R, for
H ∈ Σ�, need to satisfy a regularity condition, which is related to the direct Riemann
integrability assumption of the classical key renewal theorem (see Sec. 3.3), and
which we introduce next.

Definition 4.1. A family of functions { 5G : R → R | G ∈ �} with some index set �
is called equi directly Riemann integrable (equi d. R. i.) if 5G is d. R. i. for all G ∈ �
(see Def. 3.2) and if ∑

:∈Z
ℎ · sup

G∈�

(
<
:
( 5G , ℎ) − <: ( 5G , ℎ)

)
tends to zero as ℎ→ 0.

For the following fix b and [ as in Sec. 4.1 and let C(Σ�) denote the space of
real-valued continuous functions on Σ�, see Sec. A.2.

Theorem 4.2 (Renewal theorem in symbolic dynamics, [Kom18, Thm. 3.1] and
[KK17a, Thm. 3.1]). Let � be irreducible, fix G ∈ Σ� and take U ∈ (0, 1). Further,
let b, [ ∈ FU (Σ�) be so that (=b is strictly positive on Σ� for some = ∈ N. Let X > 0
denote the unique real for which %([ − Xb) = 0, where % denotes the topological
pressure function (see Sec. A.3). Assume that G ↦→ 6G (C) is U-Hölder continuous
for any C ∈ R, that {C ↦→ e−C X |6G (C) | | G ∈ Σ�} is equi d. R. i. and that there exist
�, B > 0 such that e−C X |6G (C) | ≤ �eBC for C < 0 and G ∈ Σ�.
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(i) If b is non-lattice (see Def. A.2) then there exists � (G) ∈ R, explicitly stated in
Sec. A.5, such that

# (C, G) ∼ eC X� (G)

as C →∞, uniformly for G ∈ Σ�.
(ii) Assume that b is lattice (see Def. A.2) and let Z, k ∈ C(Σ�) satisfy the relation

b − Z = k − k ◦ f,

where Z (Σ�) ⊆ 0Z for some 0 > 0. Suppose that b is not co-homologous to any
function with values in a proper subgroup of 0Z, see Def. A.2. Then

# (C, G) ∼ eC X�̃G (C)

as C →∞, uniformly for G ∈ Σ�. Here �̃G is periodic with period 0 and explicitly
stated in Sec. A.5.

1. We always have

lim
C→∞

C−1
∫ C

0
e−) X# (), G)d) = � (G).

Remark 4.3. (i) In [Kom18] it is shown that weaker assumptions than {C ↦→
e−C X |6G (C) | | G ∈ Σ�} being equi d.R.i. suffice, see [Kom18, Sec. 3, (A)–(D)].

1. In [Lal89] the case that [ is the constant zero-function in conjunction with
6G := 1[0,∞) for every G ∈ Σ� is addressed. With these restrictions, [Kom18,
Sec. 3, (A) and (Da)] are immediate and [Kom18, Sec. 3, (B) and (C)] are shown
in [Lal89, Lemma 8.1]. The renewal function from (4.11) becomes

# (C, G) :=
∞∑
==0

∑
H:f=H=G

j(H)1[0,∞) (C − (=b (H)),

which is a counting function. [Kom18, Thm. 3.1] provides its asymptotic be-
haviour as C →∞, recovering [Lal89, Thms. 1 to 3].

(ii) Notice, in [Kom18] the above theorem was obtained under the stronger assump-
tion of � being primitive. This was weakened to � being irreducible in [KK17a],
where additionally Thm. 4.2 was extended to the setting of Σ being countably
infinite.

In Appendix B we show how versions of the probabilistic renewal theorems,
which we stated in Sec. 3, can be deduced from the renewal theorems in symbolic
dynamics presented above.
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4.3 Questions 2.1 and 2.2 for limit sets of graph-directed systems of
conformal maps, including self-conformal sets – Application of
the Renewal theorems in symbolic dynamics

Both Questions 2.1 and 2.2 can be solved for limit sets of graph-directed systems of
conformal maps by means of the Renewal theorems in symbolic dynamics. We will
show how this is done for Question 2.2 below. Since the main ideas are similar we
will not execute how to solve Question 2.1 in this setting. Moreover, we will focus
on the case of self-conformal sets here and refer to [KK17b] for the graph-directed
case, where details are provided.

As in Sec. 3.4 assume that Φ satisfies the OSC with feasible open set $ and
w. l. o. g. that $ is bounded. Recall from Sec. 3.4 that Γ := $ \⋃"

8=1 q8$ and that

_3 ($) = _3

( ∞⋃
==0

⋃
D∈Σ=

qDΓ

)
, (4.12)

where the unions are disjoint. In the followingwe assume that$ can be chosen so that
_3 (�e−C∩Γ) = o(eC (�−3) ) as C →∞with the little Landau symbol o, where� denotes
the self-conformal set associated with Φ and � denote its Minkowski dimension.
(For functions 5 , 6 : R→ R we write 5 = o(6) as C →∞ if limC→∞ 5 (C)/6(C) = 0.)
This is a mild condition, which is always satisfied for self-similar systems with any
feasible open set $, see [Win15]. For � < 3 Eq. (4.12) thus gives

_3 (�e−C ∩$) =
∞∑
==0

∑
D∈Σ=

_3 (�e−C ∩ qDΓ)

=
∑
l∈Σ<

∞∑
==0

∑
D∈Σ=

_3 (�e−C ∩ qDqlΓ) + o(eC (�−3) )

for any < ∈ N. In the current setting we need to assume that _3 (�e−C ∩ qDqlΓ) =
_3 ((qD�)e−C ∩ qDqlΓ). As conformal maps locally behave like similarities the
expression _3 ((qD�)e−C ∩ qDqlΓ) can be approximated by

|q′D (cflG) |3_3 (�e−C/ |q′D (cflG) | ∩ qlΓ) (4.13)

with an arbitrary G ∈ ΣN. Here, c : ΣN → � is the code map defined by {c(l)} :=⋂∞
==0 ql |= (-). Introducing the geometric potential function b : ΣN → R associated

with the IFS Φ by
b (l) := − log|q′l1 (cfl) |

we obtain exp(−(=b (DlG)) = |q′D (cflG) |. Thus, _3 (�e−C∩$) can be approximated
by ∑

l∈Σ<

∞∑
==0

∑
D∈Σ=

e−3(= b (DlG)_3 (�e−C+(= b (DlG) ∩ qlΓ) + o(eC (�−3) ).
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Setting 5H (C) := _3 (�e−C ∩ qlΓ) for H ∈ ΣN, j := 1ΣN , [ := −3b and assuming the
condition of {e−C X 5H | H ∈ Σ�} being equi d.R.i. we can apply Thm. 4.2 and, if b is
non-lattice, obtain

∞∑
==0

∑
D∈Σ=

e−3(= b (DlG)_3 (�e−C+(= b (DlG) ∩ qlΓ) = # (C, lG)

∼ eC X
ℎ−(3+X) b (lG)∫
bd`−(3+X) b

∫ ∞

−∞
e−) X_3 (�e−) ∩ qlΓ)d),

where X > 0 is the unique value for which %(−(3 + X)b) = 0, see Sec. A.3 and
the terms appearing in the fraction are explained in Sec. A.3, see also Sec. A.5. It
is proven in [Bed88] that the Minkowski dimension � of � is the unique solution
to %(−�b) = 0 thus, 3 + X = �. Using the bounded distortion property [MU96,
Lem. 2.3.1] this shows, in the non-lattice situation, that

_3 (�e−C ∩$) ∼ eC (�−3) lim
<→∞

∑
l∈Σ<

ℎ−�b (lG)∫
bd`−�b

∫ ∞

−∞
e−) (�−3)_3 (�e−) ∩ qlΓ)d).

The lattice case can be treated similarly.

Remark 4.4. Question 2.2 for self-conformal subsets of R and limit sets of graph-
directed systems in R, including Fuchsian groups of Schottky type, are treated in
[KK12] and [KK15], where results of [Lal89] were applied. The desire of obtaining
an answer to Question 2.2 in the higher dimensional setting of limit sets of conformal
graph-directed systems gave the motivation for developing the renewal theorem in
symbolic dynamics that we stated in Thm. 4.2 in [Kom18] and its generalisation
to the infinite alphabet case in [KK17a]. In [Kom18] and [KK17b] more details on
the above can be found. Results on curvature measures are for instance provided in
[Boh12].

A Appendix: Symbolic Dynamics

Here, we provide some background from symbolic dynamics which we use in Sec. 4.
Good references for the exposition below are [Bow08, Wal82].

A.1 Sub-shifts of finite type – Admissible paths of a random walk
through �

Recall the following setting from Sec. 4. Σ = {1, . . . , "}, " ≥ 2 denotes the state
space of the stochastic process (-=)=∈N0 and � denotes an irreducible (" × ")-
incidence matrix of zeros and ones. The set of one-sided infinite admissible paths of
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(-=)=∈N0 through Σ consistent with � = (�8, 9 )8, 9∈Σ is defined by

Σ� := {G ∈ ΣN | �G: ,G:+1 = 1 ∀ : ∈ N}.

Elements of Σ� are interpreted as paths which describe the history of the process,
supposing that the process has been going on forever.

The path of the process prior to the current time is described by f(G), where
f : Σ�→ Σ� denotes the (left) shift-map on Σ� given by f(l1l2 . . .) := l2l3 . . ..
The set of admissible words of length = ∈ N is defined by

Σ=� := {l ∈ Σ= | �l: ,l:+1 = 1 for : ≤ = − 1}.

If l has infinite length or length < ≥ = we define l |= := l1 · · ·l= to be the
sub-path of length =. Further, [l] := {D1D2 · · · ∈ Σ� | D8 = l8 for 8 ≤ =} is the
l-cylinder set for l ∈ Σ=

�
.

A.2 (Hölder-)continuous and (non-)lattice functions

Equip ΣN with the product topology of the discrete topologies on Σ and equip
Σ� ⊂ ΣN with the subspace topology, i. e. the weakest topology with respect to
which the canonical projections onto the coordinates are continuous. Denote by
C(Σ�) the space of continuous real-valued functions on Σ�. Elements of C(Σ�) are
called potential functions.

Definition A.1. For b ∈ C(Σ�), U ∈ (0, 1) and = ∈ N0 define

var= (b) := sup{|b (l) − b (D) | | l, D ∈ Σ� and l8 = D8 for all 8 ∈ {1, . . . , =}},

|b |U := sup
=≥0

var= (b)
U=

and

FU (Σ�) := {b ∈ C(Σ�) | |b |U < ∞}.

Elements of FU (Σ�) are called U-Hölder continuous functions on Σ�.

Definition A.2. Functions b1, b2 ∈ C(Σ�) are called co-homologous, if there exists
k ∈ C(Σ�) such that b1 − b2 = k −k ◦f. A function b ∈ C(Σ�) is said to be lattice,
if it is co-homologous to a function whose range is contained in a discrete subgroup
of R. Otherwise, we say that b is non-lattice.

A.3 Topological pressure function and Gibbs measures

The topological pressure function % : C(Σ�) → R is given by the well-defined limit
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%(b) := lim
=→∞

=−1 log
∑
l∈Σ=

�

exp sup
D∈[l ]

(=b (D). (A.14)

Here, (=b :=
∑=−1
:=0 b◦f: denotes the =-th Birkhoff sum of b with = ∈ N and (0b := 0.

Proposition A.3. Let b, [ ∈ C(Σ�) be so that (=b is strictly positive on Σ�, for some
= ∈ N. Then B ↦→ %([ + Bb) is continuous, strictly monotonically increasing and
convex with limB→−∞ %([ + Bb) = −∞ and limB→∞ %([ + Bb) = ∞. Hence, there is
a unique X ∈ R for which %([ − Xb) = 0.

A finite Borel measure ` on Σ� is said to be a Gibbs measure for b ∈ C(Σ�) if
there exists a constant 2 > 0 such that

2−1 ≤ `( [l |=])
exp((=b (l) − = · %(b))

≤ 2 (A.15)

for every l ∈ Σ� and = ∈ N.

A.4 Ruelle’s Perron-Frobenius theorem

The Ruelle-Perron-Frobenius operator to a potential function b ∈ C(Σ�) is defined
by Lb : C(Σ�) → C(Σ�),

Lb j(G) :=
∑

H∈Σ�:fH=G
j(H)eb (H) . (A.16)

The dual operator acting on the set of Borel probability measures supported on Σ�,
is denoted by L∗

b
.

By [Wal01, Thm. 2.16, Cor. 2.17] and [Bow08, Theorem 1.7], for each b ∈
FU (Σ�), some U ∈ (0, 1), there exists a unique Borel probability measure ab on Σ�
satisfying L∗

b
ab = Wb ab for some Wb > 0. This equation uniquely determines Wb ,

which satisfies Wb = exp(%(b)) and which coincides with the spectral radius of Lb .
Further, there exists a unique strictly positive eigenfunction ℎb ∈ C(Σ�) satisfying
Lb ℎb = Wb ℎb and

∫
ℎbdab = 1. Define `b by d`b /dab = ℎb . This is the unique

f-invariant Gibbs measure for the potential function b.
Prop. A.3 and the relation Wb = exp(%(b)) imply the following.

Proposition A.4. Let b, [ ∈ C(Σ�) be such that for some = ∈ N the =-th Birkhoff
sum (=b of b is strictly positive on Σ�. Then B ↦→ W[+B b is continuous, strictly
monotonically increasing, log-convex in B ∈ Rwith limB→−∞ W[+B b = 0 and satisfies
limB→∞ W[+B b = ∞. The unique X ∈ R from Prop. A.3 is the unique X ∈ R for which
W[−X b = 1.
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A.5 The Constants in Thm. 4.2

Using the notation from Sec. A.3 we can explicitly state the form of � (G) and �G (C)
occurring in the Renewal Theorem 4.2. For this, write bCc for the largest integer
: ∈ Z satisfying : ≤ C, where C ∈ R. Moreover, set {C} := C − bCc ∈ [0, 1). Notice,
for C ∈ R positive, bCc is the integer part and {C} is the fractional part of C.

� (G) =
ℎ[−X b (G)∫
bd`[−X b

∫
Σ�

j(H)
∫ ∞

−∞
e−) X6H ()) d)da[−X b (H) and

�̃G (C) =
∫
Σ�

j(H)
∞∑

;=−∞
e−0; X6H

(
0; + 0

{
C+k (G)
0

}
− k(H)

)
da[−XZ (H)

× e−0
{
C+k (G)
0

}
X 0eXk (G)∫

Zd`[−XZ
· ℎ[−XZ (G).

B Appendix: Relation to the probabilistic renewal theorems

The setting of Sec. 4 extends and unifies the setting of established renewal theorems.
In brief: in the context of classical renewal theory for finitely supported measures (in
particular of the key renewal theorem), [ and b only depend on the first coordinate.
When [ and b only depend on the first two coordinates, we are in the setting ofMarkov
renewal theory. If [ is the constant zero-function and 5H (C) = j(H)1[0,∞) (C), where
j ∈ FU (Σ�) is non-negative, we are precisely in the setting of [Lal89], where
renewal theorems for counting measures in symbolic dynamics were developed, see
Rem. 4.3. The results of the infinite alphabet case obtained in [KK17a] even yield
the respective cases for general discrete measures.

In the following we expand upon the above and let # : Σ� × R → R denote the
renewal function given in (4.11).

B.1 The key renewal theorem for finitely supported measures

The special case of Thm. 4.2 that # is independent of Σ� gives the classical key
renewal theorem for measures on [0,∞) that are finitely supported:
# being independent of Σ� can be achieved by the following assumptions. First,

Σ� = Σ
N (i. e. full shift). Second, 6G = 5 is independent of G ∈ ΣN implying that

equi d. R. i. of {C ↦→ e−C X |6G (C) | | G ∈ Σ�} is equivalent to I : R → R with I(C) :=
e−XC 5 (C) being absolutely d. R. i. Third, j = 1Σ� . Fourth and most importantly, b
and [ are constant on cylinder sets of length one. To emphasise local constancy, write
BD := (=b (D1 · · · D=l) and ?D := exp [(= ([ − Xb) (D1 · · · D=l)] for D = D1 · · · D= ∈
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Σ= and l = l1l2 · · · ∈ ΣN. Setting / (C) := e−XC# (C) we obtain that

/ (C) =
∞∑
==0

∑
l∈Σ=

I(C − Bl)?l and / (C) =
"∑
8=1

/ (C − B8)?8 + I(C), (B.17)

for C ∈ R. Notice, the latter equation of (B.17) is the classical renewal equation
(3.4). The assumption (=b > 0 for some = ∈ N implies B8 > 0 for all 8 ∈ Σ.
Thus, the distribution � which assigns mass ?8 to B8 is concentrated on (0,∞). On
the other hand, any vector (B1, . . . , B" ) with B1, . . . , B" > 0 determines a strictly
positive function b ∈ FU (ΣN) via b (l1l2 · · · ) := Bl1 . Furthermore, in the setting
of Thm. 4.2, (?1, . . . , ?" ) is a probability vector with ?8 ∈ (0, 1) since

0 = %([ − Xb) = lim
=→∞

=−1 log
(∑
8∈Σ

?8

)=
= log

∑
8∈Σ

?8

by Prop. A.3. Thus, � is a probability distribution. On the other hand, any proba-
bility vector (?1, . . . , ?" ) with ?1, . . . , ?" ∈ (0, 1) determines [ ∈ FU (ΣN) via
[(l1l2 · · · ) := log(?l1 eXBl1 ).

Consequently, Thm. 4.2 provides the asymptotic behaviour of / under the assump-
tions that (?1, . . . , ?" ) is a probability vector and that B1, . . . , B" > 0. In order to
present the asymptotic term in a common form, observe that L[−X b1 = 1(G) for any
G ∈ ΣN, where 1 = 1ΣN . Thus,

ℎ[−X b = 1 and `[−X b ( [8]) = a[−X b ( [8]) = ?8 ,

where the last equality follows by considering the dual operator of L[−X b . If b
is lattice then the range of b itself lies in a discrete subgroup of R: If there exist
Z, k ∈ C(ΣN) with b − Z = k − k ◦ f and Z (ΣN) ⊂ 0Z for some 0 > 0, then b
and Z need to coincide on {l ∈ ΣN | l = fl}. As every cylinder set of length
one contains a periodic word of period one the claim follows. Hence, we can choose
Z = b and k to be the constant zero-function. We deduced the key renewal theorem,
Thm. 3.4 for finitely supported measures on [0,∞) and 5 ≥ 0. In exactly the same
way [KK17a, Thm. 3.1] yields the key renewal theorem for discrete measures.

B.2 Relation to Markov renewal theorems

Suppose that we are in the setting of Sec. 4.
If we assume that [ and b are constant on cylinder sets of length two, then the

point process with inter-arrival times ,0,,1, . . . becomes a Markov random walk:
To see this, define [̃, b̃ : Σ2

�
→ R by [̃(8 9) := [(8 9l) and b̃ (8 9) := b (8 9l) for any

l ∈ Σ� for which 8 9l ∈ Σ�. Then

P(-1 = 8 | -0-−1 · · · = G) = e[ (8G) = e[̃ (8G1) = P(-1 = 8 | -0 = G1).
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Thus, (-=)=∈Z is a Markov chain. Further, ,= = b (-=+1-=-=−1 · · · ) = b̃ (-=+1-=)
implies that the inter-arrival times ,0,,1, . . . are Markov dependent on (-=)=∈Z.
Applying Thm. 4.2 to suchMarkov randomwalks gives theMarkov renewal theorem
presented in Thm. 3.9. In order to state its conclusions in the form of Thm. 3.9 we
present several simplifications and conversions in the following. Set

�̃8, 9 (C) := P(-=+1 = 9 ,,= ≤ C | -= = 8)

=

{
1(−∞,C ] (b̃ ( 98))e[̃ ( 98) : 98 ∈ Σ2

�

0 : otherwise.

and define � := (�̃8 9 )8, 9∈Σ to be the matrix with entries �8 9 := ‖�̃8 9 ‖∞ =

exp([̃( 98))1Σ2
�
( 98). Then, � is irreducible if and only if � is irreducible. More-

over, �̃8 9 is a distribution function of a discrete measure. Thus, b is lattice if and only
if �̃8 9 is lattice for all 8, 9 . For B ∈ R and 8, 9 ∈ Σ we have

�8, 9 (B) :=
∫

e−B) �̃8, 9 (d)) =
{

exp([̃( 98) − Bb̃ ( 98)) : 98 ∈ Σ2
�

0 : otherwise.

Setting �(B) := (�8 9 (B))8, 9∈Σ we see that the action of �(−B) on vectors coin-
cides with the action of the Ruelle-Perron-Frobenius operator L[+B b on functions
6 : Σ� → R which are constant on cylinder sets of length one. That is, setting
6̃8 := 6(8G), for G ∈ Σ� with 8G ∈ Σ�, gives

L[+B b6(8G) =
∑

9∈Σ, 98∈Σ2
�

e[̃ ( 98)+B b̃ ( 98) 6̃ 9 =
∑
9∈Σ

�8 9 (−B)6̃ 9 = (�(−B)6̃)8 .

By the Perron-Frobenius theorem for matrices there is a unique B for which �(B) has
spectral radius one. By the above this value coincides with the unique B for which
L[−B b has spectral radius one, which we denoted by X in Prop. A.4. Similarly, ℎ[−X b
is constant on cylinder sets of length one. Thus, setting ℎ8 := ℎ[−X b (8G) for G ∈ Σ�
with 8G ∈ Σ� we obtain a vector (ℎ8)8∈Σ with strictly positive entries which satisfies
�(X)ℎ = ℎ, since

(�(X)ℎ)8 = L[−X b ℎ[−X b (8G) = ℎ[−X b (8G) = ℎ8 .

Moreover, the vector a given by a8 := a[−X b ( [8]) satisfies a8 > 0 for all 8 ∈ Σ and
a�(X) = a, since L∗

[−X b a[−X b = a[−X b . By the Perron-Frobenius theorem ℎ and a
are unique with these properties. Additionally assuming j = 1Σ� and that 5G only
depends on the first letter of G ∈ Σ� it follows that # (C, G) only depends on the first
letter of G. Thus, for 8 ∈ Σ write # (C, 8) := # (C, 8G) with G ∈ Σ� for which 8G ∈ Σ�.
Now, the renewal equation becomes
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# (C, 8) =
∑

9∈Σ, 98∈Σ2
�

# (C − b̃ ( 98), 9)e[̃ ( 98) + 58 (C)

=
∑
9∈Σ

∫ ∞

−∞
# (C − D, 9)�̃8, 9 (dD) + 58 (C),

(B.18)

for 8 ∈ Σ, where 58 (C) := 58G (C) for G ∈ Σ� with 8G ∈ Σ�, compare (3.8). Using the
above in conjunction with the constants provided in Sec. A.5 thus yields Thm. 3.9.
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Part II
Random graphs and complexes





Fractal dimension of discrete sets and
percolation

Markus Heydenreich

Abstract There are various notions of dimension in fractal geometry to characterise
(random and non-random) subsets of R3 . In this expository text, we discuss their
analogues for infinite subsets of Z3 and, more generally, for infinite graphs. We then
apply these notions to critical percolation clusters, where the various dimensions
have different values.

Key words: Discrete fractal, Fractal dimension, Mass dimension, Spectral dimen-
sion, Discrete Hausdorff dimension, Percolation, Incipient infinite cluster
Mathematics Subject Classifications (2010). 28A80, 60K35, 82B43

1 What is the dimension of a graph?

Motivation. There are various notions of dimension for subsets of R3 , see the
classical work of Falconer [22] as well as texts by Fraser and Lehrbäck in this
volume [24, 44]. Hausdorff dimension is perhaps the most commonly used, other
examples are box dimension and Assouad dimension. Any reasonable notion of
dimension yields the same value for strictly self-similar sets, but already for affine
self-similar sets these values may differ. All these notions depend on microscopic
properties of the set, i.e. local properties.

In statistical physics, many interesting models give rise to (random) subsets of the
lattice Z3 or even general graphs, and therefore “dimension” in this context should
describe the macroscopic properties of the set rather than the microscopic ones.

In this expository text, we shall describe and compare three notions of dimen-
sion for graphs: fractal dimension and spectral dimension can be defined for any
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(connected and locally finite) graph, while the mass dimension requires the graph
to be embedded in an “external” metric space (for our purpose, we can think of R3
equipped with the Euclidean norm). In the second part, we investigate these notions
for (high-dimensional) critical percolation as a prime example of a rich and interest-
ing subset of Z3 , and we shall see that the three notions of dimension yield different
values.

It appears that different mathematical communities use different vocabulary, and
it is one of our aims to draw the connection between the various concepts involved.

Preparatory notions. We start by recalling basic notions from graph theory. Let
� = (+, �) be a graph with non-empty vertex set + and edge set � ⊂

(+
2
)
and

distinguished vertex 0 ∈ + (“the root”). We interpret � as a metric space with
intrinsic metric (or ‘graph metric’)

3� (G, H) = inf
{
= ∈ N : ∃E1, . . . , E= ∈ + s.t.
{G, E1}, {E1, E2}, . . . , {E=−1, E= = H} ∈ �

}
, (1.1)

for the shortest number of edges forming a path from G to H (including the case that
3� (G, H) = ∞ whenever there is no such path).

We henceforth assume that the graph is locally finite, i.e. for all G ∈ + :

deg� (G) :=
∑
4∈�

1{G∈4} < ∞, (1.2)

and connected, i.e. 3� (G, H) < ∞ for all G.H ∈ + . For G ∈ + and = ∈ N0, we denote
by

�G (=) :=
{
H ∈ + : 3� (G, H) ≤ =

}
the ball w.r.t. the intrinsic metric 3� , and abbreviate �(=) := �0 (=) for the ball of
the root. We write m�G (=) := �G (=) \ �G (= − 1) for the inner vertex boundary of
�G (=).

Fractal dimension. The first notion of dimension is the fractal dimension (or
“volume growth dimension”) defined as

dim 5 (�) := lim
=→∞

log |�(=) |
log =

(1.3)

whenever the limit exists. More generally, we refer to the upper (resp. lower) fractal
dimension as lim sup (resp., lim inf) of (1.3). The fractal dimension appears to be
a very natural concept, and it characterises the structure of � viewed as a metric
space. In case of existence of the limit (1.3), we can write |�(=) | = =dim 5 (�)+> (1) .

Spectral dimension. A second, completely different approach to dimensionality is
given through random walks on the graph �. To this end, we define the (simple)
random walk on the (locally finite) graph � as the (discrete-time) stochastic process
with ((=)=∈N0 with probability measure % and the property that
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• %((0 = 0) = 1;
• For all = ∈ N and G, H ∈ + :

%((= = G | (=−1 = H) =
{

1
deg� (H)

if 3� (G, H) = 1,
0 otherwise.

(1.4)

In words, the random walk starts at the root at time = = 0, and in each time step
it moves to one of the neighbouring vertices (chosen independently with equal
probability).

We are now interested in the event that the random walk returns to the origin after
a given number 2= of steps. Indeed, we may use the decay rate of this probability to
define the spectral dimension of the graph � as

dimB (�) := lim
=→∞
−2

log %((2= = 0)
log =

(1.5)

provided that the limit exists.
Mind that we are interested in returning after an even number of steps only, the

reason for this is that %((2= = 0) > 0 for all = (e.g. by “reversing” the first = steps).
However, on bipartite graphs, the random walk can return to the origin only after an
even number of steps, so that automatically %((= = 0) = 0 whenever = is odd.

Both notions dim 5 and dimB use the special vertex 0 as ‘base point’. However,
it might be easily observed that 0 is not relevant for the dimension (as long as the
graph is connected), and any other vertex of � as base point would lead to the same
value of dim 5 and dimB .

The spectral dimension is closely linked to the concept of recurrence and tran-
sience of a graph, which we introduce next. To this end, we investigate the probability
that the random walk always returns to its starting point or not. We call the graph
recurrent if this is the case, i.e., if %(∃= ∈ N : (= = 0) = 1. Otherwise, we call the
graph transient.

Lemma 1.1. The graph � is recurrent if dimB < 2, and it is transient if dimB > 2.

Proof. A well-known theorem about random walks (e.g. Theorem 5.3.1 in [21])
states that the random walk ((=)= is transient if and only if

∑
=∈N %((= = 0) < ∞.

Thus for dimB < 2, we have∑
=∈N

%((= = 0) ≥
∑
=∈N

%((2= = 0) =
∑
=∈N

=− dimB/2+> (1) = ∞.

For an upper bound, we use %((2=+1 = 0) ≤ %((2= = 0) for all = ∈ N (cf. Lemma
4.1 in [7]), and thus∑

=∈N
%((= = 0) ≤ 1 +

∑
=∈N

2%((2= = 0) = 1 + 2
∑
=∈N

=− dimB/2+> (1) ,

and this is summable whenever dimB > 2. ut
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The “borderline case” dimB = 2 relies on the finer asymptotics of %((2= = 0),
and thus the limit (1.5) is too coarse to give an answer.

The terminology “spectral dimension” suggests a connection with the eigenvalues
of the graph Laplacian, see for example Rammal and Toulouse [47] for a discussion
in the Physics literature. For Brownian motion on a class of compact fractals, Kigami
and Lapidus [39] prove a rigorous correspondence between the fractal dimension
and the spectrum of the associated Laplacian.

Examples. An important example in the present text is the hypercubic lattice L3 =
(Z3 ,E3) with edge set E3 =

{
{G, H} : |G − H | = 1

}
. It is easily observed that

dim 5 (L3) = dimB (L3) = 3; indeed, this property should hold for any meaningful
notion of dimension for discrete sets. A Cayley graph is a graph that encodes the
abstract structure of a (usually finitely generated) group. The class of Cayley graphs
is very rich, and includes the hypercubic lattice, homogeneous trees, and many other
graphs. Gromov [27] proved that the limit (1.3) exists as an integer number for every
Cayley graph. Hebisch and Saloff-Coste [31, Thm. 5.1] verified that dim 5 = dimB

for Cayley graphs. This equality is true for many other classes of graphs.

The escape time exponent. Asecond notion characterising randomwalks on graphs
is the escape time exponent V, which is defined as

�
[

inf{= ∈ N : (= ∈ m�(=)}
]
= =V+> (1) . (1.6)

Thus V describes how long it typically takes to reach the boundary of =-balls; by
� [ · ] we denote expectation w.r.t. the random walk measure %. For the Euclidean
lattice L3 we have V = 2. If V > 2, we speak of anomalous diffusion, which relates to
the fact that the randomwalkmoves on averagemuch slower than in Euclidean space:
after = steps, the random walk is typically at distance =1/V from its starting point. An
example for anomalous diffusion is random walk on the Sierpinski gasket, for which
Barlow and Perkins [10] proved that V = log 5/log 2. The exponent V is closely linked
to dim 5 and dimB . Indeed, Barlow and Bass [8] prove that V = 2 dim 5 /dimB for any
generalized Sierpinski gasket. However, all values of V in the interval [2, dim 5 +1]
are possible, as pointed out by Barlow [6].

Mass dimension. The graph notions described above are rather versatile tools for
abstract graphs. We shall now consider graphs that are embedded into Euclidean
space R3 (by this we mean that+ ⊂ R3). For our purpose we can be more restrictive
and require that + ⊂ Z3 . We denote by

&(=) := [−=, =]3 ∩ Z3 (1.7)

the ball of radius = with respect to the supremum-metric on Z3 . Themass dimension
of a graph � = (+, �) is then defined via

dim< (�) := lim
=→∞

log |+ ∩&(=) |
log =

. (1.8)
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Mind the difference between dimB and dim<: while the former identifies the growth
exponent of balls w.r.t. the intrinsic (graph) metric, the latter measures balls w.r.t.
the extrinsic (Euclidean) metric. This makes no difference for � = L3 , but we will
encounter examples, where this is indeed very different. The use of the supremum
metric in (1.7) might appear arbitrary, but since all metrics on Z3 are equivalent,
they will all lead to the same value of dim<.

Other notions of dimension. In this exposition we focus on the formerly defined
dimensions. However, there are various other notions of dimensions for subsets of Z3
(mostly graph analogues of “continuum dimensions” for subsets of R3). We explain
two of these notions, which were introduced by Barlow and Taylor [11, 12].

The first definition is the discrete Hausdorff dimension dim� , which is defined
for subsets of Z3 as follows. We say that a set � ⊂ Z3 is a finite cube if there exists
G ∈ Z3 and A ∈ N such that � = &(A) + {G} (where + is the Minkowski sum). For a
finite set � ⊂ Z3 , we denote by

R(�) = min{A : � ⊂ &(A) + {G} for some G ∈ Z3}

the radius of � as the radius of a covering cube (and put ' = ∞ if |�| = ∞). For
U ≥ 0, �, � ⊂ Z3 and � ≠ ∅, we further let

aU (�, �) := min

{
<∑
8=1

(
R(�8)
R(�)

)U
: �1, . . . , �< are finite cubes and � ∩ � ⊂

<⋃
8=1

�8

}
.

Let

<U (�) =
∞∑
==1

aU
(
�,&(2=) \&(2=−1)

)
. (1.9)

Mind that U ↦→ GU is decreasing for G ∈ [0, 1], and so is <U (�). We finally define
the discrete Hausdorff dimension

dim� (�) := inf
{
U ≥ 0: <U (�) < ∞

}
. (1.10)

The definition of discrete Hausdorff dimension is clearly modelled by its continuous
counterpart. Similarly to (and yet different from) the spectral dimension, this notion
is closely related to the recurrence and transience of random walks on �:

Proposition 1.2 (Thm. 8.3 in [12]). A set � ⊂ Z3 is recurrent if dim� (�) > 3 − 2,
and it is transient if dim� (�) < 3 − 2.

Comparison with Lemma 1.1 shows that dim� and dimB often differ. What is the
behaviour if dim� (�) = 3 − 2? If <3−2 (�) < ∞, then the set is transient as well,
but no conclusion is possible when <3−2 (�) = ∞, because the dim� is not sensitive
enough to decide the matter.

The second example that we discuss here is the discrete packing dimension dim? .
Its continuous analogue is the packing dimension as defined by Taylor and Tricot
[50], which is the same as Kolmogorov’s metric dimension and Hawke’s entropy
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dimension. To this end, we let �, � ⊂ Z3 as before, and Y ∈ (0, 1). Then we let

`U (�, �, Y) := max

{
<∑
8=1

(
R(�8)
R(�)

)U
:
�1, . . . , �< are finite pairwise disjoint cubes
centered in � ∩ � s.t. R(�8) ≤ R(�)1−Y

}
,

and define the “packing measure”

?U (�, Y) =
∞∑
==1

`U
(
�,&(2=) \&(2=−1, Y)

)
. (1.11)

Then the discrete packing dimension is defined as

dim? (�) := inf
{
U ≥ 0: ?U (�, Y) < ∞ for all Y ∈ (0, 1)

}
. (1.12)

Among the results of Barlow and Taylor [12, Lemma 3.1] is the following order of
the dimensions: If � ⊂ Z3 , then

0 ≤ dim� (�) ≤ dim< (�) ≤ dim? (�) ≤ 3; (1.13)

We return to these notions at the end of this text.
A different approach to the dimensionality of discrete sets has been proposed

recently by Bacelli, Haji-Mirsadeghi, and Khezeli [4].

2 Percolation

2.1 Percolation on Ld

Percolation theory studies the geometry of certain random subgraphs of L3 . Let
? ∈ [0, 1] be a parameter of the model, and make edges in E3 occupied with
probability ? (independently of each other), and otherwise vacant. More formally,
we consider the probability space Ω = {0, 1}E3 equipped with the product topology.
For a percolation configuration l ∈ {0, 1}E3 , an edge 1 ∈ E3 is occupied whenever
l(1) = 1, and it is vacant whenever l(1) = 0. We equip this space with a family of
product measures (P?)?∈[0,1] chosen such that P? (1 occupied) = ? for any 1 ∈ E3
and ? ∈ [0, 1].

We say that G is connected to H and write G↔H when there exists a (finite)
path of occupied edges connecting G and H. Formally, G↔H on a configuration
l ∈ {0, 1}E3 if there exist G = E0, E1, . . . , E<−1, E< = H ∈ Z3 with the property
that {E8−1, E8} ∈ E3 and l({E8−1, E8}) = 1 for all 8 = 1, . . . , < (< ∈ N). We further
write {G↔H} = {l : G↔H on the configuration l}. We let the cluster of G be all the
vertices that are connected to G, i.e., C(G) = {H : G↔H}. By convention, G ∈ C(G).

We define the percolation function ? ↦→ \ (?) by
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? = 1/3 ? = 1/2 ? = 2/3

Fig. 1 Three realisations of percolation on L2.

\ (?) = P? ( |C(G) | = ∞), (2.14)

where G ∈ Z3 is an arbitrary vertex and |C(G) | denotes the number of vertices in
C(G). By translation invariance, the above probability does not depend on the choice
of G. We therefore often investigate C = C(0) where 0 ∈ Z3 denotes the origin.

When \ (?) = 0, then the probability that the origin is inside an infinite connected
component is 0, so that there is almost surely no infinite connected component. On the
other hand, when \ (?) > 0, then (by ergodicity) the proportion of vertices in infinite
connected components equals \ (?) > 0, and we say that the system percolates.

We define the percolation critical value by

?2 = inf{? : \ (?) > 0}. (2.15)

It is well-known that ?2 = 1 on the one-dimensional lattice L1 and ?2 ∈ (0, 1)
on L3 for all 3 ≥ 2. For this and other basic properties we refer to the textbooks
by Grimmett [26], Bollobas and Riordan [17] and Werner [51]. See Figure 1 for a
simulation of percolation with different values of ?.

For every percolation realization l ∈ Ω, we can define a random walk on the
cluster C as in (1.4); we denote the corresponding measure by %l . Random walk on
percolation clusters is a benchmark model of random walk in (non-elliptic) random
environment.

2.2 Dimension of percolation clusters

We now address the question: What is the dimension of the percolation cluster
C = C(0)? The answer depends on the value of ?.

Indeed, if ? < ?2 , then |C| < ∞ for P?-almost all l, and hence
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dim 5 (C) = dim< (C) = dimB (C) = 0 P? − 0.B. (2.16)

We get a different picture when ? > ?2 , and thus \ (?) = P? ( |C(G) | = ∞) > 0.
We condition on the event that the origin lies in an infinite cluster, and denote the
conditional probability by P∗? ( · ) = P? ( · | 0↔∞). It may be seen by applying the
ergodic theorem that

lim
=→∞

|C ∩&(=) |
|&(=) | → \ (?) P∗? − a.s., (2.17)

and hence dim< (C) = 3. Furthermore, we get that dim 5 (C) = 3 (almost surely w.r.t.
the measure P∗?) by exploiting the large deviation bounds on the graphical distance
by Antal and Pisztora [3]. Concerning the spectral dimension, Barlow [5] proved the
heat kernel bounds

21=
−3/2 ≤ %l ((2= = 0) ≤ 22=

−3/2 (2.18)

for P∗?-almost all l (where the constants 21, 22 > 0 depend on the value of ?),
and hence dimB (C) = 3 as well. Barlow’s result was strengthened further to get a
quenched invariance principle [16, 45].

Finally, the critical case ? = ?2 . There is a rather general lower bound on the
volume growth of critical clusters. Recall that we denote by �(=) the ball w.r.t. the
intrinsic (graph) metric 3C on the cluster C = C(0), and m�(=) = �(=) \ �(= − 1).

Theorem 2.1. For percolation on L3 , 3 ≥ 1,

E?2 |�(=) | ≥ =, = ≥ 1. (2.19)

We provide a proof at the end of this chapter. Mind that (2.19) implies that
lim inf=→∞ logE?2 |�(=) |/log = ≥ 1, and it might be tempting to conjecture that
even dim 5 ≥ 1. This, however, is not true. Even stronger, it is strongly believed that
critical infinite clusters do not exist:

Conjecture 2.2. For percolation on Z3 , 3 ≥ 2, we have that \ (?2) = 0, and thus
|C(G) | < ∞ for all G ∈ Z3 P?2 -a.s.

The conjecture is known to be true for 3 = 2 by Kesten [36] as well as in high
dimensions by Hara and Slade [30], where the meaning of high dimensions is that
there exists 3min > 6 such that the claim is true for 3 ≥ 3min . Fitzner and van der
Hofstad [23] optimized the strategy of Hara and Slade and verified that 3min = 11
suffices. Proving this conjecture in dimensions 3 ≤ 3 ≤ 10 is a major open problem
in percolation theory; see also [26] and [32, Open Problem 1.1].

In view of the presumed result that \ (?2) = 0, we thus get that all clusters are
almost surely finite and hence all dimensions equal 0, precisely as for ? < ?2 . Yet
an interesting structure will emerge if we look at the interesting geometry of critical
clusters from a different angle. We now investigate this further for the two regimes
that we do understand rigorously, namely 3 = 2 and high dimensions.
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2.3 The incipient infinite cluster

When \ (?2) = 0, this leaves us with a most remarkable situation: At the critical
point ?2 there are clusters at all length scales, which are, however, all finite. As we
then make a density Y > 0 of closed edges open, the large clusters connect up to form
a (unique) infinite cluster, no matter how small Y is. At criticality, the critical cluster
is therefore at the verge of appearing. This observation motivated the introduction of
an incipient infinite cluster (IIC) as a critical cluster that is conditioned to be infinite.

Somewhat simplified, the incipient infinite cluster (IIC) is defined as the cluster
of the origin under the critical measure P?2 conditioned on {|C(0) | = ∞}. Since this
would condition on an event of zero probability, a rigorous construction of the IIC
requires a limiting argument. The first mathematical construction has been carried
out by Kesten [37] in two dimensions, who considered two limiting schemes:

B under P?2 , condition on the event {C(0) ∩ mΛ= ≠ ∅}, and then let =→∞;
B under P? (? > ?2), condition on the event {|C(0) | = ∞} and let ? ↘ ?2 .

Kesten proved that both limits exist in dimension 3 = 2, and lead to the same
limiting measure, which he calls the incipient infinite cluster. He was motivated
by observations in the physics literature, which indicated anomalous diffusion for
random walk on large critical percolation clusters. Kesten [38] confirmed this, and
proved that the exit time exponent V satisfies V > 2 on incipient infinite cluster in
two dimensions. It is an open problem to improve this bound.

For percolation on a regular tree, the cluster distribution is precisely that of
a Galton-Watson tree with binomial offspring distribution. Hence, the incipient
infinite cluster for percolation on a tree is a special case of critical Galton-Watson
tree conditioned on non-extinction. It was again Kesten [38] who studied the latter,
and proved that it can be constructed in two steps: a single infinite line of descent,
casually phrased as “the immortal particle” andmore formally as “cluster backbone”,
and critical trees hanging off this backbone. He further investigated the escape time
exponent for this incipient infinite cluster on trees, and proved that V = 3.

We now come to the case of high-dimensional percolation, where the IIC was
constructed by van der Hofstad and Járai:

Theorem 2.3 (IIC construction [35]). There is a dimension 3min > 6 such that for
3 ≥ 3min and any event � that depends on the status of finitely many edges, the limit

PIIC (�) := lim
|G |→∞

P?2
(
� | 0↔G

)
(2.20)

exists.

The limitation to events that depend on the status of only finitely many edges is
a technical one. In fact, such events form an algebra on Ω which is stable under
intersections, and we may thus extend PIIC to a measure on the f-fields generated
by the product topology. We denote this measure PIIC the incipient infinite cluster
measure.
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It is straightforward to see that indeed PIIC ( |C(0) | = ∞) = 1, as desired. Since
\ (?2) = 0, the IIC is also one-ended in the sense that the removal of any finite region
of the IIC leaves one infinite part. It can be seen that the infinite path is essentially
unique in the sense that any pair of infinite self-avoiding paths in the IIC share
infinitely many edges.

Van der Hofstad and Járai derive also another construction of the IIC-measure in
high dimensions, namely

PIIC (�) = lim
?↗?2

∑
G∈Z3 P? (� ∩ {0↔G})∑

G∈Z3 P? (0↔G)
. (2.21)

A third construction (same as Kesten’s first construction in two dimension) was
derived with van der Hofstad and Hulshof [33].

Mind that the measure PIIC has lost the translation invariance of the percolation
measures P? . Indeed, the origin 0 plays a special role, since we have enforced that
the cluster C(0) is infinite.

2.4 Lower bound for the expected size of critical balls

We now prove Theorem 2.1. One ingredient is an alternative characterization of ?2 ,
namely

?2 = sup
{
? ∈ [0, 1] : E? |C| < ∞

}
, (2.22)

which is standard in percolation theory [1, 46]; we also refer to the short proof by
Duminil-Copin and Tassion [20]. In our proof of Theorem 2.1, we adapt ideas of [20]
but use the intrinsic (graph) metric rather than the extrinsic one. It appears that the
proof is valid in much wider context, namely all transitive connected graphs whose
percolation threshold is strictly between 0 and 1 and for which (2.22) is true.

Proof (Proof of Theorem 2.1).We define the value ?̄2 = sup" with

" =
{
? ∈ (0, 1) : ∃= ∈ N such that E? |m�(=) | < 1

}
.

Fix an arbitrary ? < ?̄2 . Then exists Y > 0 and = ∈ N such that E? |m�(=) | < 1 − Y.
Fix such Y and =. We now claim that

P?
(
m�(:=) ≠ 0

)
≤ (1 − Y): , : ∈ N. (2.23)

The proof of (2.23) is via induction in : . The initialization of the induction is our
assumption. For the inductive step, we assume that (2.23) is true for some : , and
aim to prove it for : + 1. We first condition on the ball �(=):

P?
(
m�((: + 1)=) ≠ 0

)
=

∑
�⊂Z3

P?
(
�(=) = �, m�((: + 1)=) ≠ 0

)
. (2.24)
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We treat the set � as a subgraph of L3 , and denote by m� the vertices with maximal
graphical distance from 0, this allows us to bound

P?
(
m�((: + 1)=) ≠ 0

)
=

∑
�⊂Z3

P?
(
�(=) = �,

⋃
H∈m�

m�H (:=) ≠ 0 in (Z3 \ �) ∪ {H}
)

≤
∑
�⊂Z3

∑
H∈m�

P?
(
�(=) = �, m�H (:=) ≠ 0 in (Z3 \ �) ∪ {H}

)
.

(2.25)

The event {�(=) = �} depends on the status of all the edges with at least one
endpoint in � \ m�. On the other hand,

{
m�H (:=) ≠ 0 in Z3 \ � ∪ {H}

}
depends on

the status of the edges not touching � \ m�. Hence, the two events are independent,
and we bound further

P?
(
m�((: + 1)=) ≠ 0

)
≤

∑
�⊂Z3

∑
H∈m�

P?
(
�(=) = �

)
P?

(
m�H (:=) ≠ 0 in (Z3 \ �) ∪ {H}

)
≤

∑
�⊂Z3

∑
H∈m�

P?
(
�(=) = �

)
P?

(
m�H (:=) ≠ 0

)
(2.26)

Transitivity of the underlying lattice gives P?
(
m�H (:=) ≠ 0

)
= P?

(
m�(:=) ≠ 0

)
.

Since∑
�⊂Z3

∑
H∈m�

P?
(
�(=) = �

)
=

∑
�⊂Z3

|m�| P?
(
�(=) = �

)
= E? |m�(=) | ≤ 1 − Y,

we can use the induction hypotheses to obtain P?
(
m�((: + 1)=) ≠ 0

)
≤ (1 − Y):+1,

thus proving (2.23). Consequently,

P? ( |C| = ∞) ≤ lim
:→∞

P?
(
m�(:=) ≠ 0

)
= 0

and thus ? ≤ ?2 . Since ? < ?̄2 was arbitrary, we conclude ?̄2 ≤ ?2 .
We further observe that " is an open subset of [0, 1], and therefore ?̄2 ∉ " . This

implies E? |m�(=) | ≥ 1 for all = ∈ N, and thus

E ?̄2 |C| =
∑
=∈N0

E ?̄2 |m�(=) | ≥
∑
=∈N0

1 = ∞,

and via (2.22) we thus get that ?̄2 ≥ ?2 . Together with the foregoing, we established
?̄2 = ?2 .

The finishing touch is provided by the partial summation

E?2 |�(=) | = E ?̄2 |�(=) | =
=∑
:=0

E ?̄2 |m�(:) | ≥
=∑
:=1

1 = =.
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ut

3 Dimension of the incipient infinite cluster

In this section we come to the main endeavour of this text, which is characterising
the various dimensions of incipient infinite cluster.

Let us deal with the planar case first. Kesten [37] proved for various two-
dimensional lattices that

lim
_→∞

PIIC

(
_−1 ≤ |C ∩&(=) |

=2 P?2 (0↔m&(=))
≤ _

)
= 1 (3.27)

uniformly in =. For the case of site percolation on the triangular lattice, it is known
that %?2 (0↔m&(=)) = =−5/48+> (1) , cf. [43]. This suggests that the mass dimension
equals dim< = 91/96. However, in view of Lemma 3.5 below, the control of the
error terms is not strong enough to conclude that dim< = 91/96 in an (PIIC-)almost
sure sense. Concerning the fractal dimension dim 5 , it is a challenging open problem
to derive sharp bounds on the intrinsic (graph) distance of critical two-dimensional
clusters. For a recent survey of bounds on the intrinsic distance in the planar case,
we refer to Damron [19].

We now come to the case of high-dimensions, where the results aremost complete.
For a general survey of results in high-dimensional percolation, we refer to our recent
textbook [32].

For the incipient infinite cluster in high dimensions, the results are summarized
in the following theorem:

Theorem 3.1 ([14, 40]). For the incipient infinite cluster in high dimensions, we
have that

dimB (C) = 4/3, dim 5 (C) = 2, dim< (C) = 4 PIIC − a.s.

Interestingly, all three dimensions of C are independent of the dimension 3 of the
embedding space, an indication that the geometry of the embedding space is less
visible, and the model appears similar as their non-spatial analogues (as predicted
by mean-field theory).

In the sequel, we demonstrate the proof for the fractal dimension based on a
number of standard results for high-dimensional percolation. Finally, we discuss the
necessary adaptations for the other dimensions dimB and dim<.

The analysis of percolation in high dimension is rooted in a technique called
the lace expansion. For percolation, this was pioneered in a seminal 1990 paper by
Hara and Slade [30], who were inspired by earlier work of Brydges and Spencer
[18] for self-avoiding walk. For our purpose we need the following estimate on the
percolation connectivity: there exist �, 2 > 0 such that for all G, H ∈ Z3 , G ≠ H,

2 |G − H |3−2 ≤ P?2 (G↔H) ≤ � |G − H |3−2. (3.28)
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The estimate (3.28) was first derived for a spread-out version of percolation [29],
and adapted by Hara [28] to our setting. Fitzner and van der Hofstad [23] verified
that it is valid in dimension 3 > 10.

The upper bound in (3.28) readily implies the famous triangle conditon, which in
turn implies that various critical exponents take on their mean-field values. We need
only two implications here, and refer to a general discussion of critical exponents to
[32, Section 1.2]: There are constants 21, �1, 22, �2 > 0 such that

21
?2 − ?

≤ E? |C| ≤
�1

?2 − ?
, ? ∈ (0, ?2), (3.29)

and
22√
:
≤ P?2

(
|C| ≥ :) ≤ �2√

:
, : ∈ N. (3.30)

The bound (3.29) is due to Aizenman and Newman [2], the bound (3.30) due to
Barsky and Aizenman [13].

Our final ingredient is the famous BK-inequality. To this end, we define the
disjoint occurrence � ◦ � of two events � and � as

� ◦ � =
{
l : ∃ ⊂ E3 such that l ∈ �, lE3\ ∈ �

}
, (3.31)

where l := {l′ : l(4) = l′(4) for all 4 ∈  } is the “ -cylinder of l”. Then the
BK-inequality [15, 48] establishes that

P? (� ◦ �) ≤ P? (�) P? (�) (3.32)

for any ? ∈ [0, 1] and all events �, � that depend on finitely many edges. This last
confinement can be lifted in many cases, and indeed (3.32) is true for all events that
we are considering in the present text (see also Section 2.3 in [26]).

3.1 The fractal dimension

We now prove that dim 5 (C) = 2 whenever (3.28) is valid. We start by showing that
the lower bound (2.19) has a matching upper bound in high dimensions (which is
supposedly false in dimension 3 < 6).

Lemma 3.2 (Ball growth). Consider percolation in dimension 3 > 10. There exists
a constant �3 > 0 such that for all = ∈ N,

= ≤ E?2 |�(=) | ≤ �3=.

Proof. The lower bound was already contained in (2.19). We follow Sapozhnikov
[49] for a proof of the upper bound. Let ? < ?2 . We consider the following coupling
of percolation with parameters ? and ?2: Starting with a critical percolation config-
uration (edges are occupied with probability ?2), make every occupied edge vacant
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with probability 1 − (?/?2). This construction implies that for any G ∈ Z3 , ? < ?2 ,
and = ∈ N,

P?
(
3C (0, G) ≤ =

)
≥

(
?

?2

)=
P?2 (3C (0, G) ≤ =).

Summing over G and using the inequality P? (3C (0, G) ≤ =) ≤ P? (0↔G), we obtain

E?2 |�(=) | ≤
(
?2

?

)=
E? |C| ≤ �1

(
?2

?

)=
(?2 − ?)−1,

where the last bound comes from (3.29). Choosing ? = ?2 (1− 1
2= ) proves the claim.

ut

Lemma 3.3 (Arm exponents [40]). Consider percolation in dimension 3 > 10.
There exists constants �, 2 > 0 such that for all = ∈ N,

2

=
≤ P?2

(
m�(=) ≠ ∅

)
≤ �
=
.

Proof. We start with the proof of the lower bound, and use the well-known second-
moment method. The basic inequality is

P(/ > 0) ≥ (E/)2/E/2, (3.33)

which is valid for any non-negative random variable / . We aim to apply this to
/ =

���(_=) \ �(=)�� with _ = 2�3. Now Lemma 3.2 yields

E?2 |�(_=) \ �(=) | ≥ _= − �3= = �3=.

We now estimate the second moment of �(_=). Indeed, if both G and H are connected
with distance ≤ _= from 0, then there must exist a “branch point” I ∈ Z3 such that
there are (edge-)disjoint paths from 0 to I, from I to G and from I to H. We may use
the symbol ◦ (recall (3.31)) to write this as

{3C (0, G) ≤ _=} ∩ {3C (0, H) ≤ _=}

⊆
⋃
I

{3C (0, I) ≤ _=} ◦ {3C (I, G) ≤ _=} ◦ {3C (I, H) ≤ _=}.

Consequently, the BK-inequality (3.32) and Lemma 3.2 yields

E?2 |�(_=) |2 =
∑
G,H

P?2 (3C (0, G) ≤ _=, 3C (0, H) ≤ _=)

≤
∑
G,H,I

P?2 (3C (0, I) ≤ _=) P?2 (3C (I, G) ≤ _=) P?2 (3C (I, H) ≤ _=)

=

[ ∑
I∈Z3

P?2 (3C (0, I) ≤ _=)
]3
= �(_=)3 ≤ � ′=3, (3.34)
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for some constant � ′ > 0. Consequently, the bound in (3.33) yields

P?2
(
∃G ∈ Z3 : 3C (0, G) ≥ _=

)
≥ P?2

(
|�(_=) \ �(=) | > 0

)
≥
�2

3=
2

� ′=3 =
�2

3
� ′=

,

which proves the statement with 2 = �2
3

_�′ =
�3
2�′ .

The upper bound uses a clever induction argument. For subgraphs� of the infinite
lattice L3 , we denote by C� = C� (0) the (restricted) percolation cluster of 0 in the
subgraph �, and denote by �C� (=) =

{
H ∈ Z3 : 3C� (0, H) ≤ =

}
the corresponding

ball w.r.t. the graph metric on the restricted cluster C� . We further define

� (=;�) :=
{
m�C� (=) ≠ ∅

}
for the “one-arm event” on the graph �, and

Γ(=) = sup
{
P?2 (� (=;�)) : � is subgraph of E3

}
.

It turns out that working with Γ(=) rather than P?2 (� (=;L3)) enables us to apply
a regeneration argument, which would not work for P?2 (� (=;L3)), since it is not
monotone.

For �2 as in (3.30), we choose �∗ ≥ 1 large enough so that

33�∗
2/3 + �2�∗

2/3 ≤ �∗, (3.35)

We claim that, for any integer : ≥ 0,

Γ(3: ) ≤ �∗
3:
. (3.36)

This readily implies the upper bound of the lemma, since for any = we choose : such
that 3:−1 ≤ = < 3: and then

P?2 (� (=;L3)) ≤ Γ(=) ≤ Γ(3:−1) ≤ �∗
3:−1 ≤

3�∗
=
.

The proof of (3.36) is via induction in : . The claim is trivial for : = 0 since �∗ ≥ 1.
For the inductive step we assume (3.36) for : − 1 and prove it for : . Depending on
the size |C� | of the restricted cluster C� for arbitrary subgraphs �, we estimate

P?2 (� (3: ;�)) ≤ P?2
(
� (3: ;�), |C� | ≤ �∗−4/39:

)
+ P?2

(
|C� | > �∗−4/39:

)
.

(3.37)
For the second summand, we use (3.30) to obtain

P?2
(
|C� | > �∗−4/39:

)
≤ P?2

(
|CL3 (0) | > �∗−4/39:

)
≤ �2�∗

2/33−: . (3.38)

For the former, on the other hand, we claim that

P?2
(
� (3: ;�), |C� | ≤ �∗−4/39:

)
≤ �∗−4/33:+1

(
Γ(3:−1)

)2
. (3.39)
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Indeed, if |C� | ≤ �∗−4/39: , then there exists 9 ∈ [ 13 3: , 2
3 3: ] such that |m�C� ( 9) | ≤

�∗
−4/33:+1. Denote the first such level by 9 . Then, on the right hand side, we get

a factor Γ( 9) (which is bounded by Γ(3:−1)) from the probability of a connection
from the origin to level 9 , and �∗−4/33:+1 times the probability to go from level 9
to level 3: (each of these probabilities is again bounded above by Γ(3:−1)), which
shows (3.39).

We combine (3.37), (3.38), (3.39) with the induction hypothesis, and finally
(3.35), to obtain

Γ(3: ) ≤ �∗−4/33:+1
(
�∗

3:−1

)2
+ �2�∗

2/3

3:
=

33�∗
2/3 + �2�∗

2/3

3:
≤ �∗

3:
,

thus proving (3.36). ut

While the previous estimates all concern critical percolation, we now turn towards
the IIC-measure; and our tool to transfer the results is the construction (2.20).

Lemma 3.4 ([40]). Consider percolation in dimension 3 > 10. There exist � > 0
such that for all = ∈ N, _ > 1,

PIIC

( 1
_
=2 ≤ |�(=) | ≤ _=2

)
≥ 1 − �

_
.

Proof (Upper bound).We aim to show that PIIC
(
|�(=) | > _=2) ≤ �_−1 for all _ > 0,

= ∈ N. If 3C (0, I) ≤ = and 0↔G (for G, I ∈ Z3), then there exists a vertex H ∈ Z3
such that

{3C (0, H) ≤ =} ◦ {3C (H, I) ≤ =} ◦ {H↔G}.

By the BK-inequality (3.32), we can bound this from above as follows:

E?2 [|�(=) | 1{0↔G }] =
∑
I

P?2 (3C (0, I) ≤ =, 0↔G)

≤
∑
H,I

P?2
(
{3C (0, H) ≤ =} ◦ {3C (H, I) ≤ =} ◦ {H↔G}

)
≤

∑
H,I

P?2 (3C (0, H) ≤ =) P?2 (3C (H, I) ≤ =) P?2 (H↔G).

(3.40)

Therefore, we get a bound for the conditional probability

E?2 [|�(=) | | 0↔G] ≤
∑
G,I

P?2 (3C (0, H) ≤ =) P?2 (3C (H, I) ≤ =)
P?2 (H↔G)
P?2 (0↔G)

.

(3.41)

The asymptotics (3.28) implies that there is a constant � ′ such that for all G with
|G − H | ≤ 2|G |, the ratio P?2 (H↔G)/P?2 (0↔G) ≤ � ′, thus



Fractal dimension of discrete sets and percolation 113

E?2 [|�(=) | | 0↔G] ≤ �
∑
G,I

P?2 (3C (0, H) ≤ =) P?2 (3C (H, I) ≤ =). (3.42)

Finally, we use the upper bound in Lemma 3.2 twice to get

E?2 [|�(=) | | 0↔G] ≤ � ′(�3=)2. (3.43)

The finishing touch is provided by Markov’s inequality:

P?2 ( |�(=) | ≥ _=2 | 0↔G) ≤
� ′�2

3=
2

_ =2 = � ′�2
3_
−1. (3.44)

Letting |G | → ∞ yields the claim (as {|�(=) | ≥ _=2} is a cylinder event). ut

Proof (Lower bound). For the lower bound, we prove that PIIC
(
|�(=) | < Y=2) ≤ �Y

for all Y = _−1 > 0, = ∈ N.
If |�(=) | < Y=2, then there exists some radius 9 ∈ {d=/2e, . . . , =} such that

|m�(0, 9) | ≤ 2Y=, and we fix the smallest such 9 . Then we condition on {�( 9) = �}
for any “ 9-admissible” subgraph �, which is any finite subgraph � of L3 containing
0 s. t.

• P?2 (�( 9) = �) > 0,
• |m�| ≤ 2Y=, where |m�| denote the number of vertices at maximal graphical

distance from 0
• |{H : 3�(0, H) = :}| > 2Y= for : = d=/2e, . . . , 9 − 1 (to make sure that 9 is the

“first” level satisfying the above property).

This yields

P?2
(
|�(=) | < Y=2, 0↔G

)
≤

=∑
9==/2

∑
�

P?2
(
�( 9) = �, 0↔G

)
=

=∑
9==/2

∑
�

P?2
(
0↔G | �( 9) = �

)
P?2

(
�( 9) = �

)
,

(3.45)

where the sum is over all 9-admissable �. For any such �, we get

P?2 (0↔G | �( 9) = �) ≤
∑
H∈m�

P?2 (H↔G with a path avoiding � \ m� | �( 9) = �).

However, since {H↔G with a path avoiding � \ m�} only depends on the edges with
both endpoints outside � \ m� and {�( 9) = �} only depends on the edges with both
endpoints in �, the two events are independent, and
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P?2 (0↔G | �( 9) = �) ≤
∑
H∈m�

P?2 (H↔G with a path avoiding � \ m�)

≤
∑
H∈m�

P?2 (H↔G) ≤
∑
H∈m�

� |H − G |3−2,

where the last bound uses (3.28). Assuming that G is far away from the origin (again
|G − H | ≤ 2|G | suffices), then there is a constant � ′ > 0 such that

P?2 (0↔G | �( 9) = �) ≤ � ′ |m�| |G |2−3 ≤ � ′Y= |G |2−3 .

Furthermore, we have that
=∑

9==/2

∑
�

P?2
(
�( 9) = �

)
≤ %?2

(
m�(=/2) ≠ ∅

)
.

Plugging the previous two bounds in (3.45), we get

P?2
(
|�(=) | < Y=2, 0↔G

)
≤ � ′Y=|G |2−3

=∑
9==/2

∑
�

P?2 (�( 9) = �)

≤ � ′Y=|G |2−3P?2
(
m�(=/2) ≠ ∅

)
,

and now we use the upper bound in Lemma 3.3 to further bound

P?2
(
|�(=) | < Y=2, 0↔G

)
≤ � ′′Y |G |2−3

for a constant � ′′ > 0. Finally, letting |G | → ∞ and using (2.20) along with the
two-point function estimate (3.28) yields the desired result. ut

In order to prove that dim 5 (C) = 2 for the incipient infinite cluster, we combine
the previous lemma with the following general criterion:

Lemma 3.5 (Lemma 3.2 in [14]). Let (/=)=∈N be a sequence of positive random
variables such that /1 ≤ /2 ≤ . . . . Suppose there are constants U, `, � > 0 such
that for all _ > 0 and = ∈ N, we have

P(_−1=U ≤ /= ≤ _=U) ≥ 1 − � (log_)−1−` . (3.46)

Then
P

(
lim
=→∞

log /=
log =

= U

)
= 1.

Proof. We abbreviate .= := log /=/log =, and claim that it is sufficient to prove

lim
:→∞

.2: = U P − 0.B. (3.47)

Indeed, for = ∈ N, we choose : = : (=) ∈ N such that 2:−1 ≤ = ≤ 2: , and use the
monotonicity of the sequence (/=)= ∈ N to bound
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.2:−1
: − 1
:

=
log /2:−1

log 2:
≤ log /=

log =
≤ log /2:

log 2:−1 = .2:
:

: − 1
,

and then use (3.47) to conclude the claim.
In order to prove (3.47), we define

Y: := :
1+`/2
1+` −1

, _: := 2: Y: ,

and note that Y: > 0, _: > 1 for all : ≥ 1, and lim:→∞ Y: = 0. Then, using (3.46),

∞∑
:=1

P
(
|.2: − U | > Y:

)
=

∞∑
:=1

P
(
| log /2: − log(2:U) | > log_:

)
=

∞∑
:=1

P
(
/2: < _

−1
: 2:U

)
+ P

(
/2: > _:2:U

)
≤ �

∞∑
:=1

1
(log_: )1+`

=
�

(log 2)1+`
∞∑
:=1

1
:1+` < ∞.

Hence, the Borel-Cantelli lemma implies that

P
(
|.2: − U | > Y: for infinitely many :

)
= 0,

which proves (3.47). ut

Proof (Proof of dim 5 (C) = 2).We apply Lemma 3.5 with P being the IIC-measure
PIIC, U = 2, /= = �(=) and apply Lemma 3.4 to get the desired result. ut

3.2 The spectral dimension

Control of the return probability of randomwalk needs two ingredients. The first one
is control of the the volume growth, which is achieved in Lemma 3.4. The second
ingredient is control of the effective resistance. The connection between these two
ingredients and random walk behaviour is in the folklore of studying random walks,
see in particular Kumagai and Misumi [42] for results in our context. Kozma and
Nachmias [40] prove a quantitative estimate on the lower bound on the effective
resistance between 0 and m�(=), and then apply a readily tailored theorem of Barlow
at al. [9] to deduce that dimB = 4/3. Another consequence of this theorem is that the
escape time exponent equals V = 3 PIIC−almost surely (precisely as for the IIC on
trees).
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3.3 The mass dimension

Already van der Hofstad and Járai [35] showed that

EIIC |C ∩&(=) | ≈ =4.

From this, we can prove that dim 5 (C) ≤ 4 rather straightforwardly via Markov’s
inequality. The challenge is to prove a complementing lower bound, which was
achieved by Cames van Batenburg [14] using quantitative bounds on the extrinsic
one-arm exponent [41].

Mind that the escape time exponent as defined in (1.6) determines the rate at which
a random walk leaves a ball of intrinsic distance =. Unlike on Z3 , the extrinsic and
intrinsic distances are not equivalent on the IIC-cluster, and we therefore consider a
modified critical exponent V′ as

�
[

inf{= ∈ N : (= ∈ m&(=)}
]
= =V

′+> (1) . (3.48)

With van der Hofstad and Hulshof [33] we proved that V′ = 6 for PIIC−almost all
realizationsl. This should be contrasted against V = 3 explained before. This means
that the random walk needs order =3 steps to leave the intrinsic ball �(=), but it
needs =6 steps in order to leave &(=). The factor 2 between these two exponents
is not a coincidence: in high dimensions, the spatial dependency between different
parts of a critical cluster is rather weak; in fact so weak that geodesic paths (w.r.t.
graph distance) are embedded into Z3 similar to a random walk path, and thus the
graph distance between 0 and m&(=) is of the order =2.

4 Discussion and outlook

A number of pressing challenges were mentioned en passant, most notably the
identification of dimensions of critical percolation clusters in lower dimension.
However, in the following we want bring forward two lines of further research that
might be within reach with current techniques.

1. Identify discrete Hausdorff dimension and packing dimension of critical perco-
lation clusters in high dimension. Also for other “natural” random subsets of
Z3 . So far only results by Barlow and Taylor [12] and Georgiou et al. [25] for
the range of (generalised) random walks.

2. Known cases of discrete dimension all deal with subsets of Z3 , and also the
focus of the present account is on subsets of the hypercubic lattice. However,
there is no obvious need to stick to the lattice setup here—fractal and spectral
dimension are meaningful for any locally-finite connected graph, and the others
require an embedding of the vertices in some metric space, and Z3 might appear
as an unnecessary limitation.
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From a geometric point of view, it might be more natural to focus on discrete
subsets of R3 . Instead of lattice percolation, one might investigate the geometric
properties of (critical) continuumpercolation clusters. A suitable candidate is the
random connection model, where vertices are given as a Poisson point process
in R3 , and two vertices are linked by an edge with probability depending on the
Euclidean distance between the vertices. The critical behaviour of the random
connection model in high dimensions has recently been identified [34], paving
the way to an investigation of the continuum incipient infinite cluster and its
dimension(s).

Acknowledgements The author thanks Martin Barlow and SteffenWinter for providing references
and for comments on an earlier version of the manuscript.
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Asymptotics of integrals of Betti numbers for
random simplicial complex processes

Masanori Hino

AbstractWe discuss a higher-dimensional analogue of Frieze’s Z (3)-limit theorem
for theErdős–Rényi graph process applied to a family of increasing randomsimplicial
complexes. In particular, we consider the time integrals of Betti numbers, which are
interpreted as lifetime sums in the context of persistent homologies. We survey some
recent results regarding their asymptotic behavior that answer some questions posed
in an earlier study by Hiraoka and Shirai.

Keywords: randomsimplicial complex,Betti number, persistent homology, lifetime
sum
Mathematics Subject Classifications (2010). Primary: 60D05; Secondary: 05C80,
55U10, 05E45, 60C05

1 Introduction

Extensive studies on limit behavior of random graphs have their origins in the work
of Erdős and Rényi [4, 5]. Graph characteristics such as the threshold probability
of connectivity and the limit behavior around the critical probability provide good
descriptions of such complicated random discrete objects. In recent studies, the
scaling limits of random graphs themselves have attracted attention in pursuit of
a more comprehensive understanding; typical limit objects are continuum random
trees, which have fractal structures (e.g., see [1, 21] and the references therein). The
importance of fractal analysis in the study of random graphs will be emphasized
more in future work.

Meanwhile, the homological structures of random simplicial complexes have also
attracted interest recently as higher-dimensional counterparts of random graphs; see
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Kahle [16] for a survey of recent studies. In this connection, Hiraoka and Shirai [11]
studied the asymptotic behavior of persistent homologies of random simplicial com-
plex processes, and Hino and Kanazawa [10] advanced their research by solving
some of the problems that they had posed. A natural question to consider next is to
characterize suitable scaling limits of random simplicial complexes, which are cer-
tain to have fractal structures. However, unlike the case with random graphs, there
are as yet no concrete results about this question because the theory and techniques
are yet to be developed fully.

In this article, we follow [11, 10] and survey some recent results and new ideas
in the study of the homologies of random simplicial complexes. We hope that this
survey will serve as a preliminary to studying such objects from the perspective of
fractal analysis.

The rest of this article is organized as follows. In Section 2, we introduce vari-
ous concepts regarding random graphs, random graph processes, and their higher-
dimensional analogues, and we state some results regarding their asymptotic behav-
ior. In Section 3, we provide basic ideas for proving the main theorems. In Section 4,
we enumerate several problems for future research.

2 Frameworks and theorems

A typical random graph model is the Erdős–Rényi model � (=, ?) [9, 4, 5], which is
defined as the distribution of a random graph consisting of = vertices with the edges
between each pair of vertices included with probability ? independently.1 In one of
the earliest results of random graph theory, Erdős and Rényi proved the following.

Theorem 2.1 ([5]). Let Y > 0 and ? = ?(=) depend on =.

• If ? < (1 − Y) (log =)/= for sufficiently large =, then

P(the graph is disconnected) → 1 as =→∞.

• If ? > (1 + Y) (log =)/= for sufficiently large =, then

P(the graph is connected) → 1 as =→∞.

This theorem shows that the connectivity changes drastically around ? =

(log =)/=. Since then, there have been many studies of the behavior around the
threshold probability, which is one of the central topics of random graph theory.

Meanwhile, there have been other types of studies on the limit behavior of the
Erdős–Rényi model. To explain one such type, we introduce a canonical realization
of the family of Erdős–Rényi models {� (=, ?)}?∈[0,1] for fixed =. Let  = = += t�=
be the complete graph with = vertices, where += and �= are the vertex set and the

1 This definition is due to Gilbert [9]. The model that Erdős and Rényi introduced in [4, 5] is slightly
different, but the two models behave similarly as the number of vertices tends to infinity.
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edge set, respectively. We assign independent and identically distributed random
variables {D4}4∈�= that are uniformly distributed on [0, 1]. We construct a family
of random graphs X= = {-= (C)}C ∈[0,1] so that each D4 is the birth time of the edge
4 ∈ �=. More precisely, for each C ∈ [0, 1], the random graph -= (C) is defined as

-= (C) = += t {4 ∈ �= | D4 ≤ C}.

By construction, -= (C) is nondecreasing with respect to C almost surely, and the law
of -= (C) is equal to � (=, C) for every C ∈ [0, 1].

Let !0 (X=) be the minimal weight of spanning trees2 of  =, that is,

!0 (X=) = inf

{∑
4∈)

D4

����� ) : a spanning tree of  =

}
.

This quantity has several interpretations: By Kruskal’s algorithm [18], the identities

!0 (X=) =
∫ 1

0
V0 (-= (C)) 3C =

=−1∑
8=1

C8 (2.1)

hold, where V0 (�) denotes the number of connected components of the graph
� minus one, and C8 denotes the 8th random time when the number of connected
components of -= (C) decreases. Frieze [7] proved the asymptotic behavior of !0 (X=)
as follows.

Theorem 2.2 ([7]). It holds that

lim
=→∞

E[!0 (X=)] = Z (3)
(
=

∞∑
:=1

:−3

)
.

Moreover, for any Y > 0,

lim
=→∞

P( |!0 (X=) − Z (3) | > Y) = 0.

Recently, Hiraoka and Shirai [11] studied a higher-dimensional analogue of (2.1)
and Theorem 2.2, with random graphs and the number of connected components re-
placed by random simplicial complexes and the (reduced) Betti number, respectively.
Let us briefly review the concepts of simplicial complexes and their homologies.

Let + be a nonempty finite set. A collection - of nonempty subsets of + is called
an (abstract) simplicial complex over + if the following conditions are satisfied.

• For every E ∈ + , {E} belongs to - .
• For any f ∈ - , every nonempty subset of f belongs to - .

Forf ∈ - , : := #f−1 is called the dimension off and is denoted by dimf. We call
f a :-dimensional simplex or, equivalently, a :-simplex, and we call the maximum

2 A spanning tree of a graph � is, by definition, a tree that includes all the vertices of �.
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of dimf the dimension of - . Any finite graph can be regarded as either a zero- or
one-dimensional simplicial complex. If two simplices f and g satisfy f ⊂ g, then
f is called a face of g.

For : ≥ 0, f = (E0, E1, . . . , E: ) ∈ + :+1 is called an ordered :-simplex of - if
{E0, E1, . . . , E: } is a :-simplex of - . Two ordered simplices are called equivalent
if one is an even permutation of the other. The equivalence class of an ordered
:-simplex f is denoted by 〈f〉 or 〈E0, E1, . . . , E:〉 and is called an oriented :-
simplex of - . The space �: (-) of :-chains on - is defined as the real vector space
consisting of all linear combinations of oriented :-simplices under the relation that
〈E0, E1, . . . , E:〉 = −〈E1, E0, . . . , E:〉 for any oriented :-simplices.

For : ≥ 1, the :th boundary operator m: : �: (-) → �:−1 (-) is defined as a
linear map such that for any 〈f〉 = 〈E0, E1, . . . , E:〉 ∈ �: (-),

m: 〈f〉 =
:∑
8=0
(−1)8 〈E0, . . . , E8−1, E8+1, . . . , E:〉.

By convention, we define �−1 (-) = R, and m0 : �0 (-) → �−1 (-) is defined as a
linear map such that m0〈E〉 = 1 for E ∈ + . Then, it holds that m: ◦ m:+1 = 0 for all
: ≥ 0. The :th homology group of - over R and the :th (reduced) Betti number
are defined as �: (-) := ker m:/Im m:+1 and V: (-) := dim�: (-), respectively.3
Intuitively, V: (-) is interpreted as the number of :-dimensional holes in - . In
particular, V0 (-) is equal to the number of connected components of - minus one.
In the standard definition, we note that m0 would be defined as the zero operator,
which makes our zeroth Betti number defined above equal to the conventional zeroth
Betti number minus one.

Research interest has been growing in the higher-dimensional analogue of The-
orem 2.1 and related topics; see the survey by Kahle [16] for recent studies. In
general, the homological structures of large simplicial complexes are expected to
be very complicated. Indeed, as the number of simplices increases, so the effect of
creating holes competes against that of filling holes, thereby making the situation
more problematic than simply analyzing graphs. A distant goal is to extract nice
fractal structures from these simplicial complexes, but initially it would be meaning-
ful to develop effective tools with which to study the limit behavior as the number
of vertices tends to infinity.

We now consider a family X = {- (C)}C≥0 of subcomplexes of - , and we call it a
right-continuous filtration of - if - (B) ⊂ - (C) for 0 ≤ B ≤ C and - (C) = ⋂

C′>C - (C ′)
for C ≥ 0. Here, - (C) can be an empty set, which is regarded as a (−1)-dimensional
simplicial complex. Let R[R≥0] be a real vector space of formal linear combinations
of finite elements of R≥0. We describe each element of R≥0 as IC (C ∈ R≥0), where
I is indeterminate. The product of two elements of R[R≥0] is defined so as to be
consistent with 0IB · 1IC = 01IB+C (0, 1 ∈ R and B, C ∈ R≥0). This operation equips
R[R≥0] with a ring structure. For : ≥ 0, the :th persistent homology PH: (X) of

3 In general, we can define the spaces �: (-, ') and �: (-, ') as '-modules for a commutative
ring '. In this paper, we consider only the case ' = R.
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X = {- (C)}C≥0 is defined as

PH: (X) =
⊕
C≥0

�: (- (C)),

which is regarded as a graded module over R[R≥0]. Here, �: (- (B)) is considered
as a subset of �: (- (C)) for 0 ≤ B ≤ C by a natural inclusion from - (B) to - (C). The
structure theorem of the persistent homology is stated as follows.

Theorem 2.3 (e.g., see [22, 11]). For each : ≥ 0, there exist unique indices ?, @ ∈
Z≥0 and {18}?+@8=1 , {38}?8=1 ⊂ R≥0 such that 18 < 38 for all 8 = 1, . . . , ?, and the
following graded module isomorphism holds:

PH: (X) '
?⊕
8=1

(
(I18 )

/
(I38 )

)
⊕

?+@⊕
8=?+1
(I18 ),

where (I0) denotes the ideal in R[R≥0] that is generated by the monomial I0.

In Theorem 2.3, we call 18 and 38 the :th birth and death times, respectively,
which indicate the appearance and disappearance of each :-dimensional “hole” in
X. The corresponding lifetime is defined as ;8 := 38 − 18 . We set 38 = ;8 = ∞ for
8 = ? + 1, . . . , ? + @, and we define the lifetime sum !: (X) as

!: (X) =
?+@∑
8=1
(38 − 18).

The following is a generalization of the second identity of (2.1) to filtrations.

Theorem 2.4 (Lifetime formula [11, Proposition 2.2]). It holds that

!: (X) =
∫ ∞

0
V: (- (C)) 3C.

Analogously, by defining

(!: (X))) =
?+@∑
8=1

(
(38 ∧ )) − (18 ∧ ))

)
for ) > 0, we have

(!: (X))) =
∫ )

0
V: (- (C)) 3C.

An analogue of the first identity of (2.1) has also been obtained by introducing the
concept of spanning acycles; see [11] for further details.

Now, we are interested in the asymptotic behavior of !: (X) for random filtrations
as the number of vertices tends to infinity. The random models are introduced as
follows.
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For each 8 ∈ Z≥0, we take a probability distribution function ?8 on [0, +∞]. Let = ∈
N and let  (=) denote the complete (=−1)-dimensional simplicial complex, namely
the family of all nonempty subsets of an =-point set. We take a family of independent
random variables {Dg}g∈ (=) such that each Dg obeys the distribution function
?dim g . We then define a random simplicial complex process X= = {-= (C)}C≥0 over
= vertices by

-= (C) := {f ∈  (=) | Dg ≤ C for every simplex g(≠ ∅) with g ⊂ f}. (2.2)

We call this process a multi-parameter random complex process. We can also con-
sider X= = {-= (C)}C ∈[0,) ] for fixed ) > 0 in an obvious manner. In this case, we
write !: (X=) for (!: (X=))) .

We have the following typical examples in mind.

Example 2.5 (cf. [19]). Let 3 ∈ N be fixed. For each 8 ∈ Z≥0, define

?8 (C) =


1 (8 < 3)
C ∧ 1 (8 = 3)
0 (8 > 3)

for C ≥ 0.

In [10], the corresponding process K (3)= = { (3)= (C)}C ∈[0,1] for = > 3 and ) = 1 is
called the 3-Linial–Meshulam complex process. By definition, for each C ∈ [0, 1],
the random simplicial complex  (3)= (C) (⊂  (=)) is described as follows:

•  
(3)
= (C) includes every simplex of  (=) whose dimension is less than 3.

•  
(3)
= (C) includes each 3-dimensional simplex of  (=) with probability C indepen-

dently.
•  

(3)
= (C) includes no simplex of  (=) whose dimension is greater than 3.

The Erdős–Rényi graph process is identified with K (1)= .

Example 2.6 (cf. [14]). Let 3 ∈ N be fixed. For each 8 ∈ Z≥0, define

?8 (C) =


1 (8 < 3)
C ∧ 1 (8 = 3)
1 (8 > 3)

for C ≥ 0.

In [10], the corresponding process C (3)= = {� (3)= (C)}C ∈[0,1] for = > 3 and ) = 1
is called the 3-flag complex process. By definition, for each C ∈ [0, 1], the random
simplicial complex � (3)= (C) (⊂  (=)) is described as follows:

• �
(3)
= (C) includes every simplex of  (=) whose dimension is less than 3.

• �
(3)
= (C) includes each 3-dimensional simplex of  (=) with probability C indepen-

dently.
• �

(3)
= (C) includes each simplex f of  (=) whose dimension is greater than 3 if

and only if every 3-dimensional face of f belongs to � (3)= (C).
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C (1)= is also called the random clique complex process.

Our main concern is the asymptotic behavior of E[!: (X=)] as = → ∞. To state
the results, we introduce the following functions:

@−1 (C) := 1, @: (C) :=
:∏
8=0
{?8 (C)}(

:+1
8+1) (: ≥ 0),

A: (C) :=
@:+1 (C)
@: (C)

=

:+1∏
8=0
{?8 (C)}(

:+1
8 ) (: ≥ −1).

(2.3)

Note that @: (C) denotes the probability of a fixed :-simplex appearing at time C. For
a :-simplex f and a (: + 1)-simplex g with f ⊂ g, A: (C) represents the conditional
probability of g appearing at time C given f appearing.

Let Ǎ: denote the generalized inverse function of A: , namely

Ǎ: (D) = inf{C ≥ 0 | A: (C) > D} for D < 1,

and Ǎ: (1) = ∞. We further define

&: (C) =
∫ C

0
@: (B) 3B for C ≥ 0,

Φ: (D) = &: (Ǎ: (D)) and Ψ: (D) = &: (Ǎ:−1 (D)) for D ∈ [0, 1).

In what follows, we use the standard notations big-$ and little->, and

• 5 (D) = Θ(6(D)) means that 5 (D) = $ (6(D)) and 6(D) = $ ( 5 (D)) as D → 0;
• 0= � 1= means that 0= = $ (1=) and 1= = $ (0=) as =→∞.

Below, : is a fixed number. The following result is a special case of more-general
estimates [10, Theorems 4.3 and 4.4].

Theorem 2.7 ([10, Corollary 4.5]). Suppose that Φ: (D) = Θ(D0) for some 0 ∈
[0,∞) and Ψ: (D) = >(Φ: (D)) as D → 0. Then, for each ) > 0,

E[(!: (X=))) ] � =:+1−0 . (2.4)

Moreover, if
∫ ∞

0 C1+X3@:+1 (C) < ∞ for some X > 0, then

E[!: (X=)] � =:+1−0 . (2.5)

The following is a rather simple case but is not treated in Theorem 2.7.

Theorem 2.8 ([10, Theorem 4.6]). If Φ: (D) = Ψ: (D) for all D ∈ [0, 1), then
!: (X=) = 0 almost surely for all = ∈ N.

We apply these results to Examples 2.5 and 2.6.
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Example 2.9 ([10, Example 4.8]). We consider the 3-flag complex process C (3)= =

{� (3)= (C)}C ∈[0,1] as in Example 2.6. From straightforward computation, we obtain

(Φ: (D),Ψ: (D)) =


(0, 0) (: < 3 − 1),
(D, 0) (: = 3 − 1),(
Θ

(
D
:+1−3
3+1 +(:+13 )

−1 )
,Θ

(
D
:+1
3+1+(:3)

−1 ))
(: ≥ 3).

From Theorems 2.7 and 2.8, we have

E[!: (C (3)= )] �
{

0 (: < 3 − 1),
=
(:+2)3
3+1 −(:+13 )

−1
(: ≥ 3 − 1).

In particular,
E[!: (C (1)= )] � =:/2+1−1/(:+1) .

This estimate improves Theorem 6.10 in [11] and determines the growth order,
thereby answering the question posed in [11, Section 7.4].

Example 2.10 ([10, Example 4.7]). We consider the 3-Linial–Meshulam complex
process K (3)= = { (3)= (C)}C ∈[0,1] as in Example 2.5. It is straightforward to see that

(Φ: (D),Ψ: (D)) =


(0, 0) (: < 3 − 1),
(D, 0) (: = 3 − 1),
(1/2, D2/2) (: = 3),
(0, 0) (: > 3).

From Theorems 2.7 and 2.8, we have

E[!: (K (3)= )] �


0 (: ≠ 3 − 1, 3),
=3−1 (: = 3 − 1),
=3+1 (: = 3).

The case : = 3 − 1 corresponds to [11, Theorem 1.2].

In fact, we have more-precise asymptotics for !3−1 (K (3)= ). Following [20, 11],
we introduce the limit constant. Let C∗1 = 2

∗
1 = 1. For 3 ≥ 2, let C∗

3
be the unique root

in (0, 1) of
(3 + 1) (1 − C) + (1 + 3C) log C = 0, (2.6)

and define 2∗
3
= (− log C∗

3
)/(1 − C∗

3
)3 > 0. For 2 ≥ 2∗

3
, let C2 denote the smallest

positive root of (− log C)/(1 − C)3 = 2. Define functions 63 and ℎ3 on [0,∞) as

63 (2) =
{

0 (2 < 2∗
3
),

2C2 (1 − C2)3 +
2

3 + 1
(1 − C2)3+1 − (1 − C2) (2 ≥ 2∗3),
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and
ℎ3 (2) = 1 − 2

3 + 1
+ 63 (2).

We also define
�3−1 :=

1
3!

∫ ∞

0
ℎ3 (B) 3B.

Then, the limit behavior of !3−1 (K (3)= ) is described as follows.

Theorem 2.11 (part of [10, Theorem 4.11]). Let 3 ≥ 1. The constant �3−1 is finite,
and for any A ∈ [1,∞),

lim
=→∞

E

[�����!3−1 (K (3)= )
=3−1 − �3−1

�����A
]
= 0;

in particular, E[!3−1 (K (3)= )]/=3−1 converges to �3−1 as =→∞.

This claim is a justification of an informal discussion in [11, Section 7.1]. Note
that �0 = Z (3), and Theorem 2.11 with 3 = 1 is consistent with Theorem 2.2. See
[10, Section 4.4] for explicit expressions for general �3−1 and further information. In
particular, we have

�1 =
1
2

[
Li2 (C∗2) + (log C∗2) log(1 − C∗2) +

C∗2 (log C∗2)
2

2(1 − C∗2)
+
(log C∗2){log C∗2 + (1 − C

∗
2)}

4(1 − C∗2)2

]
=

1
2

[
Li2 (C∗2) + (log C∗2) log(1 − C∗2) +

3(1 − C∗2) (1 + 3C∗2)
2(1 + 2C∗2)2

]
(2.7)

and

�2 =
1

12

[
Li2 (C∗3) + (log C∗3 − 1) log(1 − C∗3) +

C∗3 (log C∗3) (log C∗3 − 2)
2(1 − C∗3)

+
C∗3 (log C∗3)

2

2(1 − C∗3)2
+
(log C∗3){log C∗3 + (1 − C

∗
3)}

3(1 − C∗3)3

]
=

1
12

[
Li2 (C∗3) + (log C∗3 − 1) log(1 − C∗3) +

4((C∗3)
2 + 5C∗3 + 1)
(1 + 3C∗3)2

]
, (2.8)

where Li2 (G) denotes the dilogarithm

Li2 (G) =
∞∑
:=1

G:

:2 (−1 ≤ G ≤ 1).

We remark that the second identities of (2.7) and (2.8) follow from the fact that C∗
3
is

a root of (2.6).
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3 Ideas for proving the theorems

In this section, we explain some basic ideas for proving the main results (Theo-
rems 2.7 and 2.11) in the previous section, following [10]. Because

E[(!: (X))) ] =
∫ )

0
E[V: (- (C))] 3C and E[!: (X)] =

∫ ∞

0
E[V: (- (C))] 3C

from Theorem 2.4, it suffices to obtain a sufficiently sharp estimate of E[V: (- (C))]
for each random simplicial complex - (C). In general, it is a difficult problem to
obtain a good estimate of a Betti number for a large simplicial complex - . The
following is a basic estimate.

Lemma 3.1. For every : ≥ 0,

5: (-) − 5:+1 (-) − 5:−1 (-) ≤ V: (-) ≤ 5: (-), (3.9)

where 5: (-) denotes the number of all :-simplices of - , and 5−1 (-) = 1 by
convention.

This is a version of the Morse inequality and is proved by simple application of
linear algebra. Lemma 3.1 provides good upper and lower estimates of E[V: (- (C))]
if C is sufficiently small. In fact, as crucially noticed in [11], replacing - in the
first inequality of (3.9) by - (C) and integrating with respect to C on a small interval
[0, C0] gives a lower estimate in (2.4) with the correct growth order. Thus, the main
difficulty in the proof of Theorem 2.7 is the upper estimate in (2.4) and (2.5).

For general C, we require another strategy for estimating V: (- (C)). To explain
this strategy, we introduce several concepts from graph theory and topology. Let �
be a finite undirected graph with a vertex set + , an edge set � , and with no loops
or multiple edges. The degree deg(E) of a vertex E ∈ + is defined as the number of
F ∈ + such that {E, F} ∈ � . The averaging matrix �[�] = {0EF }E,F ∈+ of � is
defined as

0EF :=


1/deg(E) if {E, F} ∈ �,
1 if deg(E) = 0 and E = F,
0 otherwise.

This is interpreted as the transition probability of a simple random walk on �. The
Laplacian L[�] of � is defined as L[�] = �+ − �[�], where �+ is the matrix that
acts as the identity operator on + . Let {_8}#+8=1 be all the (not necessarily distinct)
eigenvalues of L[�]. Note that _8 ∈ [0, 2] for all 8 and at least one _8 is zero. Define

W(�;U) := #{8 | _8 ≤ U} − 1 (≥ 0)

for U ≥ 0. By convention, W(∅;U) := 0.
Given a �-dimensional simplicial complex - and a 9-simplex g in - with −1 ≤

9 ≤ �, the link lk- (g) of g in - is defined as
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lk- (g) := {f ∈ - | g ∩ f = ∅ and g ∪ f ∈ -}.

This is either an empty set or a simplicial complex whose dimension is at most
� − 9 − 1. Let lk- (g) (1) denote the 1-skeleton of lk- (g), that is, the totality of the
simplices of lk- (g) whose dimensions are at most 1. This is either an empty set or
a graph.

A key estimate is described as follows.
Theorem 3.2 ([10, Theorem 2.5]). Suppose that the dimension � of - is greater
than or equal to 1. Then

V�−1 (-) ≤
∑
g

W
(
lk- (g) (1) ; 1 − �−1) , (3.10)

where g in the summation is taken to be all (� − 2)-simplices of - .
Informally speaking, this claim says that the Betti number is dominated by the

sum of the number of small eigenvalues of the Laplacian on the 1-skeleton of each
link of - . In particular, if the right-hand side of (3.10) is zero, then ��−1 (-) =
{0}. In this sense, Theorem 3.2 is regarded as a quantitative generalization of the
cohomology vanishing theorem4 [8, 2]. The proof of Theorem 3.2 is based on a
careful modification of that of [2, Theorem 2.1] and some additional arguments to
remove extra assumptions.

From Theorem 3.2, under the assumption that (3.10) provides a sufficiently sharp
estimate, the upper estimate of the Betti number is reduced to counting small eigen-
values of Laplacians on graphs. If - is a random simplicial complex, then this is
closely related to the study of the eigenvalues of random matrices.

We apply this estimate to the following multi-parameter random simplicial com-
plexes that were introduced in [3, 6]. Let {?8}∞8=0 be fixed parameters with 0 ≤ ?8 ≤ 1
for all 8. We define a sequence of random simplicial complexes {-=}=∈N as follows.
For each = ∈ N, we start with a set+ of = vertices and retain each vertexwith indepen-
dent probability ?0. Each edge with both ends retained is added with probability ?1,
independently. Iteratively, for 8 = 1, 2, . . . , = − 1, each 8-simplex for which all faces
were added by the previous procedures is added with probability ?8 , independently.
The resulting random simplicial complex is -=. From the definition, {-= (C)}=∈N
defined in (2.2) for fixed C is nothing but {-=}=∈N with parameters {?8 (C)}∞8=0.

Just as in (2.3), we define

@−1 := 1, @: :=
:∏
8=0

?
(:+18+1)
8

(: ≥ 0),

A: :=
@:+1
@:

=

:+1∏
8=0

?
(:+18 )
8

(: ≥ −1).

Then, a crucial estimate is described as follows.

4 The proof is based on the discussion of the cohomology, not the homology. However, they are
isomorphic.
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Theorem 3.3 ([10, Theorem 3.6]). Let : ≥ 0 and ; ∈ N. Then, there exists a positive
constant � depending only on : and ; such that, for all = ∈ N,

E[V: (-=)] ≤ =:+1@:
{
1 ∧ � (=A: )−;

}
. (3.11)

We give a brief outline of the proof of Theorem 3.3. Lemma 3.1 immediately
implies the inequality

E[V: (-=)] ≤ =:+1@: . (3.12)

Therefore, it suffices to prove the inequality

E[V: (-=)] ≤ �=:+1@: (=A: )−; (3.13)

for some �. The proof is decomposed into the following three cases. The constants
 1 ≤  2 below should be taken appropriately.

Case 1 If A: ≥
 1
=
∨ (=A:−1)1/;

=
, then the effect of “filling :-dimensional holes”

is strong; (3.13) follows from a variant of the cohomology vanishing the-
orem of random simplicial complexes (e.g., [15, Theorem 1.1 (1)] and [6,
Theorem 1.1]) that is based on insightful results regarding spectral gaps
on random graphs by Hoffman, Kahle, and Paquette [12].

Case 2 If
 2
=
≤ A: ≤

(=A:−1)1/;
=

, then we use a general inequality

#{eigenvalues of ! (counting multiplicities) greater than U}
= #{eigenvalues of (!/U); (counting multiplicities) greater than unity}
≤ tr((!/U);) = U−; tr(!;)

for nonnegative-definite symmetric matrices ! and U > 0. Applying this
by letting ! = L[lk-= (g)] with g ∈ -= and U = 1 − 1/(: + 1), and using
some combinatorial arguments for estimating tr(!;), we can prove (3.13)
via Theorem 3.2.

Case 3 If A: ≤
 2
=
, then (3.12) implies (3.13) for a suitable �.

Remark 3.4. As seen from the above explanation, the novel Betti-number estimate
is that in the intermediate range (Case 2). We remark that combinatorial arguments
that are similar in spirit are also found in the classical proof of Wigner’s semicircle
law of random matrices, albeit in a slightly different situation.

Now, we obtain

E[!: (X=)] =
∫ ∞

0
E[V: (-= (C))] 3C (from Theorem 2.4)

≤
∫ ∞

0
=:+1@: (C)

{
1 ∧ � (=A: (C))−;

}
3C (from Theorem 3.3).
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Taking ; to be sufficiently large and performing some elementary calculations,
we reach an estimate E[!: (X=)] = $ (=:+1−0) as = → ∞. The estimate of
E[(!: (X=))) ] is similarly proved, which completes the proof of Theorem 2.7.

In proving Theorem 2.11, the following is the key fact and follows from the results
by Linial and Peled [20] that come from the convergence of a sequence of random
graphs induced by { (3)= (B/=)}=∈N for fixed B ≥ 0.

Theorem 3.5. For any B ≥ 0 and Y > 0,

lim
=→∞

P

(����� V3 ( (3)= (B/=))(=
3

) − 63 (B)
����� > Y

)
= 0.

With the help of the Euler–Poincaré formula, we can prove that, for each B ≥ 0
and Y > 0,

lim
=→∞

P

(����� V3−1 ( (3)= (B/=))(=
3

) − ℎ3 (B)
����� > Y

)
= 0. (3.14)

We note that




!3−1 (K (3)= )
=3−1 − �3−1







!A

=






∫ ∞

0

(
V3−1 ( (3)= (B/=))

=3
1[0,=] (B) −

1
3!
ℎ3 (B)

)
3B







!A

≤
∫ ∞

0
*= (B) 3B,

where

*= (B) =





 V3−1 ( (3)= (B/=))

=3
1[0,=] (B) −

1
3!
ℎ3 (B)







!A

.

Combining Theorem 3.3 and (3.14), we obtain lim=→∞*= (B) = 0 for each B ≥ 0
and sup=∈N*= (B) is Lebesgue integrable over [0,∞). The dominated convergence
theorem implies that

∫ ∞
0 *= (B) 3B converges to zero as = → ∞, which finishes the

proof of Theorem 2.11.
A similar outline was discussed informally in [11, Section 7.1]. However, because

we now have the uniform estimate (3.11), we can provide a rigorous proof.

4 Concluding remarks

Theorems 2.7 and 2.11 remain at the beginning of the homological study of families
of random simplicial complexes. We will describe some potential directions for
future research.

1. In [11], discrete Morse theory was used for estimating !: (X=). Although the
argument therein did not provide the optimal asymptotics, it may be interesting
to investigate that approach further.
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2. Work is in progress [17] to prove the existence and identify the limit of scaled
expectations of !: (X=) (Theorem 2.11) for general models other than 3-Linial–
Meshulam complex processes.

3. The limit constants [e.g., (2.7) and (2.8)] for 3-Linial–Meshulam complex pro-
cesses are regarded as “higher-dimensional” analogues of Z (3), but the question
remains as to whether they have simpler expressions.

4. As already mentioned in [11], the next problem to be considered is proving the
central limit theorem for !: (X=). In the case of the Erdős–Rényi process, this
has been proved by Janson [13].

5. The sum of the Uth power (U > 0) of lifetimes was studied in [10, Theorem 4.11]
for 3-Linial–Meshulam complex processes. In any further investigation, it would
not be sufficient to study only the homologies of the simplicial complexes -= (C)
for fixed C: we require the homological structure of the filtration {-= (C)}C≥0
itself.

6. Regarding item 5 in this list, the scaling limit of graphs in the Gromov–
Hausdorff–Prokhorov topology has also been studied extensively (see [1, 21]
and the references therein for recent studies). The limit objects in that case
would have fractal structures and should provide detailed information about ran-
dom graphs. Studying the counterpart of random simplicial complexes or their
filtrations would be required for more-comprehensive understanding.

Acknowledgements This study was supported by JSPS KAKENHI Grant Numbers JP19H00643
and JP19K21833.
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Part III
Trees and hyperbolicity





The continuum self-similar tree

Mario Bonk and Huy Tran

AbstractWe introduce the continuum self-similar tree (CSST) as the attractor of an
iterated function system in the complex plane. We provide a topological characteri-
zation of the CSST and use this to relate the CSST to other metric trees such as the
continuum random tree (CRT) and Julia sets of postcritically-finite polynomials.

Key words: Metric tree, iterated function system, continuum random tree, Julia set.
Mathematics Subject Classifications (2010). Primary: 37C70; Secondary: 37B45.

1 Introduction

In this expository paper, we study the topological properties of a certain subset T
of the complex plane C. It is defined as the attractor of an iterated function system.
As we will see, T has a self-similar “tree-like" structure with very regular branching
behavior. In a sense it is the simplest object of this type. Sets homeomorphic to T
appear in various other contexts. Accordingly, we give the set T a special name, and
call it the continuum self-similar tree (CSST).

To give the precise definition of T we consider the following contracting homeo-
morphisms on C:

51 (I) = 1
2 I −

1
2 , 52 (I) = 1

2 Ī +
1
2 , 53 (I) = 8

2 Ī +
8
2 . (1.1)

Then the following statement is true.
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Proposition 1.1. There exists a unique non-empty compact set T ⊆ C satisfying

T = 51 (T) ∪ 52 (T) ∪ 53 (T). (1.2)

Based on this fact, we make the following definition.

Definition 1.2. The continuum self-similar tree (CSST) is the set T ⊆ C as given by
Proposition 1.1.

In other words, T is the attractor of the iterated function system { 51, 52, 53} in
the plane. Proposition 1.1 is a special case of well-known more general results in
the literature (see [Hu81], [Fa03, Theorem 9.1], or [Kig01, Theorem 1.1.4], for
example). We will recall the argument that leads to Proposition 1.1 in Section 3.

Spaces of a similar topological type as T have appeared in the literature before
(among the more recent examples is the antenna set in [BT01] or Hata’s tree-like
set considered in [Kig01, Example 1.2.9]). For a representation of T see Figure 1.

8

−1 10

Fig. 1 The continuum self-similar tree T.

To describe the topological properties of T, we introduce the following concept.

Definition 1.3. A (metric) tree is a compact, connected, and locally connectedmetric
space (), 3) containing at least two points such that for all 0, 1 ∈ ) with 0 ≠ 1 there
exists a unique arc U ⊆ ) with endpoints 0 and 1.

In other words, any two distinct points 0 and 1 in a metric tree can be joined by a
unique arc U in ) . It is convenient to allow 0 = 1 here in which case U = {0} = {1}
and we consider U as a degenerate arc.
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In the following, we will usually call a metric space as in Definition 1.3 a tree
and drop the word “metric" for simplicity. It is easy to see that the concept of a tree
is essentially the same as the concept of a dendrite that appears in the literature (see,
for example, [Wh63, Chapter V], [Ku68, Section §51 VI], [Na92, Chapter X]). More
precisely, a metric space ) is a tree if and only if it is a non-degenerate dendrite (the
simple proof is recorded in [BM19a, Proposition 2.2]). If one drops the compactness
assumption in Definition 1.3, but requires in addition that the space is geodesic (see
below for the definition), then one is led to the notion of a real tree. They appear in
many areas of mathematics (see [LG06, Be02], for example).

The following statement is suggested by Figure 1.

Proposition 1.4. The continuum self-similar tree T is a metric tree.

If ) is a tree, then for G ∈ ) we denote by a) (G) ∈ N ∪ {∞} the number of
(connected) components of )\{G}. This number a) (G) is called the valence of G. If
a) (G) = 1, then G is called a leaf of ) . If a) (G) ≥ 3, then G is a branch point of ) . If
a) (G) = 3, then we also call G a triple point.

The following statement is again suggested by Figure 1.

Proposition 1.5. Each branch point of the tree T is a triple point, and these triple
points are dense in T.

The set T has an interesting geometric property, namely it is a quasi-convex subset
of C., i.e., any two points in T can be joined by a path whose length is comparable
to the distance of the points.

Proposition 1.6. There exists a constant ! > 0 with the following property: if
0, 1 ∈ T and U is the unique arc in T joining 0 and 1, then

length(U) ≤ ! |0 − 1 |.

Note that a unique (possibly degenerate) arc U ⊆ T joining 0 and 1 exists, because
T is a tree according to by Proposition 1.4.

Proposition 1.6 implies that we can define a new metric r on T by setting
r(0, 1) = length(U) for 0, 1 ∈ T, where U is the unique arc in T joining 0 and
1. Then the metric space (T, r) is geodesic, i.e., any two points in (T, r) can be
joined by a path inTwhose length is equal to the distance of the points. It immediately
follows from Proposition 1.6 that metric spaces T (as equipped with the Euclidean
metric) and (T, r) are bi-Lipschitz equivalent by the identity map.

A natural way to construct (T, r), at least as an abstract metric space, is as follows.
We start with a line segment �0 of length 2. Its midpoint 2 subdivides �0 into two line
segments of length 1. We glue to 2 one of the endpoints of another line segment B of
the same length. Then we obtain a set �1 consisting of three line segment of length 1.
The set �1 carries the natural path metric. We now repeat this procedure inductively.
At the =th step we obtain a tree �= consisting of 3= line segments of length 21−=. To
pass to �=+1, each of these line segments B is subdivided by its midpoint 2B into two
line segment of length 2−= and we glue to 2B one endpoint of another line segment
of length 2−=.
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In this way, we obtain an ascending sequence �0 ⊆ �1 ⊆ . . . of trees equipped
with a geodesic metric. The union � =

⋃
=∈N0 �= carries a natural path metric r that

agrees with the metric on �= for each = ∈ N0. As an abstract space one can define
(T, r) as the completion of the metric space (�, r).

If one wants to realize T as a subset of C by this construction, one starts with
the initial line segment �0 = [−1, 1], and adds B = [0, 8] in the first step to obtain
�1 = [−1, 0]∪ [0, 1]∪ [0, 8]. Now one wants to choose suitable Euclidean similarities
51, 52, 53 that copy the interval [−1, 1] to [−1, 0], [0, 1], [0, 8], respectively. One
hopes to realize �= as a subset of C using an inductive procedure based on

�=+1 = 51 (�=) ∪ 52 (�=) ∪ 53 (�=), = ∈ N0.

In order to avoid self-intersections and ensure that each set �= is indeed a tree, one has
to be careful about the orientations of themaps 51, 52, 53. The somewhat non-obvious
choice of these maps as in (1.1) leads to the desired result. See Proposition 4.2 and
the discussion near the end of Section 4 for a precise statements how to use the maps
in (1.1) to realize the sets �= as subsets of C, and obtain T (as in Definition 1.2) as
the closure of

⋃
=∈N0 �=. A representation of �5 is shown in Figure 2.

8

−1 10

Fig. 2 The set �5.

The conditions in Proposition 1.5 actually characterize the CSST topologically.

Theorem 1.7. A metric tree (), 3) is homeomorphic to the continuum self-similar
tree T if and only if the following conditions are true:

(i) For every point G ∈ ) we have a) (G) ∈ {1, 2, 3}.
(ii) The set of triple points {G ∈ ) : a) (G) = 3} is a dense subset of ) .
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We will derive Theorem 1.7 from a slightly more general statement. For its
formulation let < ∈ N with < ≥ 3. We consider the class T< consisting of all metric
trees ) such that

(i) for every point G ∈ ) we have a) (G) ∈ {1, 2, <}, and
(ii) the set of branch points {G ∈ ) : a) (G) = <} is a dense subset of ) .

Note that by Proposition 1.5 the CSST T satisfies the conditions in Theorem 1.7 with
< = 3, and so T belongs to the class of trees T3. Now the following statement is true
which contains Theorem 1.7 as a special case.

Theorem 1.8. Let < ∈ N with < ≥ 3. Then all trees in T< are homeomorphic to
each other.

Theorems 1.7 and 1.8 are not new. In a previous version of this paper, we con-
sidered Theorem 1.7 as a “folklore" statement, but we did not have a reference for a
proof. Later, the paper [CD94] was brought to our attention which contains a more
general result which implies Theorem 1.8, and hence also Theorem 1.7 (see [CD94,
Theorem 6.2]; the proof there seems to be incomplete though—the continuity of the
map ℎ on the dense subset of - needs more justification). Theorem 1.8 was explicitly
stated in [Ch80, (6), p. 490], but it seems that the origins of Theorem 1.8 can be
traced back much further to [Wa23] (see also [Me32, Chapter X], and [CC98] for
more pointers to the relevant older literature about dendrites).

We will give a complete proof of Theorem 1.8. It is based on ideas that are quite
different from those in [CD94], but we consider our method of proof very natural.
It is also related to some other recent work, in particular [BM19a, BM19b]; so one
can view the present paper as an introduction to these ideas. We will say more about
our motivation below.

Our proof of Theorem 1.8 can be outlined as follows. Fix < as in the statement
and consider a tree ) in T<. Then we cut ) into < subtrees at a carefully chosen
branch point. This process is repeated inductively. One labels the subtrees obtained
in this way by finite words consisting of letters in the alphabet A = {1, 2, . . . , <}.
The labels are chosen so that if ( is another tree in T< and one decomposes ( in a
similar manner, then one has the same combinatorics (i.e., intersection and inclusion
pattern) for the subtrees in ) and (. The desired homeomorphism between ) and
( can then be obtained from a general statement that produces a homeomorphism
between two spaces, if they admit matching decompositions into pieces satisfying
suitable conditions (see Proposition 2.1).

The CSST is related to metric trees appearing in other areas of mathematics. One
of these objects is the (Brownian) continuum random tree (CRT). This is a random
tree introduced by Aldous [Al91] when he studied the scaling limits of simplicial
trees arising from the critical Galton-Watson process. One can describe the CRT
as follows. We consider a sample of Brownian excursion (4C )0≤C≤1 on the interval
[0, 1]. For B, C ∈ [0, 1], we set

34 (B, C) = 4(B) + 4(C) − 2 inf{4(A) : min(B, C) ≤ A ≤ max(B, C)}.
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Then 34 is a pseudo-metric on [0, 1]. We define an equivalence relation on [0, 1]
by setting B ∼ C if 34 (B, C) = 0. Then 34 descends to a metric on the quotient space
)4 = [0, 1]/∼. The metric space ()4, 34) is almost surely a metric tree (see [LG06,
Sections 2 and 3]). Curien [Cu14] asked the following question.

Question. Is the topology of the CRT almost surely constant, that is, are two inde-
pendent samples of the CRT almost surely homeomorphic?

This question was the original motivation for the present work and we found a
positive answer based on the following statement.

Corollary 1.9. A sample) of the CRT is almost surely homeomorphic to the CSST T.

Proof. As we discussed, a sample ) of the CRT is almost surely a metric tree (see
[LG06, Sections 2 and 3]). Moreover, for such a sample ) almost surely for every
point G ∈ ) , the valence a) (G) is either 1, 2 or 3, and the set {G : a) (G) = 3} of
triple points is dense in ) (see [DLG05, Theorem 4.6] or [LG06, Proposition 5.2
(i)]). It follows from Proposition 1.5 and Theorem 1.7 that a sample ) of the CRT is
almost surely homeomorphic to the CSST T. ut

Informally, Corollary 1.9 says that the topology of the CRT is (almost surely)
constant and given by the topology of a deterministic model space, namely the
CSST. In particular, almost surely any two independent samples of the CRT are
homeomorphic. This answers Curien’s question in the positive. As we found out after
we had obtained proofs for Theorem 1.7 and Corollary 1.9, Curien’s question had
already been answered implicitly in [CH08]. There the authors used the distributional
self-similarity property of the CRT and showed that the CRT is isometric to a metric
space with a random metric. This space is constructed similarly to the CSST as the
attractor of an iterated function system with maps very similar to (1.1) (they contain
an additional parameter though which is unnecessary if one uses the maps in (1.1)).

Fig. 3 The Julia set of % (I) = I2 + 8.
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An important source of trees is given by Julia sets of postcritically-finite polyno-
mials without periodic critical points in C. It follows from [DH84] (or see [CG93,
Theorem V.4.2]) that the Julia sets of such polynomials are indeed trees. One can
show that the Julia set J (%) of the polynomial %(I) = I2 + 8 (see Figure 3) satisfies
the conditions in Theorem 1.7. Accordingly, J (%) is homeomorphic to the CSST.

There are several directions in which one can pursue these topics further. For
example, one can study the topology of more general trees than those in the classes
T<. One may want to replace < with any finite (or even infinite) list of allowed
valences for branch points, including branch points of infinite valence. In an earlier
version of our paper, we discussed this in more detail. Since we learned that these
results are already contained in [CC98], we decided to skip this in the present version.

There is one important variant of Theorem 1.8 that we like to mention though.
Namely, one can consider the (non-empty) class T∞ of trees ) such that a) (G) ∈
{1, 2,∞} for all G ∈ ) and such that the set of branch points of ) (i.e., in this case
the set {G ∈ ) : a) (G) = ∞}) is dense in ) . Then all trees in T∞ are homeomorphic
to each other (our method of proof does not directly apply here, but one can use our
approach based on a more general version of Proposition 2.1). Moreover, each tree
) in T∞ is universal in the sense that every tree ( admits a topological embedding
into ) . These results are due to Waszewski [Wa23] (see [Na92, Section 10.4] for a
modern exposition of this universality property; see also [Ch80] for a discussion of
a universality property of the trees in T<, < ∈ N, < ≥ 3).

Trees in T∞ are also interesting, because they naturally arise in probabilistic
models. More specifically, the so-called stable trees with index U ∈ (1, 2] are
generalizations of the CRT (see [LG06, Section 4] for the definition). For fixed
U ∈ (1, 2), a sample ) of such a stable tree belongs to T∞ almost surely [LG06,
Proposition 5.2 (ii)]. By the previous discussion this implies that two independent
samples of stable trees for given U ∈ (1, 2) are almost surely homeomorphic. Note
that the Julia set of a polynomial never belongs to T∞. This follows from results due
to Kiwi (see [Kiw02, Theorem 1.1]).

Another direction for further investigations are questions that are more related to
geometric properties of metric trees, in contrast to purely topological properties. In
particular, one can study the quasiconformal geometry of the CSST and other trees
(for a survey on the general topic of quasiconformal geometry see [Bo06]).

One of the basic notion here is the concept of quasisymmetric equivalence. By
definition two metric spaces - and . are called quasisymmetrically equivalent if
there exists a quasisymmetry 5 : - → . . Roughly speaking, a quasisymmetry is a
homeomorphismwith good geometric control: it sendsmetric balls to “roundish" sets
with uniformly controlled eccentricity (for the precise definition of a quasisymmetry
and other basic concepts of quasiconformal geometry see [He01]). Since every
quasisymmetry is a homeomorphism, two spaces are homeomorphic if they are
quasisymmetrically equivalent. So this gives a stronger type of equivalence for
metric spaces that has a more geometric flavor and goes beyond mere topology.

A natural problem in this context is to characterize the CCST T up to quasisym-
metric equivalence, similar to Proposition 1.5 which gives a topological character-
ization. This problem is solved in [BM19b]. The precise statement is too technical
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to be included here, but roughly speaking the conditions on a metric tree ) to be
quasisymmetrically equivalent to T are similar in sprit to the conditions in Proposi-
tion 1.5, but of a more “quantitative" nature.

For example, one of the conditions stipulates that ) be trivalent (i.e., all branch
points of ) are triple points), but not only should the branch points of ) form a dense
subset of ) , but ) should be uniformly branching in the sense that every arc U ⊆ )
contains a branch point ? of height �) (?) comparable to the diameter of U. Here
the height �) (?) is the diameter of the third largest branch of ? (see the discussion
around (3.5) for more details).

In our proof of Theorem 1.7 we first realized that this concept of height of a branch
point plays a very important role in understanding the geometry and topology of trees.
This concept is also used in [BM19a, BM19b].

The present paper and [BM19a, BM19b] have another common feature. In all
of these works it is important to have good decompositions of the spaces studied,
depending on the problem under consideration. This line of thought in the context
of quasiconformal geometry can be traced back to [BM17, Proposition 18.8]. More
recently, Kigami [Kig18] has systematically investigated such decompositions in the
general framework of partitions of a space given by sets that are labeled by the
vertices of a (simplicial) tree. This common philosophy with other recent work is
the main motivation why we wanted to present the proof of the known Theorem 1.8
from our perspective.

One can use the characterization of the CSST up to quasisymmetric equivalence
established in [BM19a] to prove the following statement (unpublished work by the
authors): if the Julia setJ (%) of a postcritically-finite polynomial %with no periodic
critical points in C is homeomorphic to the CSST, then J (%) is quasisymmetrically
equivalent to the CSST.

Finally, we mention in passing that the geometric properties of the continuum
random tree (CRT) were considered in the recent paper [LR19] by Lin and Rohde.
Though Lin and Rohde do not study quasisymmetric equivalence, many of their
considerations still fit into the general framework of quasiconformal geometry.

The present paper is organized as follows. In Section 2 we state and prove a
general criterion for two metric spaces to be homeomorphic based on the existence
of combinatorially equivalent decompositions of the spaces. In Section 3 we collect
some general facts about trees that we use later. The CSST is studied in Section 4.
There we provide proofs of Propositions 1.1, 1.4, 1.5, and 1.6. In Section 5 we
explain how to decompose trees in T< with < ∈ N, < ≥ 3. Based on this, we then
present a proof Theorem 1.8. Theorem 1.7 is an immediate consequence.

2 Constructing homeomorphisms between spaces

Throughout this paper, we use fairly standard metric space notation. If (-, 3) is a
metric space, then we denote by �(0, A) = {G ∈ - : 3 (0, G) < A} the open ball of
radius A > 0 centered at 0 ∈ - . If �, � ⊆ - , then diam(�) = sup{3 (G, H) : G, H ∈ �}
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is the diameter of � and dist(�, �) = inf{3 (G, H) : G ∈ �, H ∈ �} the (minimal)
distance of � and �. Similarly, if 0 ∈ - , then dist(0, �) = dist({0}, �) denotes the
distance of the point 0 to the set �. Finally, if W is a path in - , then length(W) stands
for its length.

Before we discuss trees in more detail and turn our attention to the CSST, we
will establish the following proposition that is the key to showing that two trees
are homeomorphic. The statement will also give us some guidance for the desired
properties of tree decompositions that we will discuss in the following sections. The
proposition is inspired by [BM17, Proposition 18.8], which provided geometric con-
ditions for the decomposition of a space that can be used to construct quasisymmetric
homeomorphisms.

Proposition 2.1. Let (-, 3- ) and (., 3. ) be compact metric spaces. Suppose that
for each = ∈ N, the space - admits a decomposition - =

⋃"=
8=1 -=,8 as a finite union

of non-empty compact subsets -=,8 , 8 = 1, . . . , "= ∈ N, with the following properties
for all =, 8, and 9:

(i) Each set -=+1, 9 is the subset of some set -=,8 .
(ii) Each set -=,8 is equal to the union of some of the sets -=+1, 9 .
(iii) max1≤8≤"= diam(-=,8) → 0 as =→∞.

Suppose that for = ∈ N the space . admits a decomposition . =
⋃"=
8=1 .=,8 as a

union of non-empty compact subsets .=,8 , 8 = 1, . . . , "=, with properties analogous
to (i)–(iii) such that

-=+1, 9 ⊆ -=,8 if and only if .=+1, 9 ⊆ .=,8 (2.3)

and
-=,8 ∩ -=, 9 ≠ ∅ if and only if .=,8 ∩ .=, 9 ≠ ∅ (2.4)

for all =, 8, 9 .
Then there exists a unique homeomorphism 5 : - → . such that 5 (-=,8) = .=,8

for all = and 8.

In particular, under these assumptions the spaces - and . are homeomorphic.

Proof. We define a map 5 : - → . as follows. For each point G ∈ - , by (ii) and
(iii) there exists a nested sequence of sets -=,8= , = ∈ N, such that {G} = ⋂

= -=,8= .

Then the corresponding sets .=,8= , = ∈ N, are also nested by (2.3). Since these sets
are non-empty and compact, by condition (iii) for the space . this implies that there
exists a unique point H ∈ ⋂

= .=,8= . We define 5 (G) = H.
Then 5 is well-defined. To see this, suppose we have another nested sequence

-=,8′= , = ∈ N, such that {G} = ⋂
= -=,8′= . Then there exists a unique point H′ ∈⋂

= .=,8′= . Now G ∈ -=,8= ∩ -=,8′= and so .=,8= ∩ .=,8′= ≠ ∅ for all = ∈ N by (2.4).
By condition (iii) for . , this is only possible if H = H′. So 5 : - → . is indeed
well-defined.

One can define a map 6 : . → - by a similar procedure. Namely, for each H ∈ .
we can find a nested sequence .=,8= , = ∈ N, such that {H} = ⋂

= .=,8= . Then there
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exists a unique point G ∈ ⋂
= -=,8= and if we set 6(H) = G, we obtain a well-defined

map 6 : . → - .
It is obvious from the definitions that the maps 5 and 6 are inverse to each other.

Hence they define bĳections between - and . .
Conditions (i) and (ii) imply that if -:,8 is a set in one of the decompositions of

- and G ∈ -:,8 , then there exists a nested sequence -=,8= , = ∈ N, with -:,8: = -:,8
and {G} = ⋂

= -=,8= . This implies that 5 (G) ∈ .:,8 and so 5 (-:,8) ⊆ .:,8 . Similarly,
6(.:,8) ⊆ -:,8 . Since 6 = 5 −1, we have 5 (-:,8) = .:,8 as desired. It is clear that this
last condition together with our assumptions determines 5 uniquely.

It remains to show that 5 is a homeomorphism. For this it suffices to prove that 5
and 5 −1 = 6 are continuous. Since the roles of 5 and 6 are completely symmetric, it
is enough to establish that 5 is continuous.

For this, let n > 0 be arbitrary. By (iii) we can choose = ∈ N such that

max{diam(.=,8) : 1 ≤ 8 ≤ "=} < Y/2.

Since the sets -=,8 are compact, there exists X > 0 such that

dist(-=,8 , -=, 9 ) > X,

whenever 8, 9 ∈ {1, . . . , "=} and -=,8 ∩ -=, 9 = ∅.
Now suppose that 0, 1 ∈ - are arbitrary points with 3- (0, 1) < X. We claim that

then 3. ( 5 (0), 5 (1)) < n . Indeed, we can find 8, 9 ∈ {1, . . . , "=} such that 0 ∈ -=,8
and 1 ∈ -=, 9 . Since 3- (0, 1) < X, we then necessarily have -=,8 ∩ -<, 9 ≠ ∅ by
definition of X. So .=,8 ∩ .=, 9 ≠ ∅ by (2.4). Moreover, 5 (0) ∈ 5 (-=,8) = .=,8 and
5 (1) ∈ 5 (-=, 9 ) = .=, 9 . Hence

3. ( 5 (0), 5 (1)) ≤ diam(.=,8) + diam(.=, 9 ) < n.

The continuity of 5 follows. ut

3 Topology of trees

In this section we fix some terminology and collect some general facts about trees.
We do not claim any originality of this material. All of it is standard and well-known,
but we did not try to track it down in the literature. Our objective is to make our
presentation self-contained, and to have convenient reference points for future work.
For general background on trees or dendrites we refer to [Wh63, Chapter V], [Ku68,
Section §51 VI], [Na92, Chapter X]), and the literature mentioned there.

An arc U in a metric space is a homeomorphic image of the unit interval [0, 1] ⊆
R. The points corresponding to 0 and 1 are called the endpoints of U.

Let) be a tree. Then the last part of Definition 1.3 is equivalent to the requirement
that for all points 0, 1 ∈ ) with 0 ≠ 1, there exists a unique arc in ) joining 0 and 1,
i.e., it has the endpoints 0 and 1. We use the notation [0, 1] for this unique arc. It is
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convenient to allow 0 = 1 here. Then [0, 1] denotes the degenerate arc consisting
only of the point 0 = 1. Sometimes we want to remove one or both endpoints from
the arc [0, 1]. Accordingly, we define (0, 1) = [0, 1]\{0, 1}, [0, 1) = [0, 1]\{1}
and (0, 1] = [0, 1]\{0}. In Section 4 we will not use this notation for arcs in a
tree. There [0, 1] will always denote the Euclidean line segment joining two points
0, 1 ∈ C.

A metric space - is called path-connected if any two points 0, 1 ∈ - can be
joined by a path in - , i.e., there exists a continuous map W : [0, 1] → - such that
W(0) = 0 and W(1) = 1. The space - is arc-connected if any two distinct points
in - can be joined by an arc in - . The image of a path joining two distinct points
in a metric space always contains an arc joining these points (this follows from the
fact that every Peano space is arc-connected; see [HY61, Theorem 3.15, p. 116]). In
particular, every path-connected metric space is arc-connected.

Lemma 3.1. Let (), 3) be a tree. Then for each Y > 0 there exists X > 0 such that
for all 0, 1 ∈ ) with 3 (0, 1) < X we have diam( [0, 1]) < Y.

Proof. Fix Y > 0. Since ) is a compact, connected, and locally connected metric
space, it is a Peano space. So by the Hahn-Mazurkiewicz theorem there exists
a continuous surjective map i : [0, 1] → ) of the unit interval onto ) [HY61,
Theorem 3.30, p. 129]. By uniform continuity of i we can represent [0, 1] as a
union [0, 1] = �1 ∪ · · · ∪ �= of finitely many closed intervals �1, . . . , �= ⊆ [0, 1] with
diam(-: ) < Y/2, where -: = i(�: ) for : = 1, . . . , =. The sets -: = i(�: ) are
compact. This implies that there exists X > 0 such that dist(-8 , - 9 ) > X, whenever
8, 9 ∈ {1, . . . , =} and -8 ∩ - 9 = ∅.

Now let 0, 1 ∈ ) with 3 (0, 1) < X be arbitrary. We may assume 0 ≠ 1. Then
there exist 8, 9 ∈ {1, . . . , =} with 0 ∈ - B -8 and 1 ∈ . B - 9 . By choice of X
we must have - ∩ . ≠ ∅. As continuous images of intervals, the sets - and . are
path-connected. Since - ∩ . ≠ ∅, the union - ∪ . that contains the points 0 and 1
is also path-connected. This implies that - ∪. is arc-connected, and so there exists
an arc U ⊆ - ∪. with endpoints 0 and 1. The unique such arc in the tree ) is [0, 1],
and so [0, 1] = U ⊆ - ∪ . . This implies

diam( [0, 1]) ≤ diam(-) + diam(. ) < Y,

as desired. ut

Lemma 3.2. Let (), 3) be a tree and ? ∈ ) . Then the following statements are true:

(i) Each component* of )\{?} is an open and arc-connected subset of ) .
(ii) If* is a component of )\{?}, then* = * ∪ {?} and m* = {?}.
(iii) Two points 0, 1 ∈ )\{?} lie in the same component of )\{?} if and only if
? ∉ [0, 1].

Proof. (i) The set )\{?} is open. Since ) is locally connected, each component *
of )\{?} is also open.
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For 0, 1 ∈ * we write 0 ∼ 1 if 0 and 1 can be joined by a path in *. Obviously,
this defines an equivalence relation on *. The equivalence classes are open subsets
of ) . To see this, suppose 0, 1 ∈ * can be joined by a path V in*. Then for all points
G in a sufficiently small neighborhood + ⊆ * of 1 we have [1, G] ⊆ * as follows
from Lemma 3.1. So by concatenating V with (a parametrization of) the arc [1, G],
we obtain a path V′ in* that joins 0 and G ∈ + . This shows that every point 1 in the
equivalence class of 0 has a neighborhood + that also belongs to this equivalence
class.

We see that the equivalence classes of ∼ partition * into open sets. Since * is
connected, there can only be one such set. It follows that * is path-connected and
hence also arc-connected.

(ii) Let* be a (non-empty) component of )\{?}. We choose a point 0 ∈ *. The
set [0, ?) is connected, contained in )\{?}, and meets * in 0. Hence [0, ?) ⊆ *.
This implies that ? ∈ *. On the other hand, the set * ∪ {?} is closed, because
its complement is a union of components of )\{?} and hence open by (i). Thus
* = * ∪ {?}. By (i) no point in* is a boundary point of*, and so m* = {?}.

(iii) If 0, 1 ∈ )\{?} and ? ∉ [0, 1], then [0, 1] is a connected subset of )\{?}.
Hence [0, 1] lies in a component * of )\{?}. In particular, 0, 1 ∈ [0, 1] lie in the
same component* of )\{?}.

Conversely, suppose that 0, 1 ∈ )\{?} lie in the same component * of )\{?}.
We know by (i) that * is arc-connected. Hence there exists a (possibly degenerate)
arc U ⊆ * with endpoints 0 and 1. But the unique such arc in ) is [0, 1]. Hence
[0, 1] = U ⊆ * ⊆ )\{?}, and so ? ∉ [0, 1]. ut

A subset ( of a tree (), 3) is called a subtree of) if ( equipped with the restriction
of the metric 3 is also a tree as in Definition 1.3. Every subtree ( of ) contains two
points and hence a non-degenerate arc. In particular, every subtree ( of ) is an
infinite, actually uncountable set.

The following statement characterizes subtrees.

Lemma 3.3. Let (), 3) be a tree. Then a set ( ⊆ ) is a subtree of ) if and only if (
contains at least two points and is closed and connected.

Proof. If ( is a subtree of ) , then ( contains at least two points, and is connected
and compact. Hence it is a closed subset of ) . Conversely, suppose that ( contains
at least two points and is closed and connected. Then ( is compact, because ) is
compact.

Suppose that 0, 1 ∈ (, 0 ≠ 1, are two distinct points in (. We consider the arc
[0, 1] ⊆ ) . Suppose there exists a point ? ∈ [0, 1] with ? ∉ (. Then ? ≠ 0, 1, and
so by Lemma 3.2 (iii), the points 0 and 1 lie in different components of )\{?}. This
is impossible, because the connected set ( ⊆ )\{?} must be contained in exactly
one component of )\{?}. This shows that [0, 1] ⊆ ( and so the points 0 and 1 can
be joined by an arc in (. This arc in ( is unique, because it is unique in ) .

It remains to show that ( is locally connected, i.e., every point in ( has arbitrarily
small connected relative neighborhoods. To see this, let 0 ∈ ( and Y > 0 be arbitrary.
Then by Lemma 3.1 we can find X > 0 such that [0, G] ⊆ �(0, Y) whenever G ∈
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�(0, X). Now let " be the union of all arcs [0, G] with G ∈ (∩�(0, X). These arcs lie
in ( and so" is a connected set contained in (∩�(0, Y). Moreover, (∩�(0, X) ⊆ "
and so " is a connected relative (not necessarily open) neighborhood of 0 in (. This
shows that ( is locally connected. We conclude that ( is indeed a subtree of ) . ut

Lemma 3.4. Let (), 3) be a tree, ? ∈ ) , and * a component of )\{?}. Then
� = * ∪ {?} is a subtree of ) and ? is a leaf of �.

Proof. It follows from Lemma 3.2 (i) and (ii) that the set * is connected and that
� = * ∪ {?} = *. This implies that � is closed and connected. Since * ≠ ∅ and
? ∉ *, the set � contains at least two points. Hence � is a subtree of) by Lemma 3.3.
Since �\{?} = * is connected, ? is a leaf of �. ut

If the subtree � = * ∪ {?} is as in the previous lemma, then we call � a branch
of ? in ) (or just a branch of ? if ) is understood).

Lemma 3.5. Let (), 3) be a tree, ( ⊆ ) be a subtree of ) , and ? ∈ (. Then every
branch �′ of ? in ( is contained in a unique branch � of ? in ) . The assignment
�′ ↦→ � is an injective map between the sets of branches of ? in ( and in ) . If ? is
an interior point of (, then this map is a bĳection.

In particular, if under the given assumptions a) (?) is the valence of ? in ) and
a( (?) the valence of ? in (, then a( (?) ≤ a) (?). Here we have equality if ? is an
interior point of (.

If ? ∈ ( is a leaf of ) , then ) has only one branch � at ?, namely � = ) . Hence
1 ≤ a( (?) ≤ a) (?) ≤ 1, and so a( (?) = 1. This means that ? is also a leaf of (.
More informally, we can say that the property of a point being a leaf in ) is passed
to subtrees that contain the point.

Proof. If �′ is a branch of ? in (, then �′ = * ′ ∪ {?}, where * ′ is a component
of (\{?}. Then * ′ is a connected subset of )\{?} and so contained in a unique
component * of )\{?}. Then � = * ∪ {?} is a branch of ? in ) with �′ ⊆ � and
it is clear that � is the unique such branch.

To show injectivity of the map �′ ↦→ �, let �′1 and �′2 be two distinct branches
of ? in (. Pick points 0 ∈ �′1\{?} and 1 ∈ �

′
2\{?}. Then 0 and 1 lie in different

components of (\{?} and so ? ∈ [0, 1] by Lemma 3.2 (iii) applied to the tree (.
Hence 0 and 1 lie in different components of )\{?}, and so in different branches of
? in ) . This implies that �′1 and �′2 must be contained in different branches of ? in
) . This shows that the map �′ ↦→ � is indeed injective.

Now assume in addition that ? is an interior point of (. To show surjectivity of
the map �′ ↦→ �, we consider a branch � of ? in ) . Pick a point 0 ∈ �\{?}. Then
[0, ?) ⊆ �\{?}, because � is a subtree of ) . Since ? is an interior point of (, there
exists a point G ∈ [0, ?) close enough to ? such that G ∈ (\{?}. If �′ is the unique
branch of ? in ( that contains G, then we have G ∈ �′ ∩ �. This implies �′ ⊆ �.
Hence the map �′ ↦→ � is also surjective, and so a bĳection. ut

Lemma 3.6. Let (), 3) be a tree, ?, 01, 02, 03 ∈ ) with ? ≠ 01, 02, 03 and suppose
that the sets [01, ?), [02, ?), [03, ?) are pairwise disjoint. Then the points 01, 02, 03
lie in different components of )\{?} and ? is a branch point of ) .
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Proof. The arcs [01, ?] and [02, ?] = [?, 02] have only the point ? in common.
So their union [01, ?] ∪ [?, 02] is an arc and this arc must be equal to [01, 02].
Hence ? ∈ [01, 02] which by Lemma 3.2 (iii) implies that 01 and 02 lie in different
components of )\{?}. A similar argument shows that 03 must be contained in
a component of )\{?} different from the components containing 01 and 02. In
particular, )\{?} has at least three components and so ? is a branch point of ) . The
statement follows. ut

Lemma 3.7. Let (), 3) be a tree such that the branch points of ) are dense in ) . If
0, 1 ∈ ) with 0 ≠ 1, then there exists a branch point 2 ∈ (0, 1).

Proof. We pick a point G0 ∈ (0, 1) ≠ ∅. Then G0 has positive distance to both 0 and
1. This and Lemma 3.1 imply that we can find X > 0 such that for all G ∈ �(G0, X)
the arc [G, G0] has uniformly small diameter and so does not contain 0 or 1.

Since branch points are dense in ) , we can find a branch point ? ∈ �(G0, X). Then
0, 1 ∉ [?, G0]. If ? ∈ (0, 1), we are done.

In the other case, we have ? ∉ (0, 1). If we travel from ? to G0 ∈ (0, 1) along
[?, G0], we meet [0, 1] in a first point 2 ∈ (0, 1). Then 0, 1, ? ≠ 2. Moreover, the
sets [0, 2), [1, 2), [?, 2) are pairwise disjoint. Hence 2 ∈ (0, 1) is a branch point of
) as follows from Lemma 3.6. ut

Lemma 3.8. Let (-, 3) be a compact, connected, and locally connected metric
space, � an index set, ?8 ∈ ) , and*8 a component of -\{?8} for each 8 ∈ �. Suppose
that

*8 ∩* 9 = ∅

for all 8, 9 ∈ �, 8 ≠ 9 . Then � is a countable set. If there exists X > 0 such that
diam(*8) > X for each 8 ∈ �, then � is finite.

Informally, the space - cannot contain a “comb" with too many long teeth.

Proof. We prove the last statement first. We argue by contradiction and assume that
diam(*8) > X > 0 for each 8 ∈ �, where � is an infinite index set. Then we can
choose a point G8 ∈ *8 such that 3 (G8 , ?8) ≥ X/2. The set � = {G8 : 8 ∈ �} is infinite
and so it must have a limit point @ ∈ - , because - is compact. Since - is locally
connected, there exists a connected neighborhood # of @ such that # ⊆ �(@, X/8).
Since @ is a limit point of �, the set # contains infinitely many points in �. In
particular, we can find 8, 9 ∈ � with G8 , G 9 ∈ # and 8 ≠ 9 . Then

dist(?8 , #) ≥ 3 (?8 , G8) − diam(#) ≥ X/2 − X/4 > 0,

and so # ⊆ -\{?8}. Since the connected set # meets*8 in the point G8 , this implies
that # ⊆ *8 . Similarly, # ⊆ * 9 . This is impossible, because we have 8 ≠ 9 and so
*8 ∩* 9 ≠ ∅, while ∅ ≠ # ⊆ *8 ∩* 9 .

To prove the first statement, note that diam(*8) > 0 for each 8 ∈ �. Indeed,
otherwise diam(*8) = 0 for some 8 ∈ �. Then *8 consists of only one point 0.
Since - is locally connected, the component*8 of -\{?8} is an open set. So 0 is an
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isolated point of - . This is impossible, because the metric space - is connected and
so it does not have isolated points.

Now we write � =
⋃
=∈N �=, where �= consists of all 8 ∈ � such that diam(*8) >

1/=. Then each set �= is finite by the first part of the proof. This implies that � is
countable. ut

We can apply the previous lemma to a tree ) and choose for each ?8 a fixed
branch point ? of ) . Then it follows that ? can have at most countably many distinct
complementary components *8 and hence there are only countably many distinct
branches �8 = *8 ∪ {?} of ?. Moreover, since diam(�8) = diam(*8) = diam(*8),
there can only be finitely many of these branches whose diameter exceeds a given
positive number X > 0. In particular, we can label the branches of ? by numbers
= = 1, 2, 3, . . . so that

diam(�1) ≥ diam(�2) ≥ diam(�3) ≥ . . . .

We now set
�) (?) = diam(�3) (3.5)

and call �) (?) the height of the branch point ? in ) . So the height of a branch point
? is the diameter of the third largest branch of ?.

Lemma 3.9. Let (), 3) be a tree and X > 0. Then there are at most finitely many
branch points ? ∈ ) with height �) (?) > X.

Proof. We argue by contradiction and assume that this is not true. Then the set �
of branch points ? in ) with �) (?) > X has infinitely many elements. Since ) is
compact, the set � has a limit point @ ∈ ) .

Claim. There exists a branch & of @ such that the set � ∩ & is infinite and has @
as a limit point.

Otherwise, @ has infinitely many distinct branches&=, = ∈ N, that contain a point
0= ∈ � ∩ (&=\{@}). Then 0= is a branch point with �) (0=) > X which implies that
0= has at least three branches whose diameters exceed X. At least one of them does
not contain @. If we denote such a branch of 0= by +=, then += is a connected subset
of )\{@}. It meets &=\{@}, because 0= ∈ (&=\{@}) ∩ +=. It follows that += ⊆ &=
and so diam(&=) ≥ diam(+=) > X. Since the branches &= of @ are all distinct for
= ∈ N, this contradicts Lemma 3.8 (see the discussion after the proof of this lemma).
The Claim follows.

We fix a branch & of @ as in the Claim. For each = ∈ N we will now inductively
construct branch points ?= ∈ � ∩ (&\{@}) together with a branch �= of ?= and an
auxiliary compact set  = ⊆ ) . They will satisfy the following conditions for each
= ∈ N:

(i) diam(�=) > X,
(ii) the sets �1, . . . , �= are disjoint,
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(iii) the set  = is compact and connected, and

�1 ∪ · · · ∪ �= ⊆  = ⊆ &\{@}.

We pick an arbitrary branch point ?1 ∈ � ∩ (&\{@}) to start. Then we can
choose a branch �1 of ?1 that does not contain @ and satisfies diam(�1) > X. We set
 1 = �1. Then  1 is a compact and connected set that does not contain @ and meets
&, because ?1 ∈  1 ∩&. Hence  1 ⊆ &\{@}.

Suppose for some = ∈ N, a branch point ?: ∈ � ∩ &, a branch �: of ?: , and a
set  : with the properties (i)–(iii) have been chosen for all 1 ≤ : ≤ =.

Since @ ∉  =, we have dist(@,  =) > 0, and so we can find a branch point
?=+1 ∈ � ∩ (&\{?}) sufficiently close to @ such that ?=+1 ∉  =. This is possible,
because @ is a limit point of �∩(&\{@}). Since the set  = ⊆ )\{?=+1} is connected,
it must be contained in a branch of ?=+1. Since there are three branches of ?=+1 ≠ @
whose diameters exceed X, we can pick one of them that contains neither @ nor  =.
Let �=+1 be such a branch of ?=+1. Then diam(�=+1) > X and so (i) is true for = + 1.
We have �=+1 ∩  = = ∅; so (iii) shows that �=+1 is disjoint from the previously
chosen disjoint sets �1, . . . , �=. This gives (ii).

Since ?=, ?=+1 ∈ &\{@}, the arc [?=, ?=+1] does not contain @ (seeLemma3.2 (iii)).
We also have ?= ∈ �= ⊆  = and ?=+1 ∈ �=+1, which implies that the set
 =+1 B  = ∪ [?=, ?=+1] ∪ �=+1 ⊆ &\{@} is compact and connected. We have

�1 ∪ · · · ∪ �= ∪ �=+1 ⊆  = ∪ �=+1 ⊆  =+1 ⊆ &\{@},

and so  =+1 has property (iii).
Continuing with this process, we obtain disjoint branches �= for all = ∈ N that

satisfy (i). The last part of Lemma 3.8 implies that this is impossible and we get a
contradiction. ut

4 Basic properties of the continuum self-similar tree

We now we study the properties of the continuum self-similar tree (CSST). Unless
otherwise specified, all metric notions in this section refer to the Euclidean metric
on the complex plane C. In this section, 8 always denotes the imaginary unit and we
do not use this letter for indexing as in the other sections. If 0, 1 ∈ C we denote
by [0, 1] the Euclidean line segment in C joining 0 and 1. We also use the usual
notation for open or half-open line segments. So [0, 1) = [0, 1]\{1}, etc.

For the proof of Proposition 1.1 we consider a coding procedure of certain points
in the complex plane by words in an alphabet. We first fix some terminology related
to this. We consider a non-empty set A. Then we call A an alphabet and refer
to the elements in A as the letters in this alphabet. In this paper we will only use
alphabets of the form A = {1, 2, . . . , <} with < ∈ N, < ≥ 3. We consider the set
, (A) B AN of infinite sequences inA as the set of infinite words in the alphabetA
and write the elements F ∈ , (A) in the form F = F1F2 . . ., where it is understood
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that F: ∈ A for : ∈ N. Similarly, we set,= (A) B A= and consider,= (A) as the
set of all words in the alphabet A of length =. We write the elements F ∈ ,= (A)
in the form F = F1 . . . F= with F: ∈ A for : = 1, . . . , =. We use the convention
that,0 (A) = {∅} and consider the only element ∅ in,0 (A) as the empty word of
length 0. Finally,

,∗ (A) B
⋃
=∈N0

,= (A)

is the set of all words of finite length. If D = D1 . . . D= is a finite word and E = E1E2 . . .
is a finite or infinite word in the alphabetA, thenwe denote by DE = D1 . . . D=E1E2 . . .
the word obtained by concatenating D and E. We call D an initial segment and E a tail
of the word F = DE. If the alphabet A is understood, then we will simply drop A
from the notation. So, will denote the set of infinite words in A, etc.

For the rest of this section, we use the alphabet A = {1, 2, 3}. So when we write
, ,,=,,∗ it is understood thatA = {1, 2, 3} is the underlying alphabet. There exists
a unique metric 3 on , = {1, 2, 3}N with the following property. If we have two
words D = D1D2 . . . and E = E1E2 . . . in, and D ≠ E, then for some = ∈ N0 we have
D1 = E1, . . . , D= = E=, and D=+1 ≠ E=+1. Then 3 (D, E) = 1/2=. More informally, two
elements D, E ∈ , are close in this metric precisely if they share a large number of
initial letters. The metric space (,, 3) is compact and homeomorphic to a Cantor
set.

If = ∈ N0 and F = F1F2 . . . F= ∈ ,=, we define

5F B 5F1 ◦ 5F2 ◦ · · · ◦ 5F= ,

where we use the maps in (1.1) in the composition. By convention, 5∅ = idC is the
identity map on C. Note that 5F is a Euclidean similarity on C that scales Euclidean
distances by the factor 2−=. If 0, 1 ∈ C, then 5F ( [0, 1]) = [ 5F (0), 5F (1)]. We will
use this repeatedly in the following.

Throughout this section we denote by � ⊆ C the (closed) convex hull of the four
points 1, 8, −1, and 1

2 −
8
2 (see Figure 4). We set �: = 5: (�) for : = 1, 2, 3. Then

�1 ∪ �2 ∪ �3 = 51 (�) ∪ 52 (�) ∪ 53 (�) ⊆ �.

This implies that
5F (�) ⊆ � (4.6)

for all F ∈ ,∗.

Lemma 4.1. There exists a well-defined continuous map c : , → C given by

c(F) = lim
=→∞

5F1F2...F= (I0)

for F = F1F2 . . . ∈ , and I0 ∈ C. Here the limit exists and is independent of the
choice of I0 ∈ C.
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Fig. 4 Ilustration of some associated sets.

The existence of such a map c is standard in similar contexts (see, for example,
[Hu81, Section 3.1, pp. 426–427]). In the following, c : , → C will always denote
the map provided by this lemma.

Proof. Fix I0 ∈ C. Then there exists a constant � ≥ 0 such that

|I0 − 5: (I0) | ≤ �

for : = 1, 2, 3. If = ∈ N0 and D ∈ ,=, then

| 5D (0) − 5D (1) | =
1
2=
|0 − 1 |

for all 0, 1 ∈ C. This implies that if F = F1F2 . . . ∈ , , = ∈ N, and
D B F1F2 . . . F= ∈ ,=, then

| 5F1F2...F= (I0) − 5F1F2...F=+1 (I0) | = | 5D (I0) − 5D ( 5F=+1 (I0)) |

=
1
2=
|I0 − 5F=+1 (I0) | ≤

�

2=
.

It follows that { 5F1F2...F= (I0)}=∈N is a Cauchy sequence in C. Hence this sequence
converges and

c(F) = lim
=→∞

5F1F2...F= (I0)

is well-defined for each F = F1F2 . . . ∈ , .
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The limit does not depend on the choice of I0. Indeed, if I′0 ∈ C is another point,
then

| 5F1F2...F= (I0) − 5F1F2...F= (I′0) | =
1
2=
|I0 − I′0 |,

which implies that

lim
=→∞

5F1F2...F= (I0) = lim
=→∞

5F1F2...F= (I′0).

The definition of c shows that if F = F1F2 . . . ∈ , and = ∈ N0, then

c(F) = c(F1F2 . . .) = 5F1...F= (c(F=+1F=+2 . . .)). (4.7)

If we pick I0 ∈ �, then (4.6) and the definition of c imply that c(,) ⊆ �. If we
combine this with (4.7), then we see that if two words D, E ∈ , start with the same
letters F1, . . . , F=, then

|c(D) − c(E) | ≤ diam( 5F1...F= (�)) =
1
2=

diam(�).

The continuity of the map c follows from this and the definition of the metric 3 on
, . ut

We can now establish the result that is the basis of the definition of the CSST. Again
arguments along these lines are completely standard.

Proof of Proposition 1.1. Let c : , → C be the map provided by Lemma 4.1
and define T = c(,) ⊆ C. Since , is compact and c is continuous, the set T is
non-empty and compact. The relation (1.2) immediately follows from (4.7) for = = 1.
Note that (1.2) implies that

5F (T) = 5F1 (T) ∪ 5F2 (T) ∪ 5F3 (T) (4.8)

for each F ∈ ,=, = ∈ N0. From this in turn we deduce that⋃
F ∈,=

5F (T) = T (4.9)

for each = ∈ N0.
It remains to show the uniqueness of T. Suppose T̃ ⊆ C is another non-empty

compact set satisfying the analog of (1.2). Then the analogs of (4.8) and (4.9)
are also valid for T̃. This and the definition of c using a point I0 ∈ T̃ imply that
T = c(,) ⊆ T̃.

For the converse inclusion, let 0 ∈ T̃ be arbitrary. Using the relation (4.8) for
the set T̃, we can inductively construct an infinite word F1F2 . . . ∈ , such that
0 ∈ 5F1F2...F= (T̃) for all = ∈ N. Since

diam( 5F1F2...F= (T̃)) =
1
2=

diam(T̃) → 0 as =→∞,
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the definition of c (using a point I0 ∈ T̃) implies that 0 = c(F). In particular,
0 ∈ c(,) = T, and so T̃ ⊆ T. The uniqueness of T follows. ut

In the proof of the previous proposition we have seen that T = c(,). If ? ∈ T and
? = c(F) for some F ∈ , , then we say that the word F represents ?.

The following statement provides some geometric descriptions of T.

Proposition 4.2. Let � = [−1, 1] ⊆ C. For = ∈ N0 define

�= =
⋃
F ∈,=

5F (�) and  = =
⋃
F ∈,=

5F (�).

Then the sets �= and  = are compact and satisfy

�= ⊆ �=+1 ⊆ T ⊆  =+1 ⊆  = (4.10)

for = ∈ N0. Moreover, we have⋃
=∈N0

�= = T =
⋂
=∈N0

 =. (4.11)

As we will discuss more towards the end of this section, the first identity in
(4.11) represents T as the closure of a union of an ascending sequence of trees as
mentioned in the introduction. We will not need the second identity in (4.11) in the
following, but included it to show that T can also be obtained as the intersection of
a natural decreasing sequence of compacts sets. This is how many other fractals are
constructed.

Proof. It is clear that the sets �= and  = as defined in the statement are compact
for each = ∈ N0. Set �: = 5: (�) for : = 1, 2, 3. Then an elementary geometric
consideration shows that (see Figure 4)

� ⊆ �1 ∪ �2 ∪ �3 ⊆ �1 ∪ �2 ∪ �3 ⊆ �.

This in turn implies that

5F (�) ⊆ 5F1 (�) ∪ 5F2 (�) ∪ 5F3 (�)
⊆ 5F1 (�) ∪ 5F2 (�) ∪ 5F3 (�) ⊆ 5F (�)

for each F ∈ ,=, = ∈ N0. Taking the union over all F ∈ ,=, we obtain

�= ⊆ �=+1 ⊆  =+1 ⊆  = (4.12)

for all = ∈ N0. The set T̃ =
⋃
=∈N0

�= is non-empty, compact, and satisfies
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:=1,2,3

5: (T̃) =
⋃

:=1,2,3
5:

( ⋃
=∈N0

�=

)
=

⋃
:=1,2,3

5:

( ⋃
=∈N0

�=

)
=

⋃
:=1,2,3

5:

( ⋃
=∈N0

�=

)
=

⋃
=∈N0

⋃
:=1,2,3

5: (�=)

=
⋃
=∈N0

�=+1 =
⋃
=∈N0

�= = T̃.

Hence T̃ = T by the uniqueness statement in Proposition 1.1. So we have the first
equation in (4.11).

Since 0 ∈ �, we have 5F (0) ∈ 5F (�) ⊆  = for each F ∈ ,=. Since the sets  =
are compact and nested, this implies that for each F = F1F2 . . . ∈ , we have

c(F) = lim
=→∞

5F1...F= (0) ∈
⋂
=∈N0

 =.

It follows that T = c(,) ⊆
⋂
=∈N0

 =.

To show the reverse inclusion, let 0 ∈
⋂
=∈N0

 = be arbitrary. Then 0 ∈  = for

each = ∈ N0, and so there is a word D= ∈ ,= such that 0 ∈ 5D= (�). Define
I= = 5D= (0) ∈ �= ⊆ T. Since 0 ∈ �, we have I= ∈ 5D= (�), and so

|I= − 0 | ≤ diam( 5D= (�)) =
1
2=

diam(�).

Hence I= → 0 as =→ ∞. Since I= ∈ T and T is compact, it follows that 0 ∈ T. We
see that

⋂
=∈N0

 = ⊆ T. So the second equation in (4.11) is also valid.

The inclusions (4.10) follow from (4.11) and (4.12). ut

For a finite word D ∈ ,∗ we define

TD B 5D (T) ⊆ T. (4.13)

Note that T∅ = T. Since T = c(,) and 5D (c(E)) = c(DE) whenever D ∈ ,∗ and
E ∈ , (see (4.7)), the set TD consists precisely of the points 0 ∈ T that can be
represented in the form 0 = c(F) with a word F ∈ , that has D has an initial
segment. This implies that if E ∈ ,∗ is a finite word with the initial segment D ∈ ,∗,
then TE ⊆ TD .

It follows from (4.8) that

TD = TD1 ∪ TD2 ∪ TD3

for each D ∈ ,∗ and from (4.9) that
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T =
⋃
D∈,=

TD (4.14)

for each = ∈ N0.
Since � = [−1, 1] ⊆ T ⊆ � (as follows from Proposition 4.2) and diam(�) =

diam(�) = 2, we have diam(T) = 2. If = ∈ N0 and D ∈ ,=, then 5D is a similarity
map that scales distances by the factor 1/2=. Hence

diam(TD) = 21−=. (4.15)

We have 0 = 51 (1) = 52 (−1) = 53 (−1). This implies

0 ∈ T: = 5: (T) ⊆ 5: (�) = �: (4.16)

for : = 1, 2, 3. If :, ℓ ∈ {1, 2, 3} and : ≠ ℓ, then (see Figure 5)

�: ∩ �ℓ = {0}, and so T: ∩ Tℓ = {0}. (4.17)

8

−1 11

�1

�2

�3

0
T1

T2

T3

Fig. 5 The CSST T and its subtrees T1, T2, T3.

The next lemma provides a criterion when two infinite words in, represent the
same point in T under the map c. Here we use the notation ¤: for the infinite word
::: . . . for : ∈ {1, 2, 3}.

Lemma 4.3. (i) We have c−1 (0) = {1¤2, 2¤1, 3¤1}.
(ii)Let E, F ∈ , with E ≠ F. Then c(E) = c(F) if and only if there exists a finite word
D ∈ ,∗ such that E, F ∈ {D1¤2, D2¤1, D3¤1}. In this case, c(E) = c(F) = 5D (0).
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Note that if E ∈ , and E ∈ {D1¤2, D2¤1, D3¤1} for some D ∈ ,∗, then D is uniquely
determined. This and the lemma imply that each point in T = c(,) has at most three
peimages under the map c.

Proof. (i) Note that 1¤2 ∈ c−1 (0) as follows from

52 (1) = 1 and 51 (1) = 0.

Similarly, 2¤1, 3¤1 ∈ c−1 (0), because

51 (−1) = −1, 52 (−1) = 0, and 51 (−1) = −1, 53 (−1) = 0.

Hence {1¤2, 2¤1, 3¤1} ⊆ c−1 (0).
To prove the reverse inclusion, suppose that c(F) = 0 for some F = F1F2 . . . ∈

, . We first consider the case F1 = 1. Then 0 = 51 (0), where 0 B c(F2F3 . . .), and
so 0 = 1. Since 1 ∈ T2\(T1 ∪ T3) as follows from (4.16), we must have F2 = 2.
Then 1 = 52 (1), where 1 B F3F4 . . ., and so 1 = 1 ∈ T2\(T1 ∪ T3). This implies
F3 = 2. Repeating the argument, we see that 2 = F2 = F3 = . . ., and so F = 1¤2.

A very similar argument shows that if F1 = 2, then F = 2¤1, and if F1 = 3, then
F = 3¤1.

(ii) Suppose that c(E) = c(F) for some D, E ∈ , , D ≠ E. Let D ∈ ,∗ be
the longest initial word that E and F have in common. So E = DE=+1E=+2 . . . and
F = DF=+1F=+2 . . . , where = ∈ N0 and E=+1 ≠ F=+1. Since 5D is bĳective and

c(E) = 5D (c(E=+1E=+2 . . . )) = c(F) = 5D (c(F=+1F=+2 . . . )) ,

we have
c(E=+1E=+2 . . . ) = c(F=+1F=+2 . . . ).

Note that c(E=+1E=+2 . . . ) ∈ TE=+1 and c(F=+1F=+2 . . . ) ∈ TF=+1 . Since E=+1 ≠
,=+1, by (4.17) this is only possible if c(E=+1E=+2 . . . ) = c(F=+1F=+2 . . . ) = 0.
Hence

E=+1E=+2 . . . , F=+1F=+2 . . . ∈ {1¤2, 2¤1, 3¤1}

by (i). The “only if" implication follows. Our considerations also show that c(E) =
c(F) = 5D (0). The reverse implication follows from (i). ut

Our next goal is to show that T is indeed a tree. This requires some preparation.

Lemma 4.4. (i) For each ? ∈ T there exists a (possibly degenerate) arc U in T with
endpoints −1 and ?.

(ii) The sets T, T\{1}, and T\{−1} are arc-connected.

Proof. (i) Let ? ∈ T. Then ? = c(F) for some F = F1F2 . . . ∈ , .
Let E= = F1 . . . F= and define 0= = 5E= (−1) ∈ T for = ∈ N0. Then 00 = 5∅ (−1) =

−1. For each = ∈ N0 we have

[0=, 0=+1) = [ 5E= (−1), 5E=F=+1 (−1)) = 5E=
(
[−1, 5F=+1 (−1))

)
.
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If F=+1 = 1, then 5F=+1 (−1) = 51 (−1) = −1; so 0= = 0=+1 and

[0=, 0=+1) = ∅.

If F=+1 ∈ {2, 3}, then 5F=+1 (−1) = 0; so

[−1, 5F=+1 (−1)) = [−1, 0) ⊆ T1\{0},

and
[0=, 0=+1) = 5E= ( [−1, 0)) ⊆ 5E= (T1\{0}) ⊆ TE= ⊆ T.

Moreover,

length( [0=, 0=+1)) =
1
2=

length
(
[−1, 5F=+1 (−1))

)
=

{
2−= if F=+1 = 2, 3,
0 if F=+1 = 1.

(4.18)
Let

�= B {?} ∪
⋃
:≥=+1

[0: , 0:+1)

for = ∈ N0. By what we have seen above,

[0: , 0:+1) ⊆ TE: ⊆ TE=+1

for : ≥ = + 1. Since ? = lim:→∞ 0: and TE=+1 is closed, we also have ? ∈ TE=+1 , and
so

�= ⊆ TE=+1 .

This implies that
[0=, 0=+1) ∩ �= = ∅

for each = ∈ N0. Indeed, if F=+1 = 1 this is clear, because then [0=, 0=+1) = ∅.
If F=+1 = 2, then

�= ⊆ TE=+1 = 5E= ( 52 (T)) = 5E= (T2),

which implies that

[0=, 0=+1) ∩ �= ⊆ 5E= (T1\{0}) ∩ 5E= (T2) = 5E= ((T1\{0}) ∩ T2) = ∅.

If F=+1 = 3, then [0=, 0=+1) ∩ �= = ∅ by the same reasoning. This shows that the
sets

[00, 01), [01, 02), [02, 03), . . . , {?}

are pairwise disjoint. As = → ∞, we have 0= → ? and also diam(�=) → 0 by
(4.18). Therefore, the union

U = [00, 01) ∪ [01, 02) ∪ [02, 03) ∪ · · · ∪ {?} (4.19)
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is an arc in T joining 00 = −1 and ? (if ? = −1, this arc is degenerate). We have
proved (i).

To prepare the proof of (ii), we claim that if ? ≠ 1, then this arc U does not contain
1. Otherwise, we must have 1 ∈ [0=, 0=+1) ⊆ TE= for some = ∈ N0. This shows that
1 can be written in the form 1 = c(D), where D ∈ , is an infinite word starting with
the finite word E B E= (note that this and the statements below are trivially true
for = = 0). On the other hand, we have 52 (1) = 1 which implies that 1 = c( ¤2). By
Lemma 4.3 (ii) this is only possible if all the letters in E are 2’s. Then 5E (1) = 1 and
it follows that

1 = 5E (1) ∈ [0=, 0=+1) = 5E
(
[−1, 5F=+1 (−1))

)
.

Since 5E is a bĳection, this implies that 1 ∈ [−1, 5F=+1 (−1)). Now 5F=+1 (−1) ∈
{−1, 0}, and we obtain a contradiction. So indeed, 1 ∉ U.

(ii) Let ?, @ ∈ T with ? ≠ @ be arbitrary. In order to show that T is arc-connected,
we have to find an arc W in T joining ? and @. Now by the construction in (i) we can
find arcs U and V in T joining ? and @ to −1, respectively. Then the desired arc W can
be found in the union U ∪ V as follows. Starting from ?, we travel long U until we
first hit V, say in a point G. Such a point G exists, because −1 ∈ U ∩ V ≠ ∅. Let U′ be
the (possibly degenerate) subarc of U with endpoints ? and G, and V′ be the subarc
of V with endpoints G and @. Then W = U′ ∪ V′ is an arc in T joining ? and @.

The arc-connectedness of T\{1} is proved by the same argument. Indeed, if
?, @ ∈ T\{1}, then by the remark in the last part of the proof of (i), the arcs U and
V constructed as in (i) do not contain 1. Then the arc W ⊆ U ∪ V does not contain 1
either.

Finally, to show that T\{−1} is arc-connected, we assume that ?, @ ∈ T\{−1}. If
G is, as above, the first point on V as we travel along U starting from ?, then it suffices
to show that G ≠ −1, because then −1 ∉ W. This in turn will follow if we can show
that U and V have another point in common besides −1.

To find such a point, we revisit the above construction. Pick F = F1F2 . . . ∈ ,
and D = D1D2 . . . ∈ , such that ? = c(F) and @ = c(D). Let U and V be the arcs for
? and @, respectively, as constructed in (i). Then U is as in (4.19) and we can write
the other arc V as

V = [10, 11) ∪ [11, 12) ∪ [12, 13) ∪ · · · ∪ {@},

where 1= = 5D1...D= (−1) for = ∈ N0. Since ? ≠ @, we have F ≠ D, and so there
exists a largest = ∈ N0 such that E B F1 . . . F= = D1 . . . D= and F=+1 ≠ D=+1. Then
0= = 1= = 5E (−1) ∈ U ∩ V. If 0= = 1= ≠ −1, we are done. So we may assume
that 0= = 1= = 5E (−1) = −1. Then 00 = · · · = 0= = −1, and so F: = D: = 1 for
: = 1, . . . , =. This shows that all letters in E are equal to 1.

Since the lettersF=+1 and D=+1 are distinct, one of them is different from1.Wemay
assume D=+1 ≠ 1. Then 5D=+1 (−1) = 0, and so (1=, 1=+1] = 5E ((−1, 0]) ⊆ V \ {−1}.
Here we used that 5E is a homeomorphism with 5E (−1) = −1.



164 Mario Bonk and Huy Tran

Since ? = c(F) ≠ −1 = c( ¤1), we have F ≠ ¤1 and so there exists a smallest
ℓ ∈ N such that F=+ℓ ≠ 1. Then 5F=+ℓ (−1) = 0 and so a simple computation using
F=+1 = · · · = F=+ℓ−1 = 1 shows that

2 B 5F=+1...F=+ℓ (−1) = 5F=+1...F=+ℓ−1 (0) = 21−ℓ − 1 ∈ (−1, 0] .

Hence
0=+ℓ = 5E (2) ∈ 5E ((−1, 0]) ⊆ V \ {−1}.

It follows that 0=+ℓ ∈ U ∩ V and 0=+ℓ ≠ −1 as desired. ut

The next lemma will help us to identify the branch points of T once we know that
T is a tree.

Lemma 4.5. (i) The components of T\{0} are given by the non-empty sets T1\{0},
T2\{0}, T3\{0}.

(ii) If D ∈ ,∗, then T\{ 5D (0)} has exactly three components. The sets TD1\{ 5D (0)},
TD2\{ 5D (0)}, TD3\{ 5D (0)} are each contained in a different component of
T\{ 5D (0)}.

In the proof we will use the following general facts about components of a subset "
of a metric space - . Recall that a set � ⊆ " is relatively closed in " if � = �∩" ,
or equivalently, if each limit point of � that belongs to " also belongs to �. Each
component � of " is relatively closed in " , because its relative closure � ∩ "
is a connected subset of " with � ⊆ � ∩ " . Hence � = � ∩ " , because � is a
component of " and hence a maximal connected subset of " .

If �1, . . . , �= ⊆ " for some = ∈ N are non-empty, pairwise disjoint, relatively
closed, and connected sets with" = �1∪· · ·∪�=, then these sets are the components
of " .

Proof. (i) Each of the sets T\{1} and T\{−1} is non-empty, and connected by
Lemma 4.4 (ii). Therefore, the sets

T1\{0} = 51 (T\{1}), T2\{0} = 52 (T\{−1}), T3\{0} = 53 (T\{−1})

are non-empty and connected. They are also relatively closed in T\{0} and pairwise
disjoint by (4.17). Since T = T1 ∪ T2 ∪ T3 we have

T\{0} = (T1\{0}) ∪ (T2\{0}) ∪ (T3\{0}).

This implies that the sets T:\{0}, : = 1, 2, 3, are the components of T\{0}. The
statement follows.

(ii) We prove this by induction on the length = ∈ N0 of the word D ∈ ,∗. If = = 0
and so D = ∅, this follows from statement (i).

Suppose the statement is true for all words of length = − 1, where = ∈ N.
Let D = D1 . . . D= ∈ ,= be an arbitrary word of length =. We set ℓ B D1 and
D′ B D2 . . . D=. Then D = ℓD′. To be specific and ease notation, we will assume that
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ℓ = 1. The other cases ℓ = 2 or ℓ = 3 are completely analogous and we will skip the
details.

Note that 5D (0) ≠ 0. Indeed, if

0 = 5D (0) = 5D (c(1¤2)) = c(D1¤2),

then D1¤2 ∈ {1¤2, 2¤1, 3¤1} by Lemma 4.3 (i). This is only possible D1 = 1. This is a
contradiction, because D has length = ≥ 1. Hence 5D (0) ≠ 0. Since D1 = ℓ = 1, we
have 5D (0) ∈ T1\{0}.

By induction hypothesis, T\{ 5D′ (0)} has exactly three connected components+1,
+2, +3, and we may assume that TD′:\{ 5D′ (0)} ⊆ +: for : = 1, 2, 3. It follows that

5ℓ (T\{ 5D′ (0)}) = 51 (T\{ 5D′ (0)}) = T1\{ 5D (0)}

has exactly three connected components*: = 51 (+: ) ⊆ T1 with

TD:\{ 5D (0)} = T1D′:\{ 51D′ (0)} = 51 (TD′:\{ 5D′ (0)}) ⊆ 51 (+: ) = *:

for : = 1, 2, 3.
Let : ∈ {1, 2, 3}. Then we have+: = +: ∩T\{ 5D′ (0)}, because+: is a component

of T\{ 5D′ (0)} and hence relatively closed in T\{ 5D′ (0)}. This implies that

*: = 51 (+: ) = 51 (+: ∩ T\{ 5D′ (0)}) = 51 (+: ) ∩ T1\{ 5D (0)}
= 51 (+: ) ∩ T1\{ 5D (0)} = *: ∩ T1\{ 5D (0)}.

Since T1 ⊆ T is compact,*: ⊆ T1, and so*: ⊆ T1, this shows that every limit point
of*: distinct from 5D (0) belongs to*: . Hence*: is relatively closed in T\{ 5D (0)}.

Exactly one of the components of T1\{ 5D (0)}, say *1, contains the point 0 ∈
T1\{ 5D (0)}. Then * ′1 B *1 ∪ T2 ∪ T3 is a relatively closed subset of T\{ 5D (0)}.
This set is also connected, because the sets*1,T2 = 52 (T),T3 = 53 (T) are connected
and have the point 0 in common. Hence the connected sets * ′1, *2, *3 are pairwise
disjoint, relatively closed in T\{ 5D (0)}, and

T\{ 5D (0)} = (T1\ { 5D (0)}) ∪ T2 ∪ T3 = *
′
1 ∪*2 ∪*3.

This implies that T\{ 5D (0)} has exactly the three connected components* ′1,*2,*3.
Moreover, TD1\{ 5D (0)}, TD2\{ 5D (0)}, TD3\{ 5D (0)} lie in the different components
* ′1, *2, *3 of T\{ 5D (0)}, respectively. This provides the inductive step, and the
statement follows. ut

We can now show that T is a metric tree.

Proof of Proposition 1.4. We know that T is compact, contains at least two points,
and is arc-connected by Lemma 4.4.

Let ? ∈ T and = ∈ N be arbitrary, and define

# =
⋃
{TD : D ∈ ,= and ? ∈ TD}.
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Since each of the sets TD = 5D (T), D ∈ ,∗, is a compact and connected subset of T,
the set # is connected. Moreover, since each of the finitely many sets TD , D ∈ ,=, is
closed, we can find X > 0 such that

dist(?,TD) ≥ X

whenever D ∈ ,= and ? ∉ TD . Then we have �(?, X) ∩ T ⊆ # by (4.14), and
so # is a connected relative neighborhood of ? in T. It follows from (4.15) that
diam(#) ≤ 22−=. This shows that each point in T has arbitrarily small connected
neighborhoods in T. Hence T is locally connected.

To complete the proof, it remains to show that the arc joining two given distinct
points in T is unique. For this we argue by contradiction and assume that there are
two distinct arcs in T with the same endpoints. By considering suitable subarcs of
these arcs, we can reduce to the following situation: there are arcs U, V ⊆ T that have
the distinct endpoints 0, 1 ∈ T in common, but no other points.

To see that this leads to a contradiction, we represent the points 0 and 1 by words
in , ; so 0 = c(E) and 1 = c(F), where E = E1E2 . . . and F = F1F2 . . . are in
, . Since 0 ≠ 1 and every point in T has at most three such representations by
Lemma 4.3 (ii), we can find a pair E and F representing 0 and 1 with the largest
common initial word, say E1 = F1, . . . , E= = F=, and E=+1 ≠ F=+1 for some maximal
= ∈ N0.

Let D = E1 . . . E= = F1 . . . F= and

C = 5D (0) = c(D1¤2) = c(D2¤1) = c(D3¤1).

Then C ≠ 0, 1. To see this, assume that C = 0, say. We have F=+1 ∈ {1, 2, 3}, and
so, say F=+1 = 1. But then 0 = C = c(D1¤2) and 1 = c(D1F=+2 . . .). So 0 and 1
are represented by words with the common initial segment D1 that is longer than D.
This contradicts the choice of E and F. The cases F=+1 = 2 or F=+1 = 3 lead to a
contradiction in a similar way.

So indeed C = 5D (0) ≠ 0, 1. Moreover 0 = c(DE=+1 . . .) ∈ TDE=+1\{C} and
similarly 1 ∈ TDF=+1\{C}. Since E=+1 ≠ F=+1 the points 0 and 1 lie in different
components of T\{C} by Lemma 4.5 (ii). So any arc joining 0 and 1 must pass
through C. Hence C ∈ U ∩ V, but C ≠ 0, 1. This contradicts our assumption that the
arcs U and V have no other points than their endpoints 0 and 1 in common. ut

If " ⊆ T, then we denote by m" ⊆ T the relative boundary of " in T.

Lemma 4.6. Let = ∈ N and D ∈ ,=. Then

mTD ⊆ { 5D (−1), 5D (1)}. (4.20)

Moreover, if ? ∈ mTD , then ? = 5F (0) for some word F ∈ ,∗ of length ≤ = − 1.

In particular, the set mTD contains at most two points.

Proof. We prove this by induction on =. First consider = = 1. So let D = : ∈
,1 = {1, 2, 3}. Then T:\{0} is a component T\{0} by Lemma 4.5 (i). Hence
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Proposition 1.4 and Lemma 3.2 (i) imply that T:\{0} is a relatively open set in T. So
each of its points lies in the relative interior of T: and cannot lie in mT: . Therefore,
mT: ⊆ {0}. Since

0 = 5∅ (0) = 51 (1) = 52 (−1) = 53 (−1), (4.21)

the statement is true for = = 1.
Suppose the statement is true for all words in,=, where = ∈ N. Let D ∈ ,=+1 be

arbitrary. Then D = E: , where E ∈ ,= and : ∈ {1, 2, 3}. By what we have just seen,
the set T:\{0} is open in T. Hence

5E (T:\{0}) = 5D (T)\{ 5E (0)} = TD\{ 5E (0)}

is a relatively open subset of 5E (T) = TE . So if ? ∈ TD is not an interior point of TD
in T, then ? = 5E (0) or ? is not an interior point of TE in T and hence belongs to the
boundary of TE . This and the induction hypothesis imply that

mTD ⊆ { 5E (0)} ∪ mTE ⊆ { 5E (0), 5E (−1), 5E (1)}.

From this we conclude that each point ? ∈ mTD ⊆ { 5E (0)} ∪ mTE can be written in
the form 5F (0) for an appropriate word F of length ≤ =. This is clear if ? = 5E (0)
and follows for ? ∈ mTE from the induction hypothesis.

Now TD = 5D (T) is compact and so closed in T. Hence mTD ⊆ TD . On the other
hand, TD contains only two of the points 5E (0), 5E (−1), 5E (1). Indeed, if : = 1, then
1 ∉ T1 ⊆ �1, and so 5E (1) ∉ 5E (T1) = TD . It follows that mTD ⊆ { 5E (−1), 5E (0)}.
Note that 51 (−1) = −1 and 51 (1) = 0, and so

5E (−1) = 5E ( 51 (−1)) = 5D (−1) and 5E (0) = 5E ( 51 (1)) = 5D (1).

Hence
mTD ⊆ { 5D (−1), 5D (1)}.

Very similar considerations show that if : = 2, then

mTD ⊆ { 5E (0), 5E (1)} = { 5D (−1), 5D (1)},

and if : = 3, then
mTD ⊆ { 5E (0)} = { 5D (−1)}.

The statement follows. ut

The next lemma shows that all branch points of T are of the form 5D (0) with
D ∈ ,∗.

Lemma 4.7. The branch points of T are exactly the points of the form C = 5D (0) for
some finite word D ∈ ,∗. They are triple points of T.

Proof. By Lemma 4.5 (ii) we know that each point C = 5D (0) with D ∈ ,∗ is a triple
point of the tree T. We have to show that there are no other branch points of T.
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So suppose that C is a branch point of T, but C ≠ 5D (0) for each D ∈ ,∗. Then
we can find (at least) three distinct components *1, *2, *3 of T\{C}. Pick a point
G: ∈ *: and choose = ∈ N such that |G: − C | > 21−= for : = 1, 2, 3. By (4.14) we
can find D ∈ ,= such that C ∈ TD . Then C is distinct from the points in the relative
boundary mTD , because they have the form 5F (0) for some F ∈ ,∗ (see Lemma 4.6).
Hence C is contained in the relative interior of TD in T. Moreover, diam(TD) = 21−=,
and so G: ∉ TD . For : = 1, 2, 3 let U: be the arc in T joining G: and C. As we travel
from G: to C along U: , there exists a first point H: ∈ TD . Then H: ∈ mTD and so
H: ≠ C. Let V: be the subarc of U: with endpoints G: and H: . Then V: is a connected
set in T\{C}. Since G: ∈ V: , it follows that V: ⊆ *: , and so H: ∈ *: .

This shows that the points H1, H2, H3 are distinct and contained in the relative
boundary mTD . This is impossible, because by Lemma 4.6 the set mTD consists of at
most two points. ut

We can now prove Proposition 1.5 which shows that T satisfies the conditions in
Theorem 1.7 and belongs to the class of trees T3.

Proof of Proposition 1.5. By Lemma 4.7 each branch point of T is a triple point
and each set TD for D ∈ ,= and = ∈ N contains the triple point C = 5D (0). The sets
TD , D ∈ ,=, cover T and have small diameter for = large. It follows that the triple
points are dense in T. ut

In order to show that T is a quasi-convex subset of C, we first require a lemma.

Lemma 4.8. There exists a constant  > 0 such that if ? ∈ T and U is the arc in T
joining 0 and ?, then

length(U) ≤  |? |. (4.22)

In particular, the arc U is a rectifiable curve.

Proof. Let ? ∈ T be arbitrary. We may assume that ? ≠ 0. Then ? = c(F) for some
F = F1F2 . . . ∈ , . For simplicity we assume F1 = 3. The other cases, F1 = 1 and
F1 = 2, are very similar and we will only present the details for F1 = 3.

Since ? ≠ 0 = c(3¤1), we have F2F3 . . . ≠ ¤1. Hence there exists a smallest
number = ∈ N such that such that F=+1 ≠ 1. Let E = F1 . . . F= be the initial word
of F and F′ = F=+1F=+2 . . . be the tail of F. The word E has the form E = 31 . . . 1,
where the sequence of 1’s could possibly be empty. Note that @ B c(F′) ∈ TF=+1 ⊆
T2 ∪ T3 ⊆ �2 ∪ �3. Since

20 B dist(−1, �2 ∪ �3) > 0

(see Figure 4), for the distance of @ and −1 we have |@ + 1| ≥ 20. We also have
5E (@) = ?, and 5E (−1) = 0, because 51 (−1) = −1 and 53 (−1) = 0. It follows that

|? | = | 5E (@) − 5E (−1) | = 1
2=
|@ + 1| ≥ 20

2=
. (4.23)

Now define 00 = 0 = 5E (−1) and 0: = 5EF=+1...F=+:−1 (0) for : ∈ N (here
F=+1 . . . F=+:−1 = ∅ for : = 1). Note that then
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01 = 5E (0) = 5F1...F= (0) = 531...1 (0) = 53 (21−= − 1) = 8/2=,

and so
[00, 01] = [ 5E (−1), 5E (0)] = [0, 8/2=] ⊆ [0, 8] ⊆ T.

This also shows that length( [00, 01]) = 1/2=.
For : ∈ N we have 5F=+: (0) ∈ {−1/2, 1/2, 8/2}, and [0, 5F=+: (0)] ⊆ T. This

implies that
[0: , 0:+1] = 5EF=+1...F=+:−1

(
[0, 5F=+: (0)]

)
⊆ T

and length( [0: , 0:+1]) = 1/2=+: for : ∈ N. Since lim:→∞ 0: = c(F) = ?, we can
concatenate the intervals [0: , 0:+1] ⊆ T for : ∈ N0, add the endpoint ?, and obtain
a path W in T that joins 0 and ? with

length(W) =
∞∑
:=0

1
2=+:

=
1

2=−1 .

The (image of the) path W will contain the unique arc U in T joining 0 and ? and so
length(U) ≤ 1/2=−1. If we combine this with (4.23), then inequality (4.8) follows
with  = 2/20. ut

We can now show that T is indeed a quasi-convex subset of C.

Proof of Proposition 1.6. Let 0, 1 ∈ T be arbitrary. We may assume that 0 ≠ 1.
Then there are words D = D1D2 . . . ∈ , and E = E1E2 . . . ∈ , such that 0 = c(D) and
1 = c(E). Since 0 ≠ 1, we have D ≠ E and so there exists a smallest number = ∈ N0
such that D1 = E1, . . . , D= = E= and D=+1 ≠ E=+1. Let F = D1 . . . D= = E1 . . . E=,
D′ = D=+1D=+2 . . . ∈ , and E′ = E=+1E=+2 . . . ∈ , . We define 0′ = c(D′) and
1′ = c(E′). Set : = D=+1 and ℓ = E=+1. Then : ≠ ℓ, 0′ ∈ T: ⊆ �: , and 1′ ∈ Tℓ ⊆ �ℓ .
We now use the following elementary geometric estimate: there exists a constant
21 > 0 such that

|G − H | ≥ 21 ( |G | + |H |),

whenever G ∈ �: , H ∈ �ℓ , :, ℓ ∈ {1, 2, 3}, : ≠ ℓ. Essentially, this follows from the
fact that the sets �1, �2, �3 are contained in closed sectors in C that are pairwise
disjoint except for the common point 0.

In our situation, this means that

|0′ − 1′ | ≥ 21 ( |0′ | + |1′ |).

Let f and g be the arcs in T joining 0 to 0′ and 1′, respectively. Then f ∪ g contains
the arc U′ in T joining 0′ and 1′. Then it follows from Lemma 4.8 that

length(U′) ≤ length(f) + length(g) ≤  ( |0′ | + |1′ |) ≤ ! |0′ − 1′ | (4.24)

with ! B  /21.
For the similarity 5F we have 5F (0′) = 0 and 5F (1′) = 1. Since 5F (T) ⊆ T,

it follows that U B 5F (U′) is the unique arc in T joining 0 and 1. Since 5F scales
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distances by a fixed factor (namely 1/2=), (4.24) implies the desired inequality
length(U) ≤ ! |0 − 1 |. ut

As we already discussed in the introduction, by Proposition 1.6 we can define a
new metric r on T by setting

r(0, 1) = length(U) (4.25)

for 0, 1 ∈ T, where U is the unique arc in T joining 0 and 1. Then the metric space
(T, r) is geodesic, and we have

|0 − 1 | ≤ r(0, 1) ≤ ! |0 − 1 |

for 0, 1 ∈ T, where ! is the constant in Proposition 1.6. This implies that the
metric spaces T (as equipped with the Euclidean metric) and (T, r) are bi-Lipschitz
equivalent by the identity map.

We now want to reconcile Definition 1.2 with the construction of the CSST as an
abstract metric space outlined in the introduction. We require an auxiliary statement.

Lemma 4.9. Let = ∈ N0. Then the sets

5F (T\{−1}), F ∈ ,=, (4.26)

are pairwise disjoint and their union is equal to T\{−1}.

Proof. This is proved by induction on = ∈ N0. For = = 0 the statement is clear,
because then 5∅ (T\{−1}) = T\{−1} is the only set in (4.26).

Suppose the statement is true for some = ∈ N. Then for each D ∈ ,= the sets

5D1 (T\{−1}) = 5D (T1\{−1}),
5D2 (T\{−1}) = 5D (T2\{0}),
5D3 (T\{−1}) = 5D (T3\{0})

provide a decomposition of 5D (T\{−1}) into three pairwise disjoint subsets as fol-
lows from (4.14) for = = 1, (4.16), and (4.17). This and the induction hypothesis imply
that the sets 5D: (T\{−1}), D ∈ ,=, : ∈ {1, 2, 3}, and hence the sets 5F (T\{−1}),
F ∈ ,=+1, are pairwise disjoint, and their union is equal to T\{−1}. This is the
inductive step, and the statement follows. ut

We now consider the sets �=, = ∈ N0, as in Proposition 4.2. Here �0 = � = [−1, 1]
is a line segment of length 2. Since (−1, 1] ⊆ T\{−1}, the previous lemma implies
that for each = ∈ N0, the sets 5F ((−1, 1]), F ∈ ,=, are pairwise disjoint half-
open line segments of length 21−=. The union of the closures 5F ( [−1, 1]) = 5F (�),
F ∈ ,=, of these line segments is the set �=. In particular, �= consists of 3= line
segments of length 21−= with pairwise disjoint interiors.

Note that for F ∈ ,= we have
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5F1 ((−1, 1]) ∪ 5F2 ((−1, 1]) ∪ 5F3 ((−1, 1])
= 5F ((−1, 0]) ∪ 5F ((0, 1]) ∪ 5F ((0, 8])
= 5F ((−1, 1]) ∪ 5F ( [0, 8]).

An induction argument based on this shows that for = ∈ N0 we have a decomposition

�=\{−1} =
⋃
F ∈,=

5F ((−1, 1]) (4.27)

of �=\{−1} into the pairwise disjoint sets 5F ((−1, 1]), F ∈ ,=.
In the passage from �= to �=+1 we can think of each line segment 5F (�) =

5F ( [−1, 1]) as being replaced with

5F1 (�) ∪ 5F2 (�) ∪ 5F3 (�) = 5F ( [−1, 0]) ∪ 5F ( [0, 1]) ∪ 5F ( [0, 8]).

So 5F ( [−1, 1]) is split into two intervals 5F ( [−1, 0]) and 5F ( [0, 1]), and at its
midpoint 5F (0) a new interval 5F ( [0, 8]) is “glued" to 5F (0). This is exactly the
procedure described in the introduction. Note that Lemma 4.9 implies that these new
intervals 5F ( [0, 8]) ⊆ 5F (T\{−1}), F ∈ ,=, are pairwise disjoint. Moreover, each
such interval 5F ( [0, 8]) meets the set �= only in the point 5F (0) and in no other
point of �=. Indeed, by (4.27) and Lemma 4.9 we have

5F ((0, 8]) ∩ �= = 5F3 ((−1, 1]) ∩ �= = 5F3 ((−1, 1]) ∩ �=\{−1}

= 5F ((0, 8]) ∩
⋃
D∈,=

5D ((−1, 1])

⊆
(
5F ((0, 8]) ∩ 5F ((−1, 1])

)
∪

⋃
D∈,= , D≠F

5F (T\{−1}) ∩ 5D (T\{−1}) = ∅.

It is clear that �= is compact, and one can show by induction based on the
replacement procedure just described that �= is connected. Hence each �= is a
subtree of T by Lemma 3.3. The metric r in (4.25) restricted to �=, = ∈ N0, and to
� B

⋃
=∈#0 �= is just the natural Euclidean path metric on these sets. In particular,

r is a geodesic metric on �. These considerations imply that (�=, r) for = ∈ N, and
hence (�, r), are isometric to the abstract versions of these spaces defined in the
introduction.

By Proposition 4.2 the tree T is the equal to closure � in C. Since on � the
Euclidean metric and the metric r are comparable, the set T = � is homeomorphic
to the space obtained from the completion of the geodesic metric metric space (�, r).
This is how we described the CSST as an abstract metric space in the introduction.
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5 Decomposing trees in Tm

In the previous section we have seen that for each = ∈ N the CSST admits a decom-
position

T =
⋃
D∈,=

TD

into subtrees. We will now consider an arbitrary tree in T<, < ∈ N, < ≥ 3, and find
similar decompositions into subtrees. Our goal is to have decompositions for each
level = ∈ N so that the conditions (i)–(iii) in Proposition 2.1 are satisfied.

Note that each tree class T< is non-empty. Namely, for each < ∈ N, < ≥ 3, a tree
in T< can be obtained by essentially the same method as for the construction of the
CSST as an abstract metric space outlined in the introduction. The only difference
is that instead of gluing one line segment of length 2−= to the midpoint 2B of a line
segment B of length 21−= obtained in the =th step, we glue endpoints of < − 2 such
segments to 2B . Since from a purely logical point of view we will not need the fact
that T< is non-empty for the proof of Theorem 1.8, we will skip further details.

We now fix < ∈ N, < ≥ 3, for the rest of this section. We consider the alphabet
A = {1, 2, . . . , <}. In the following, words will contain only letters in this fixed
alphabet and we use the simplified notation for the sets of words , , ,=, ,∗ as
discussed in Section 4.

Let ) be an arbitrary tree in the class T<. We will now define subtrees )D of )
for all levels = ∈ N and all D ∈ ,=. The boundary m)D of )D in ) will consist of one
or two points that are leaves of )D and branch points of ) . We consider each point
in m)D as a marked leaf in )D and will assign to it an appropriate sign − or + so that
if there are two marked leaves in )D , then they carry different signs. Accordingly,
we refer to the points in m)D as the signed marked leaves of )D . The same point
may carry different signs in different subtrees. We write ?− if a marked leaf ? of )D
carries the sign − and ?+ if it carries the sign +. To refer to this sign, we also write
sgn(?, )D) = − in the first and sgn(?, )D) = + in the second case. If )D has exactly
one marked leaf, we call )D a leaf-tile and if there are two marked leaves an arc-tile.

The reason whywewant to use thesemarkings is that it will help us to consistently
label the subtrees so that if another tree ( inT< is decomposed by the same procedure,
then we obtain decompositions of our trees ) and ( into subtrees on all levels = that
satisfy the analogs of (2.3) and (2.4) (here D ∈ ,= will play the role of the index 8
on each level =). While (2.3) is fairly straightforward to obtain, (2.4) requires a more
careful approach and this is where the markings will help us (see Lemma 5.3 (ii) and
its proof).

For the construction we will use an inductive procedure on =. As in Section 3
(see (3.5) and the discussion before Lemma 3.9), for each branch point ? ∈ ) , we let
�) (?) be its height, i.e., the diameter of the third largest branch of ? in ) . If X > 0,
then by Lemma 3.9 there are only finitely many branch points ? of ) with height
�) (?) > X, and in particular there is one for which this quantity is maximal.

For the first step = = 1, we choose a branch point 2 of ) with maximal height
�) (2). Since ) is in the class T<, this branch point 2 has < = a) (2) branches in
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) . So we can enumerate the distinct branches by the letters in our alphabet as ): ,
: ∈ A.

We choose 2 as the signed marked leaf in each ): , where we set sgn(2, )1) = +
and sgn(2, ): ) = − for : ≠ 1. So the set of signed marked leaves is {2+} in )1 and
{2−} in ): , : ≠ 1. Note that m): = {2} as follows from Lemma 3.2 (ii) and that 2 is
indeed a leaf in ): by Lemma 3.4 for each : ∈ A.

Suppose that for some = ∈ N and all D ∈ ,= we have constructed subtrees )D of
) such that m)D consists of one or two signed marked leaves of )D that are branch
points of ) . We will now construct the subtrees of the (= + 1)-th level as follows by
subdivision of the trees )D .

Fix D ∈ ,=. To decompose )D into subtrees, we will use a suitable branch
point 2 of ) in )D\m)D . The choice of 2 depends on whether m)D contains one or
two elements, that is, whether )D is a leaf-tile or an arc-tile. We will explain this
precisely below, but first record some facts that are true in both cases.

Since 2 ∈ )D\m)D is an interior point of )D , there is a bĳective correspondence
between the branches of 2 in ) and in )D (see Lemma 3.5). So a)D (2) = a) (2) = <,
and we can label the distinct branches of 2 in )D by )D: , : ∈ A. We will choose
these labels depending on the signed marked leaves of )D . Among other things, if )D
has a marked leaf ?−, then ? is passed to )D1 with the same sign. Similarly, a marked
leaf ?+ of )D is passed to )D2 with the same sign. We will momentarily explain this
in more detail (see the Summary below).

In any case, we have
)D =

⋃
:∈A

)D: . (5.28)

Each set )D: is a subtree of )D and hence also of ) . We call these subtrees the
children of )D and )D the parent of its children. Note that two distinct children of )D
have only the point 2 in common and no other points.

Before we say more about the precise labelings of the children of )D and their
signed leaves, we first want to identify the boundary of each child; namely, we want
to show that

m)D: = {2} ∪ (m)D ∩ )D: ) (5.29)

for each : ∈ A.
To see this, first note that )D: is a subtree of ) . Hence )D: contains all of

its boundary points and so m)D: ⊆ )D: . We have 2 ∈ m)D: , because 2 ∈ )D:
and every neighborhood of 2 contains points in the complement of )D: as follows
from Lemma 3.2 (ii) (here it is important that there are at least two branches of
2). If ? ∈ )D: ⊆ )D and ? ∉ {2} ∪ m)D , then a sufficiently small neighborhood
# of ? belongs to )D . Since )D:\{2} is relatively open in )D (this follows from
Lemma 3.2 (i)), we can shrink this neighborhood so that ? ∈ # ⊆ )D: . So no point
? in )D: can be a boundary point of m)D: unless it belongs to {2} ∪ m)D . It follows
that m)D: ⊆ {2} ∪ (m)D ∩ )D: ).

On the other hand, we know that 2 ∈ m)D: . If ? ∈ m)D ∩)D: , then ? is a boundary
point of )D: , because every neighborhood of ? contains elements in the complement
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of )D and hence in the complement of )D: ⊆ )D . This gives the other inclusion in
(5.29), and (5.29) follows.

The identity (5.29) implies that each point in m)D: is a branch point of ) , because
2 is and the points in m)D are also branch points of ) by construction on the previous
level =. Moreover, each point ? ∈ m)D: ⊆ )D: is a leaf of )D: , because if ? = 2,
then ? is a leaf in )D: by Lemma 3.4. Otherwise, ? ∈ m)D . Then ? is a leaf of )D by
construction and hence a leaf of )D: by the discussion after Lemma 3.5.

For the choice of the branch point 2 ∈ )D\m)D , the precise labeling of the children
)D: , and the choice of the signs of the leaves of )D: in m)D: , we now consider two
cases for the set m)D . See Figure 6 for an illustration.

Case 1: m)D contains precisely one element, say m)D = {0}. Note that )D is a
subtree of ) and so an infinite set. So )D\m)D ≠ ∅. All points in )D\m)D are interior
points of )D . Since branch points in ) are dense (here we use that ) belongs to T<),
there exist branch points of ) in )D\m)D . We choose a branch point 2 ∈ )D\m)D with
maximal height�) (2) among all such branch points. This is possible by Lemma 3.9.

Since 0 ∈ m)D ⊆ )D\{2}, precisely one of the children of )D contains 0. We now
consider two subcases depending on the sign of the marked leaf 0.

If sgn(0, )D) = −, then we choose a labeling of the children so that 0 ∈ )D1. It
then follows from (5.29) that m)D1 = {0, 2} and m)D: = {2} for : ≠ 1. We choose
signs so that the set of signed marked leaves is {0−, 2+} in )D1 and {2−} in )D: ,
: ≠ 1.

If sgn(0, )D) = +, then we choose a labeling such that 0 ∈ )D2. Then again by
(5.29) we have m)D2 = {0, 2} and m)D: = {2} for : ≠ 2. We choose signs so that the
set of signed marked leaves is {2+} in )D1, {2−, 0+} in )D2, and {2−} in )D: , : ≠ 1, 2.

Fig. 6 An illustration for the decomposition of subtrees with one marked leaf (top) or two marked
leaves (bottom).
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Case 2. m)D contains precisely two elements, say m)D = {0−, 1+}. Thenwe choose
a branch point 2 ∈ (0, 1) of ) such that it has the maximal height �) (2) among all
branch points that lie on (0, 1). The existence of 2 is guaranteed by Lemma 3.7 and
Lemma 3.9. Note that (0, 1) ⊆ )D , because )D is a subtree of ) .

The points 0 and 1 lie in different branches of 2 in )D as follows from
Lemma 3.2 (iii). We choose the labels for the children of )D so that 0 ∈ )D1
and 1 ∈ )D2. Then by (5.29) we have m)D1 = {0, 2}, m)D2 = {2, 1}, and m)D: = {2},
: ≠ 1, 2. We choose signs so that the set of marked leaves is {0−, 2+} in)D1, {2−, 1+}
in )D2, and {2−}, in )D: for : ≠ 1, 2.

The most important points of our contruction can be summarized as follows.
Summary: )D: is a subtree of ) such that m)D: consists of one or two points.

These points are branch points of ) and leaves of )D: . Moreover, the signs of the
points in each set m)D: are chosen so that these signs differ if m)D: contains two
points. If 2 is the branch point used to decompose )D , then 2 is a marked leaf in all
the children of )D , namely the marked leaf 2+ in )D1 and 2− in )D: for : ≠ 1.

If )D has a marked leaf ?−, then ? is passed to the child )D1 with the same sign.
Similarly, a marked leaf ?+ of )D is passed to )D2 with the same sign. So marked
leaves are passed to a unique child and they retain their signs.

Since Cases 1 and 2 exhaust all possibilities, this completes the inductive step in
the construction of the trees on level = + 1 and their marked leaves. So we obtain
subtrees )D of ) for all D ∈ ,∗. Here it is convenient to set )∅ = ) with an empty set
of marked leaves.

If one applies our procedure to choose signs for the points in mTD for the subtrees
TD of the CSST defined in Section 4, then one can recover these signs directly by a
simple rule without going through the recursive process. Namely, by Lemma 4.6 we
have mTD ⊆ { 5D (−1), 5 (1)}. Then it is not hard to see that for ? ∈ mTD , we have
sgn(TD , ?) = + if ? = 5D (1) and sgn(TD , ?) = − if ? = 5D (−1).

We now summarize some facts about the subtrees )D of ) that we just defined.

Lemma 5.1. The following statements are true:

(i) ) =
⋃
D∈,=

)D for each = ∈ N.

(ii) If = ∈ N, D, E ∈ ,=, D ≠ E, and )D ∩ )E ≠ ∅, then )D ∩ )E consists of precisely
one point ? ∈ ) , which is a marked leaf in both )D and )E .

(iii) For = ∈ N, D ∈ ,=, and E ∈ ,=+1, we have )E ⊆ )D if and only if D = E: for
some : ∈ A.

(iv) For each D ∈ ,∗ let 2D be the branch point chosen in the decomposition of )D
into children. Then 2D ≠ 2E for all D, E ∈ ,∗ with D ≠ E.

Proof. (i) This immediately follows from (5.28) and induction on =.
(ii) We prove this by induction on =. By choice of the subtrees ): for : ∈ A = ,1

and their marked leaves this is clear for = = 1.
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Suppose the statement is true for all distinct words of length = − 1, where = ≥ 2.
Now consider two words D, E ∈ ,= of length = with D ≠ E and )D ∩ )E ≠ ∅. Then
D = D′: and E = E′ℓ, where D′, E′ ∈ ,=−1 and :, ℓ ∈ A.

If D′ = E′, then )D and )E are two of the branches obtained from )D′ and a suitable
branch point 2 ∈ )D′ . In this case, {2} = )D ∩ )E and 2 is a marked leaf in both )D
and )E .

In the other case, D′ ≠ E′. Then )D′ ∩)E′ ≠ ∅, because )D ∩)E ≠ ∅, )D ⊆ )D′ , and
)E ⊆ )E′ . By induction hypothesis, )D′ ∩)E′ consists of precisely one point ?, which
is a marked leaf in both )D′ and )E′ . Then necessarily )D ∩)E = {?}. Moreover, ? is
a marked leaf in both )D and )E , because marked leaves are passed to children. The
statement follows.

(iii) Let = ∈ N and D ∈ ,=. Then we have )D: ⊆ )D for each : ∈ A by our
construction. Conversely, suppose )E ⊆ )D , where E = E′: ∈ ,=+1 with E′ ∈ ,=
and : ∈ A. Then )E′ ∩ )D ⊇ )E contains more than one point. By (iii) this implies
that E′ = D. The statement follows.

(iv) If D ∈ ,=, = ∈ N0, then by construction 2D ∈ )D does not lie in the set m)D
of marked leaves of )D . By (ii) this implies that 2D ∉ )F for each F ∈ ,=, F ≠ D.
It follows that the points 2D , D ∈ ,=, are all distinct, and none of them is contained
in the union of sets m)D , D ∈ ,=. By our construction this union is equal to the set
of all points 2E , where E ∈ ,∗ is a word of length ≤ = − 1. This shows that the
branch points 2D , D ∈ ,=, used to define the subtrees of level = + 1 are all distinct
and distinct from any of the previously chosen branch points for levels ≤ =. The
statement follows from this. ut

Lemma 5.2. We have lim
=→∞

sup{diam()D) : D ∈ ,=} = 0.

Proof. Let X= B sup{diam()D) : D ∈ ,=} for = ∈ N. It is clear that the sequence
{X=} is non-increasing. To show that X= → 0 as =→∞, we argue by contradiction.
Then there exists X > 0 such that X= ≥ X for all = ∈ N. This means that for each
= ∈ N there exists D ∈ ,= with

diam()D) ≥ X. (5.30)

We now use (5.30) to find an infinite word F = F1F2 . . . ∈ , such that

diam()F1...F= ) ≥ X (5.31)

for all = ∈ N. The word F is constructed inductively as follows. One of the finitely
many letters : ∈ A must have the property that there are arbitrarily long words D
starting with : such that (5.30) is true.

We define F1 = : . Note that then diam()F1 ) ≥ X. T By choice of F1, one of
the letters ℓ ∈ A must have the property that there are arbitrarily long words D
starting with F1ℓ such that (5.30) is true. We define F2 = ℓ. Then diam()F1F2 ) ≥ X.
Continuing in this manner, we can find F = F1F2 . . . ∈ , satisfying (5.31).

Obviously,
)F1 ⊇ )F1F2 ⊇ )F1F2F3 ⊇ . . . .
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So the subtrees  = = )F1...F= , = ∈ N, of ) form a descending family of compact sets
with diam( =) ≥ X. This implies that

 =
⋂
=∈N

 =

is a non-empty compact subset of ) with diam( ) ≥ X.
In particular, we can choose ?, @ ∈  with ? ≠ @. Then ?, @ ∈  = for each = ∈ N.

Since  = is a subtree of ) , we then have [?, @] ⊆  =. Moreover, by Lemma 3.7
there exists a branch point G of ) contained in (?, @) ⊆  =. By Lemma 3.2 (iii) the
points ? and @ lie in different components of  =\{G}. In particular, for each = ∈ N
the point G is not a leaf of  = and hence distinct from the marked leaves of  =.

By Lemma 3.9 there are only finitely many branch points H1, . . . , HB of ) distinct
from G with �) (H 9 ) ≥ �) (G) > 0 for 9 = 1, . . . , B. This implies that at most B of the
trees  = are leaf-tiles, i.e., have only one marked leaf. Indeed, if  = an leaf-tile, then
it is decomposed into branches by use of a branch point 2 ∈  =\m = with the largest
height �) (2). The point 2 is then a marked leaf in each of the children of  = and in
particular in  =+1. Since the branch point G ∈  = is distinct from the marked leaves
of  = and  =+1, we have G ∈  =\m = and G ≠ 2. So G was not chosen to decompose
 =, and we must have �) (2) ≥ �) (G). Since the branch points 2 that appear from
leaf-tiles at different levels = are all distinct as follows from Lemma 5.1 (iv), we can
have at most B leaf-tiles in the sequence  =, = ∈ N. This implies that there exists
# ∈ N such that  = for = ≥ # is an arc-tile and so has precisely two marked leaves.

Let 0, 1 ∈  # with 0 ≠ 1 be the marked leaves of  # . As we travel from G along
[G, 0] ⊆  # towards 0, there is a first point G ′ on [0, 1]. Then G ′ ≠ 0. Otherwise,
G ′ = 0. Then [G, 0] and [0, 1] have only the point 0 in common, which implies that
[G, 0] ∪ [0, 1] is an arc equal to [G, 1]. Then 0 ∈ (G, 1), which by Lemma 3.2 (iii)
implies that G, 1 ∈  # lie in different components of  # \{0}. This contradicts the
fact that 0 is a leaf of  # and so  # \{0} has only one component. Similarly, one
can show that G ′ ≠ 1.

The point G ′ is a branch point of ) . This is clear if G ′ = G. If G ′ ≠ G, this follows
fromLemma 3.6, because 0, 1, G ≠ G ′ and the arcs [0, G ′), [1, G ′), [G, G ′) are pairwise
disjoint.

The tree  #+1 is a branch of  # obtained from a branch point 2 ∈ (0, 1) of
) with largest height �) (2) among all branch points on (0, 1). We have G ′ ≠ 2.
Otherwise, G ′ = 2. Then G ≠ G ′, because G ′ = 2 is a marked leaf of  #+1 and G is
distinct from all the marked leaves in any of the sets  =. This implies that the points
0, 1, G lie in different components of  # \{G ′} and hence in different branches of G ′
in  # . Since 0 and 1 are the marked leaves of  # , the branches containing 0 and 1
are arc-tiles and all other branches of G ′ = 2 in  # are leaf-tiles. The unique branch
of G ′ in  # containing G, which is equal to  #+1, must be a leaf-tile by the way we
decomposed ) . This is impossible by choice of # and so indeed G ′ ≠ 2. Note that
this implies �) (2) ≥ �) (G ′).

Since G ′ ≠ 2, 2 ∈ (0, 1), and [G, G ′) ∩ [0, 1] = ∅, we have [G, G ′] ⊆  # \{2}.
So G ′ lies in the same branch of 2 in  # as G, which is  #+1. Moreover, depending
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on whether 2 ∈ (0, 1) lies on the right or left of G ′ ∈ (0, 1), we have G ′ ∈ (0, 2) or
G ′ ∈ (2, 1). In the first case, [0, 2] ⊆  #+1 and 0 and 2 are the marked leaves of
 #+1. In the second case, [2, 1] ⊆  #+1 and 2 and 1 are the marked leaves of  #+1.
So in both cases, if 0′ and 1′ are the marked leaves of  #+1, then G ′ ∈ (0′, 1′),
[G, G ′] ⊆  #+1, and [G, G ′) ∩ [0′, 1′] = ∅.

These facts allow us to repeat the argument for  #+1 instead of  # . Again  #+1
is decomposed into branches by choice of a branch point 2′ ∈ (0′, 1′). We must have
2′ ≠ G ′, because otherwise we again obtain a contradiction to the fact that  #+2 is
not a leaf-tile. This implies that �) (2′) ≥ �) (G ′). Continuing in this manner, we
obtain an infinite sequence of branch points 2, 2′, . . . . By construction these branch
points are all distinct and have a height ≥ �) (G ′). This is impossible by Lemma 3.9.
We obtain a contradiction that establishes the statement. ut

The previous argument shows that each branch point G of ) will eventually be
chosen as a branch point in the decomposition of ) into the subtrees )D , D ∈ ,∗.
Indeed, otherwise G is distinct from all the marked leaves of any of the subtrees )D ,
D ∈ ,∗. This in turn implies that there exists a unique infinite word F = F1F2 . . . ∈
, such that G ∈  = B )F1...F= for = ∈ N. From this one obtains a contradiction as
in the last part of the proof of Lemma 5.2.

Lemma 5.3. Let < ∈ N, < ≥ 3, and suppose ) and ( are trees in T<. Assume that
subtrees )D of ) and (D of ( with signed marked leaves have been defined for D ∈ ,∗
by the procedure described above. Then the following statements are true:

(i) Let = ∈ N, D ∈ ,=, and E ∈ ,=+1. Then )E ⊆ )D if and only if (E ⊆ (D .
(ii)For = ∈ N and D, E ∈ ,= with D ≠ E we have)D∩)E ≠ ∅ if and only if (D∩(E ≠ ∅.

Moreover, if these intersections are non-empty, then they are singleton sets, say
{?} = )D ∩)E and { ?̃} = (D ∩ (E . The point ? is a signed marked leaf in )D and
)E , the point ?̃ is a signed marked leaf in (D and (E , sgn(?, )D) = sgn( ?̃, (D),
and sgn(?, )E ) = sgn( ?̃, (E ).

In (ii) we are actually only interested in the statement that )D ∩)E ≠ ∅ if and only
if (D ∩ (E ≠ ∅. The additional claim in (ii) will help us to prove this statement by an
induction argument.

Proof. (i) This follows from Lemma 5.1 (iii) applied to the decompositions of ) and
(. Indeed, we have )E ⊆ )D if and only if E = D: for some : ∈ A if and only if
(E ⊆ (D .

(ii) We prove this by induction on = ∈ N. The case = = 1 is clear by how the
decompositions were chosen.

Suppose the claim is true for words of length = − 1, where = ≥ 2. Now consider
two words D, E ∈ ,= of length = with D ≠ E. Then D = D′: and E = E′ℓ ∈ ,=,
where D′, E′ ∈ ,=−1 and :, ℓ ∈ A. Since the claim is symmetric in ) and (, we may
assume that )D ∩ )E ≠ ∅.

If D′ = E′, then )D and )E are two of the branches obtained from )D′ and a branch
point 2 ∈ )D′ . In this case, )D ∩ )E = {2} and 2 is a marked leaf in both )D and
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)E . Similarly, (D and (E are two of the branches obtained from (D′ and a branch
point 2̃ ∈ (D′ . We have (D ∩ (E = {2̃} and 2̃ is a marked leaf in both (D and (E .
Moreover, 2 has the same sign in )D as 2̃ in (D . Indeed, by the choice of labeling in
the decomposition, this sign is + if : = 1 and − otherwise. Similarly, 2 has the same
sign in )E as 2̃ in (E . This shows that the statement is true in this case.

In the other case, D′ ≠ E′. Then )D′ ∩ )E′ ≠ ∅, because )D ∩ )E ≠ ∅, )D ⊆ )D′ ,
and )E ⊆ )E′ . Then by induction hypothesis, )D′ ∩)E′ consists of precisely one point
? that is a marked leaf in both )D′ and )E′ . The set (D′ ∩ (E′ consists of one point
?̃ that is a marked leaf in (D′ and (E′ . Moreover, we have sgn(?, )D′) = sgn( ?̃, (D′)
and sgn(?, )E′) = sgn( ?̃, (E′). Since ∅ ≠ )D ∩ )E ⊆ )D′ ∩ )E′ = {?}, we then have
)D ∩ )E = {?}.

If sgn(?, )D′) = sgn( ?̃, (D′) = −, then D = D′1, because ? ∈ )D . Hence ?̃ ∈ (D′1 =
(D , because the marked leaf ?̃ of (D′ with sgn( ?̃, (D′) = − is passed to the child (D′1.
If sgn(?, )D′) = sgn( ?̃, (D′) = +, then D = D′2 and ?̃ ∈ (D′2 = (D .

Similarly, if sgn(?, )E′) = sgn( ?̃, (E′) = −, then E = E′1 and if sgn(?, )E′) =
sgn(?, (E′) = +, then E = E′2, because ? ∈ )E . In both cases, ?̃ ∈ (E .

In each of these cases, ? is a marked leaf in )D and )E , and ?̃ is a marked leaf in
(D and (E . In particular, { ?̃} ⊆ (D ∩ (E ⊆ (D′ ∩ (E′ = { ?̃} and so (D ∩ (E = { ?̃}.
So both )D ∩ )E = {?} and (D ∩ (E = { ?̃} are singleton sets consisting of marked
leaves as claimed. Since signed marked leaves are passed to children with the same
sign, we have

sgn(?, )D) = sgn(?, )D′) = sgn( ?̃, (D′) = sgn( ?̃, (D).

Similarly, we conclude that sgn(?, )E ) = sgn( ?̃, (E ). The statement follows. ut

We are now ready to prove Theorem 1.8, and Theorem 1.7 as an immediate
consequence.

Proof of Theorem 1.8. Let < be as in the statement, and consider arbitrary trees )
and ( in the class T<. For each = ∈ Nwe consider the decompositions) =

⋃
D∈,= )D

and ( =
⋃
D∈,= (D as defined earlier in this section. Here of course,,= = ,= (A),

where A = {1, 2, . . . , <}.
We want to show that decompositions of ) and ( for different levels = ∈ N have

the properties in Proposition 2.1. In this proposition the index 8 for fixed level =
corresponds to the words D ∈ ,=.

The spaces ) and ( are trees and hence compact. The sets )D and (D appearing in
their decompositions are subtrees and hence non-empty and compact. Conditions (i),
(ii), and (iii) in Proposition 2.1 follow from Lemma 5.1 (iii), (5.28), and Lemma 5.2,
respectively. Finally, (2.3) and (2.4) follow from Lemma 5.3 (i) and (ii).

Proposition 2.1 implies ) and ( are homeomorphic as desired. ut

Proof of Theorem 1.7.Aswe have seen in Section 4, the CSSTT is a metric tree with
the properties (i) and (ii) as in the statement (see Proposition 1.4 and Proposition 1.5).
In particular,T belongs to the classT3. Since these properties (i) and (ii) are obviously
invariant under homeomorphisms, every metric tree ) homeomorphic to T has these
properties.
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Conversely, suppose that ) is a metric tree with properties (i) and (ii). Then
) belongs to the class T3. So Theorem 1.8 for < = 3 implies that ) and T are
homeomorphic. ut

The method of proof for Theorem 1.8 can be used to a establish a slightly stronger
result for < = 3.

Theorem 5.4. Let ) and ( be trees in T3. Suppose ?1, ?2, ?3 ∈ ) are three distinct
leaves of ) , and @1, @2, @3 ∈ ( are three distinct leaves of (. Then there exists a
homeomorphism 5 : ) → ( such that 5 (?: ) = @: for : = 1, 2, 3.

Note that −1, 1 ∈ T are leaves of T as follows from Lemma 4.4 (ii). Moreover,
8 ∈ T is also a leaf of T, because the set

T \ {8} = T1 ∪ T2 ∪ (T3 \ {8}) = T1 ∪ T2 ∪ 63 (T \ {1})

is connected. Hence T, and so by Theorem 1.8 every tree in T3, has at least three
leaves (actually infinitely many). If we apply Theorem 5.4 to ( = T, then we see
that if ) is a tree in T3 with three distinct leaves ?1, ?2, ?3, then there exists a
homeomorphism 5 : ) → T such that 5 (?1) = −1, 5 (?2) = 1, and 5 (?3) = 8.

Proof of Theorem 5.4. We will employ a slight modification of our decomposition
and coding procedure. The underlying alphabet corresponds to the case < = 3, and
so A = {1, 2, 3}. We describe this for the tree ) . Essentially, one wants to use the
leaves ?1, ?2, ?3 of ) as additional marked leaves for any of the inductively defined
subtrees )D for = ∈ N and D ∈ ,= = ,= (A) if it contains any of these leaves. Here
?1 carries the sign −, while ?2 and ?3 carry the sign +.

Instead of starting the decomposition process with a branch point 2 ∈ ) of
maximal height, one chooses a branch point 2 so that the leaves ?1, ?2, ?3 lie in
distinct branches )1, )2, )3 of 2 in ) , respectively. To find such a branch point, one
travels from ?1 along [?1, ?2] until one first meets [?2, ?3] in a point 2. Then the
sets [?1, 2), [?2, 2), [?3, 2) are pairwise disjoint. For :, ℓ ∈ A with : ≠ ℓ the set
[?: , 2) ∪ {2} ∪ (2, ?ℓ] is an arc with endpoints ?: and ?ℓ , and so it must agree
with [?: , ?ℓ]. In particular, 2 ∈ [?: , ?ℓ]. Since each point ?: is a leaf, it easily
follows from Lemma 3.2 (iii) that 2 ≠ ?1, ?2, ?3. Indeed, if 2 = ?1 for example, then
2 = ?1 ∈ [?2, ?3] and so ?2 and ?3 would lie in different components of ) \ {?1}.
This is impossible, because ?1 is a leaf of ) and so ) \ {?1} is connected.

We conclude that the connected sets [?1, 2), [?2, 2), [?3, 2) are non-empty and
must lie in different branches )1, )2, )3 of 2. In particular, 2 is a branch point of ) .
We can choose the labels so that ?: ∈ ): for : = 1, 2, 3. The point 2 is a marked leaf
in each of theses branches with a sign chosen as before. With the additional signs
for the distinguished leaves, we then have the set of marked leaves {?−1 , 2

+} in )1,
{2−, ?+2} in )2, and {2−, ?+3} in )3.

We now continue inductively as before. If we have already constructed a subtree
)D for some = ∈ N and D ∈ ,= with one or two signed marked leaves, then we
decompose )D into three branches labeled )D1, )D2, )D3 by using a suitable branch
point 2 ∈ )D . Namely, if )D is a leaf-tile and has one marked leaf 0 ∈ )D , we choose
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a branch point 2 ∈ )D \ {0} with maximal height �) (2). If )D is an arc-tile with two
marked leaves {0, 1} ⊆ )D we choose a branch point 2 ∈ )D of maximal height on
(0, 1) ⊆ )D .

Marked leaves and their signs are assigned to the children )D1, )D2, )D3 of )D as
before. In particular, a marked leaf G− of )D is passed to )D1 with the same sign.
Similarly, a marked leaf G+ of )D is passed to )D2 with the same sign. If we continue
in this manner, we obtain subtrees )D with one or two signed marked leaves for all
levels = ∈ N and D ∈ ,=.

We apply the same procedure for the tree ( and its leaves @1, @2, @3. Then
Lemma 5.1, Lemma 5.2, and Lemma 5.3 are true (with almost identical proofs) for
the decompositions of ) and ( obtained in this way. The argument in the proof of
Theorem 1.8 based on Proposition 2.1 now guarantees the existence of a homeomor-
phism 5 : ) → ( such that

5 ()D) = (D for all = ∈ N and D ∈ ,=. (5.32)

In our construction ?1 ∈ )1 carries the sign − and is hence passed to )11 with the
same sign; so ?1 ∈ )11. Repeating this argument, we see the

?1 ∈ )1 ∩ )11 ∩ )111 ∩ . . . .

The latter nested intersection of compact sets cannot contain more than one point,
because by Lemma 5.3 the diameters of our subtrees )D , D ∈ ,=, approach 0
uniformly as =→∞. Thus, {?1} = )1 ∩)11 ∩)111 ∩ . . . . The same argument shows
that {@1} = (1 ∩ (11 ∩ (111 ∩ . . . , and so (5.32) implies that 5 (?1) = @1.

Similarly, the points ?2, ?3, @2, @3 carry the sign + in their respective trees. This
leads to

{?2} = )2 ∩ )22 ∩ )222 ∩ . . . , {@2} = (2 ∩ (22 ∩ (222 ∩ . . . ,
{?3} = )3 ∩ )32 ∩ )322 ∩ . . . , {@3} = (3 ∩ (32 ∩ (322 ∩ . . . ,

which by (5.32) gives 5 (?2) = @2 and 5 (?3) = @3.
We have shown the existence of a homeomorphism 5 : ) → ( with the desired

normalization. ut
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p-hyperbolicity of ends and families of paths in
metric spaces

Nageswari Shanmugalingam

Abstract The purpose of this note is to give an expository survey on the notions
of ?-parabolicity and ?-hyperbolicity of metric measure spaces of locally bounded
geometry. These notions are extensions of the notions of recurrence and transience
to non-linear operators such as the ?-Laplacian (with the standard Laplacian or
the 2-Laplacian associated with recurrence and transience behaviors). We discuss
characterizations of these notions in terms of potential theory and in terms of moduli
of families of paths in the metric space.

Key words: recurrence, ?-hyperbolic, singular function, modulus of curve families,
ends
Mathematics Subject Classifications (2010). Primary: 31E05; Secondary: 43A85,
65M80

1 Introduction

It is now a well-known fact that Brownian motion is recurrent in R and R2 but is
transient in R= for = ≥ 3. In other words, a Brownian motion, starting from a closed
ball inR=, will almost surely return infinitely often to that ball when = ≤ 2 but almost
surely will eventually not return to the ball when = ≥ 3. This dichotomous behavior
of recurrence versus transience can be seen in more general Riemannian manifolds,
leading to a classification of manifolds as parabolic (Brownian motion is recurrent,
returning infinitely often to a ball) or hyperbolic (where the Brownian motion is
transient). The works [29, 11] demonstrated that the recurrence or transience of
the Brownian motion is intimately connected with the existence of global singular
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functions, also known as Green’s functions. A manifold is transient if and only if it
supports a non-negative singular function.

During the past twenty years the notion of first order calculus has been developed
for more general non-smooth metric measure spaces where the metric space is
complete and the measure is a locally doubling Radon measure supporting a local
Poincaré type inequality. For such spaces, it is not clear what the Brownianmotion is,
but thanks to Kakutani’s theorem, we know that Brownian motion on a Riemannian
manifold is a probabilistic approach to harmonic functions and the Laplace-Beltrami
operator on the manifold. Physics and the theory of Markovian process as described
in [10] also back this up, with the link provided through the heat equation. Using
this as a motivation, we can study recurrence or transience of a metric measure
space in terms of the existence of a singular function associated with the so-called
2-harmonicity.

Indeed, the recurrence and transience properties of the space seem to be associated
with a “large scale" dimension of the underlying space. To explore the effect of
the geometry of a space on curves in the space, we also move away from the
realm of linear operators (Laplace-Beltrami operators) to non-linear ?-Laplace type
operators. In his dissertation [16], Holopainen gave a definition of ?-parabolicity
and ?-hyperbolicity in Riemannian manifolds and their connections to ?-harmonic
functions. In this notewewill describe some of the connections between the geometry
of curves in the setting ofmetricmeasure spaces, which should be thought of as a non-
linear analog of recurrence versus transience, and ?-harmonic functions in the space.
Metric measure spaces that correspond to transient spaces for ?-harmonic functions
are said to be ?-hyperbolic while those that are not are said to be ?-parabolic.

2 Background notions

The context of this note is that of metric measure spaces that need not be smooth
(Riemannian). Here (-, 3, `) denotes a metric measure space with the measure `
assumed to be a Radon measure such that balls have positive and finite measure. In
this section we will give a brief account of the basic notions used in the study of
parabolicity versus hyperbolicity of the space in terms of first order analysis. For
details on these notions, we recommend [15] and the references therein.

To understand ?-parabolicity (recurrence) and ?-hyperbolicity (transience), we
need to have a concept of a “size" of families of curves in - . To this end, let Γ be a
collection of curves in - , and we set A(Γ) to be the collection of all non-negative
Borel measurable functions d on - such that for each locally rectifiable path W ∈ Γ
we have ∫

W

d 3B ≥ 1.

Here a path is locally rectifiable if it maps an interval � ⊂ R continuously into - and
for each compact subinterval � ⊂ � we have that W |� has finite length. An excellent
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introduction to the notion of path integrals in metric setting can be found in [15,
Chapter 5], [1, Chapters 4, 6] and [13, Chapter 7].

Definition 2.1. Given 1 ≤ ? < ∞, the ?-modulus of the collection Γ is the number

Mod? (Γ) = inf
d∈A(Γ)

∫
-

d? 3`.

Observe that if Γ consists only of paths that are not locally rectifiable, then by
definitionMod? (Γ) = 0, whereas if Γ includes a constant curve, thenMod? (Γ) = ∞.
It is not too difficult to verify that Mod? is an outer measure on the collection of all
paths, and that if Γ has even one constant path then Mod? (Γ) = ∞. It is a result of
Fuglede [9] that the only sets that are Mod?-measurable are those of zero ?-modulus
and their complements. In this note we only consider Mod? to the extent of verifying
whether a family Γ satisfies Mod? (Γ) > 0 or not. To this end, the following result
of Koskela and MacManus [23] is useful.

Lemma 2.2. Let Γ be a family of paths in - , and 1 < ? < ∞. Then Mod? (Γ) = 0
if and only if there is a nonnegative Borel function d ∈ ! ? (-) such that for each
W ∈ Γ, ∫

W

d 3B = ∞.

Definition 2.3. Given two sets �, � ⊂ - , by Γ(�, �) we mean the collection of all
curves in - with one end point in � and the other in �.

The following definition is based on the dissertation [16].

Definition 2.4. We say that - is ?-hyperbolic if there is a closed ball � = �(G0, ') ⊂
- and a strictly monotone increasing sequence of real numbers '= > ' with
lim= '= = ∞ and

lim
=

Mod? (Γ(�(G0, '), - \ �(G0, '=)) > 0.

We say that - is ?-parabolic if it is not ?-hyperbolic.

There are now at least five available notions of Sobolev spaces in the metric
setting: Poincaré-Sobolev, Korevaar-Schoen, Hajłasz-Sobolev, Newton-Sobolev, and
Dirichlet domain spaces, see for example [15]. In this paper we will focus on the
notion of Newton-Sobolev spaces as they are the closest aligned to the study of paths
in a metric space, though for the case ? = 2 one can replace this with Dirichlet forms
and the correspondingDirichlet domains whenever they are available, by considering
the corresponding heat equation, see [11] for example.

Given a function 5 : - → R, we say that a non-negative Borel measurable
function 6 on - is an upper gradient of 5 if for each non-constant compact rectifiable
curve W : [0, 1] → - we have

| 5 (W(1)) − 5 (W(0)) | ≤
∫
W

6 3B.
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We say that 6 is a ?-weak upper gradient of 5 if the collection Γ of non-constant
compact rectifiable curves forwhich the above inequality fails satisfiesMod? (Γ) = 0.
With � ? ( 5 ) denoting the collection of all ?-weak upper gradients of 5 that also
belong to ! ? (-), we say that 5 ∈ #1, ? (-) if 5 ∈ ! ? (-) (that is, the function 5

belongs to an equivalence class in ! ? (-)) and � ? ( 5 ) is nonempty. The set � ? ( 5 )
is a convex lattice subset of ! ? (-), and by a result in [23], it is also closed in ! ? (-).
We set

‖ 5 ‖# 1, ? (- ) := ‖ 5 ‖!? (- ) + inf
6∈�? ( 5 )

‖6‖!? (- ) .

For 1 < ? < ∞, by the uniform convexity of ! ? (-) and the lattice property of
� ? ( 5 ) we know that there is a unique element 6 5 ∈ � ? ( 5 ) with the property that
for each 6 ∈ � ? ( 5 ), 6 5 ≤ 6 almost everywhere. Thus

‖ 5 ‖# 1, ? (- ) = ‖ 5 ‖!? (- ) + ‖6 5 ‖!? (- ) .

Equipped with the norm ‖ · ‖# 1, ? (- ) , the space #1, ? (-) is a Banach space, see
for example [26] and [15]. Classically, the measure of the set where two functions
disagree determines whether the two functions belong to the same equivalence class
in ! ? (-). In the setting of #1, ? (-) the notion of ?-capacity of a set plays this role,
and here the value of ? determines what sets are of zero ?-capacity. Given a set
� ⊂ - , we set

Capp (�) := inf
5

∫
-

[| 5 |? + 6?
5
]3`,

where the infimum is over all functions 5 ∈ #1, ? (-) such that 5 ≥ 1 on � . A
more pertinent notion related to parabolicity and hyperbolicity is that of relative
?-capacity.

Definition 2.5. Given two closed sets �, � ⊂ - such that � ∩ � is empty,

cap? (�, �) := inf
5

∫
-

6
?

5
3`,

where the infimum is over all functions 5 ∈ #1, ? (-) such that 5 ≥ 1 on � and
5 ≤ 0 on �.

There is a close connection between capp (�, �) and Mod? (Γ(�, �)). Indeed, if
d ∈ A(Γ(�, �)), then the function D defined by

D(H) = inf
WH

∫
WH

d3B

with infimum taken over all locally rectifiable curves in - with one endpoint H and
the other end point in � , is measurable (see for example [20]) and satisfies D = 0
on � and D ≥ 1 on �. If then - \ � is bounded, we would have D ∈ #1, ? (-) with
d ∈ � ? (D), and thus we would have

capp (�, �) ≤ Mod? (Γ(�, �)).
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Typically in this note � would be - \ �(G0, ') for some G0 ∈ - and ' > 0, and �
would be a compact subset of the ball �(G0, ').

Definition 2.6. We say that the measure ` is uniformly locally doubling on - if
there is a constant �� ≥ 1 and a scale 0 < '0 ≤ ∞ such that whenever G ∈ - and
0 < A < '0, we have

`(�(G, 2A)) = `({H ∈ - : 3 (G, H) < 2A}) ≤ ��`(�(G, A)).

We say that (-, 3, `) supports a uniformly local ?-Poincaré inequality if there are
constants � > 0, _ ≥ 1 and a scale 0 < '1 ≤ ∞ such that whenever G ∈ - ,
0 < A < '0, and 5 ∈ #1, ? (�(G, 2_A)), we have∫

� (G,A )
| 5 − 5� (G,A ) | 3` ≤ � A

(∫
� (G,_A )

6
?

5
3`

)1/?
.

Here
5� :=

∫
�

5 3` :=
1

`(�)

∫
�

5 3`.

It is known that if - is complete, ` is uniformly locally doubling, and (-, 3, `)
supports a uniformly local ?-Poincaré inequality, then for compact sets �, � ⊂ - ,

capp (�, �) = Mod? (Γ(�, �)). (2.1)

A proof of this can be obtained by adapting the proof found in [21] where it was
assumed that '0 = '1 = ∞. It follows immediately that capp (�, �) = capp (�, �),
even though this was not at all obvious merely from considering the definition of
capp (�, �).

Standing assumptions:We will assume in this note that 1 < ? < ∞, - is complete,
` is uniformly locally doubling, and (-, 3, `) supports a uniformly local ?-Poincaré
inequality.

3 Potential theoretic characterization of p-hyperbolicity via
p-singular functions

In this section we will discuss a Grigor’yan-type characterization of ?-hyperbolicity
in terms of existence of global singular functions. A ?-singular function is a non-
negative ?-superharmonic function D on - such that there is a point G0 ∈ - for
which D is ?-harmonic in - \ {G0}, D ∈ #1, ? (- \ �(G0, A)) for each A > 0, and
satisfies limH→G0 D(H) = ∞. As described in [11], a manifold - is transient (that
is, it is 2-hyperbolic) if and only if - supports a 2-singular function. In the setting
of manifolds, the dissertation [16] extends this result to the non-linear setting of all
1 < ? < ∞.
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Following [27], for a non-empty open set Ω ⊂ - and a function D on Ω, we say
that D is ?-harmonic in Ω if D ∈ #1, ?

;>2
(Ω) and for each open set + ⊂ Ω with + ⊂ Ω

compact and each E ∈ #1, ? (-) with E = 0 in - \+ we have∫
+

6
?
D 3` ≤

∫
+

6
?
D+E3`.

We say that D is ?-superharmonic in Ω if whenever + ⊂ Ω with + ⊂ Ω a compact
set and E ∈ #1, ? (-) is ?-harmonic in a neighborhood of + with E ≤ D on m+ , we
must have E ≤ D on + .

Definition 3.1. Let Ω be a nonempty open subset of - with - \ Ω nonempty and
G0 ∈ Ω. We say that a non-negative function D on - is a ?-singular function on Ω
with singularity at G0 if

1. D is ?-harmonic in Ω \ {G0},
2. limΩ\{G0 }3H→G0 D(H) = cap? ({G0}, - \Ω)1/(1−?) ,
3. D ∈ #1, ? (- \ �(G0, A)) for each A > 0, and D = 0 in - \Ω,
4. and finally,(

? − 1
?

)2(?−1)
(1 − 0)1−? ≤ cap? ({D ≥ 1}, {D > 0}) ≤ ?2 (1 − 0)1−?

whenever 0 ≤ 0 < 1 such that {D > 0} ⊂ �(G0, '0/2).

In the above definition, Condition 2 is equivalent to enforcing the condition
limΩ\{G0 }3H→G0 D(H) = ∞ if cap? ({G0}, - \ Ω) = 0 (which is the case for values of
? that are not larger than the dimension of the space). Thus the first three properties
would be satisfied by positive scalar multiples of a ?-singular function. The fourth
condition dictates the the condensers ({D ≥ 1}, {D > 0}) for 1 > 0, or more
specifically the value of Mod? (Γ({D ≥ 1}, {D ≤ 0}), in terms of (1 − 0)1−? .
Hence this condition narrows the candidates for ?-singular functions. Indeed, from
the arguments in [16], this fourth condition guarantees uniqueness of ?-singular
functions in the context of Riemannian manifolds and other spaces where there is
an Euler-Lagrange equation corresponding to the ?-energy minimization property.
A combination of the above second and fourth conditions guarantee then that the
?-Laplacian type operator, corresponding to the Euler-Lagrange equation, acts on
the ?-singular function to give the unit atomic measure XG0 supported at G0.

From [22] we know that functions that are ?-harmonic on an open set satisfy
local Hölder continuity and (if they are non-negative) a Harnack inequality. Namely,
we know that given a ?-harmonic function ℎ on a domain * ⊂ - and G ∈ *,
there are constants U,�ℎ > 0 such that if A > 0 with �(G, 2A) ⊂ * and whenever
I, F ∈ �(G, A) we have |ℎ(I) − ℎ(F) | ≤ �ℎ3 (I, F)UG ; this is the local Hölder
continuity ([22, Theorem 5.2]). Moreover, it is shown in [22, Corollary 7.3] that
there is a constant � > 0 so that if ℎ is ?-harmonic and non-negative on * and
�(G, 2A) ⊂ *, then sup� (G,A ) ℎ ≤ � inf� (G,A ) ℎ. Using this Harnack inequality for
non-negative ?-harmonic functions in Ω \ {G0}, it is shown in [19] that if Ω is a
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relatively compact subset of - , then for each G0 ∈ Ω we always have a ?-singular
function onΩwith singularity at G0. Therefore the non-trivial aspect of the existence
of singular functions is when Ω is unbounded.

Definition 3.2. A function D on - is said to be a ?-singular function on - with
singularity at G0 ∈ - if

1. D is ?-harmonic in - \ {G0} with D > 0 there,
2. there is a sequence of bounded open sets Ω 9 ⊂ - with
3. Ω 9 ⊂ Ω 9+1 and - =

⋃
9 Ω 9 and A0 > 0 such that for 0 < A < A0 and G ∈ - with

3 (G, G0) = A , lim-\{G0 }3H→G0 D(H) ' lim 9 cap? (�(G0, A), - \Ω 9 )1/(1−?) ,
4. D ∈ #1, ?

;>2
(- \ {G0}),

5. and finally,(
? − 1
?

)2(?−1)
(1 − 0)1−? ≤ cap? ({D ≥ 1}, {D > 0}) ≤ ?2 (1 − 0)1−?

whenever 0 ≤ 0 < 1 ≤ lim 9 cap? ({G0}, - \Ω 9 )1/(1−?) with 1 sufficiently large.

Note that the notation adopted in [19] is slightly different from that here; there
the relative capacity cap? (�, �) is computed with respect to functions D ∈ #1, ? (-)
with D = 0 in - \ � and D ≥ 1 on � , with � ⊂ �. Hence to interpret the notation
of [19] here, we should substitute the second component of cap? (�,Ω), namely Ω
there, with - \ Ω in this current paper. In the setting of metric measure spaces, the
following theorem was established in [19, Theorem 3.14].

Theorem 3.3. (-, 3, `) is ?-hyperbolic if and only if there is a point G0 ∈ - and a
?-singular function on - with singularity at G0. If (-, 3, `) is ?-hyperbolic, then for
every G0 ∈ - there is a ?-singular function with singularity at G0.

The idea for the proof is simple, though the details are cumbersome; we refer the
interested reader to [19] for the details, and merely give a sketch of the proof now.

Proof (Sketch). Suppose first that - is ?-hyperbolic; then there is some G0 ∈ - ,
' > 0, and a strictly monotone increasing sequence of positive real numbers '=,
= ∈ N, with '1 > ', such that

lim
=

Mod? (Γ(�(G0, '), - \ �(G0, '=)) > 0.

Since each curve in Γ(�(G0, '), - \ �(G0, '=+1) has a subcurve that belongs to the
family Γ(�(G0, '), - \ �(G0, '=), it follows that

Mod? (Γ(�(G0, '), - \ �(G0, '=+1)) ≤ Mod? (Γ(�(G0, '), - \ �(G0, '=)),

and so the above limit is well-defined. Then by (2.1) we know that

0 < lim
=

capp (- \ �(G0, '=), �(G0, ')) ≤ capp (- \ �(G0, '1), �(G0, ')) < ∞.
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For each = let D= be a ?-singular function in �(G0, '=) with singularity at G0; Thanks
to the uniformly local version of Harnack’s inequality and the definition of ?-singular
functions, for each = ∈ N the sequence D<, < ≥ =, is locally uniformly bounded in
�(G0, '=) \ {G0}. A stability result for ?-harmonic functions (see [28]) then gives us
a subsequence of D<, and a function D∞, such that D< converges locally uniformly
in - \ {G0} to D∞ with D∞ a ?-harmonic function on - \ {G0}. A direct argument
would show that D∞ is a ?-singular function on - with singularity at G0.

Now suppose that - supports a ?-singular function D with singularity at some
G0 ∈ - . Then for sufficiently small A > 0 and a nested sequence of open setsΩ 9 with
- =

⋃
9 Ω 9 such that

D ' lim
9
capp (- \Ω 9 , �(G0, A))1/(1−?)

on the sphere ((G0, A) = {H ∈ - : 3 (G0, H) = A}. Thus

lim
9
capp (- \Ω 9 , �(G0, A)) > 0.

By passing to a subsequence if necessary, we may assume that ' 9 := dist(G0, - \Ω 9 )
is a strictly monotone increasing sequence; as - =

⋃
9 Ω 9 , it follows that lim 9 ' 9 =

∞, and so

capp (- \ �(G0, ' 9 ), �(G0, A)) ≥ capp (- \Ω 9 , �(G0, A)).

Hence we now have

lim
9
capp (- \ �(G0, ' 9 ), �(G0, A)) > 0,

that is, - is ?-hyperbolic. �

Note that here we require the singular functions to be non-negative. Reverting
back to the setting of Euclidean spaces R=, we know that R= supports ?-singular
functions for 1 < ? < =, but does not support a ?-singular function for ? = =; in the
case of ? = = we have Green’s functions, which are functions D that are ?-harmonic
in R= \ {G0}, limH→G0 D(H) = ∞, and Δ=D = XG0 ; however, in this case D is not
non-negative, and indeed we have that limH→∞ D(H) = −∞. For more on singular
functions and ?-parabolicity, see for example [2, 3, 11, 16, 17].

4 p-hyperbolicity and p-modulus of a family of curves
connecting a ball to ∞

In the setting of manifolds and with ? = 2, we know from [11] that a manifold " is
2-parabolic if and only if the (Brownian) probability measure of the collection of all
Brownian paths W in" that eventually never return to a given ball in" is zero; that is,
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if � is a ball in " and Γ is the collection of all Brownian paths W : [0,∞) → " such
that W(C) = G0 and W(C) ∉ � for all C ≥ C� ∈ [0,∞), then P(Γ) = 0. In the non-linear
setting of ? ≠ 2, and even when ? = 2 but in the setting of metric measure spaces
where the upper gradient structure does not come from an inner product structure on
the space, the connection to Brownian motion is more tenuous. However, there is a
connection between ?-parabolicity and ?-modulus of families of curves connecting
� to∞; the focus of this section is to explore this idea further.

From Definition 2.4, a metric measure space - is ?-hyperbolic if there is a ball
� = �(G0, '0) and a positive number g > 0 such that whenever ' > '0, the ?-
modulus of the collection of all paths connecting � to - \ �(G0, ') is at least g. Let
Γ(') denote this collection of paths. Set Γ :=

⋂
'>0 Γ('). Then Γ consists of all

paths that have one end point in � and leave each bounded subset of - . Moreover,
for '0 < ' < ) we have Γ()) ⊂ Γ('), and so the family (Γ('))'>'0 is a decreasing
sequence of families of paths. However, in general it is not true that if Γ=, = ∈ N, is
a decreasing sequence of families of curves, then lim=Mod? (Γ=) = Mod? (

⋂
= Γ=).

However, we will see in this section that we can still conclude that Mod? (Γ) > 0.
As far as I know, this fact is not proven in currently existing literature on analysis on
metric spaces, we provide a complete proof of this here. Note that this result is new
even in the Euclidean setting. We first need the following lemma.

Lemma 4.1. There is a non-negative Borel measurable function ℎ ∈ ! ? (-) such
that for each G0 ∈ - and ' > 0,

inf
� (G0 ,')

ℎ := V' > 0.

Proof. We fix G0 ∈ - and '0 > 0, and set

ℎ :=
∑
:∈N

1
2: `(�(G0, (: + 2)'0) \ �(G0, :'0))1/?

j
� (G0 , (:+2)'0)\� (G0 ,:'0) .

Then ℎ is lower semicontinuous, and satisfies the desired requirements. �

Now we are ready to prove the main result of this section.

Theorem 4.2. Let � be a ball in - and let Γ be the collection of all paths W :
[0,∞) → - such that W(0) ∈ � and for each ' > 0 there is some CW,' > 0 such
that W(C) ∉ �(G0, ') whenever C > CW,'. Then - is ?-hyperbolic if and only if
Mod? (Γ) > 0.

Proof. Suppose first that - is ?-hyperbolic. Then

lim
'→∞

Mod? (Γ(')) =: g > 0. (4.2)

Suppose that with Γ =
⋂
'>'0 Γ(') satisfies Mod? (Γ) = 0. Then we know from

Fuglede’s theorem (see the discussion following Definition 2.1) that there is a non-
negative Borel function d ∈ ! ? (-) such that

∫
W
d 3B = ∞ for each locally rectifiable

path W ∈ Γ. An application of the Vitali-Carathéodory theorem allows us to assume
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that d is also lower semicontinuous. Moreover, by replacing d with max{d, ℎ} with
ℎ as in Lemma 4.1, we may also assume that for each ' > 0,

inf
� (G0 ,')

d := V' > 0.

Scaling d by a positive constant if necessary, we can also assume that∫
-

d? 3` ≤ g/2.

Then by (4.2) and by the fact that ' ↦→ Mod? (Γ(')) is monotone decreasing, we
know that d ∉ A(Γ(')) for each ' > '0. Thus, for each positive integer = ≥ 2,
there is a rectifiable curve W= ∈ Γ(='0) such that

∫
W=
d3B < 1.

For each positive integer = ≥ 2 and each positive integer : ≥ =, we now have that

ℓ(W: ∩ �(G0, ='0)) ≤
1
V='0

∫
W=

d 3B <
1
V='0

< ∞.

It follows that the sequence W=, = ∈ N, of paths in - (using arc-length parametriza-
tion) is locally equicontinuous and locally equibounded. Given that the metric space
- is complete and doubling, it follows that - is proper (that is, closed and bounded
subsets of - are compact, see for example [13]). Therefore we can invoke the Arzelà-
Ascoli theorem and a Cantor diagonalization argument to obtain a subsequence of
paths, denoted W= 9 , 9 ∈ N, and and a locally rectifiable path W with one end point in
� = �(G0, '0), such that W= 9 → W locally uniformly in [0,∞). Recall that d is lower
semicontinuous. Hence an adaptation of the argument found in [13, Page 13–14], we
have ∫

W

d 3B ≤ lim inf
:

∫
W:

d 3B ≤ 1.

On the other hand, as W= ∈ Γ(='0), it follows that W ∈ Γ(:'0) for each positive
integer : ≥ 2; whence we have that W ∈ Γ. This violates our choice of d as a function
in ! ? (-) such that for each W̃ ∈ Γ we have

∫
W̃
d 3B = ∞. We can therefore conclude

that we must have Mod? (Γ) > 0 as desired.
Finally, if Mod? (Γ) > 0, then for each ' > '0 we must have

Mod? (Γ(')) ≥ Mod? (Γ) > 0,

and therefore - is ?-hyperbolic. This concludes the proof of the theorem. �

Note that the outer measure Mod? , on the family of all paths in - , sees only
locally rectifiable paths. Hence ?-hyperbolicity of the metric measure space - (or
a Riemannian manifold ") tells us that there is a plenitude of locally rectifiable
curves W in - beginning from a given ball � and eventually leaving every bounded
subset of - . The key here is that these curves are locally rectifiable. In the event
that ? = 2 and we are in the setting of Riemannian manifolds " , this perspective is
dual to the perspective of Brownian paths which are almost surely not even locally
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rectifiable (though they are almost surely locally Hölder continuous). It would be
interesting to know whether there is an object analogous to Brownian motion for
the non-linear setting of ? ≠ 2 that sees locally non-recitifable paths. One possible
process associated with the ?-Laplacian, called tug-of-war with noise in [25], might
shed some light on this, but this direction of study has so far not focused on properties
of paths associated with the tug-of-war with noise process. The paper [24] gives a
nice introduction to the tug-of-war process, and the regularity theory associated with
the tug-of-war with noise is explored in [4].

5 p-parabolicity and a Liouville-type theorem

The classical Liouville theorem states that there is no non-constant bounded complex-
analytic function on the entire complex plane. A version of this theorem states
that there is no non-constant positive harmonic function on the Euclidean space
R=. In the non-smooth setting, if ` is globally doubling and supports a global ?-
Poincaré inequality, then by the results in [22]we know that non-negative ?-harmonic
functions satisfy a Harnack inequality, and hence there are no non-constant positive
?-harmonic functions on suchmetric measure spaces. The situation is different when
considering metric measure spaces equipped with a measure that is locally doubling
and supports a local ?-Poincaré inequality. The hyperbolic spaces H= are examples
of such spaces, as are infinite trees with bounded degree that are not homeomorphic
toR. As we know,H= does support a non-constant positive harmonic function. It was
shown in [6] that if themeasure is globally doubling and supports a global ?-Poincaré
inequality, and in addition the metric space is annular quasiconvex, then there are no
global non-constant ?-harmonic functions (whether non-negative or not) with finite
energy. Here a metric space - is annular quasiconvex if there is a constant � ≥ 1
such that whenever G0 ∈ - and A > 0, and whenever G, H ∈ �(G0, A) \ �(G0, A/2),
there is a rectifiable path W in �(G0, �A) \ �(G0, A/�) with end points G and H,
and with length ℓ(W) ≤ �3 (G, H). This version of Liouville theorem (finite energy
Liouville theorem) is not equivalent to the standard Liouville theorem described
above. In this section we discuss the effect of ?-hyperbolicity on the existence of
global non-constant positive/finite energy ?-harmonic functions.

Note that when 1 < ? < =, the Euclidean space R= is ?-hyperbolic, but does not
have a non-constant positive ?-harmonic function nor a non-constant finite energy
?-harmonic function; here we say that a function D on a metric space - has finite
energy if it has an upper gradient 6D ∈ ! ? (-). Hence ?-hyperbolicity of a space does
not guarantee existence of non-constant global ?-harmonic functions. The results
of [6] indicate that we need the space to fail to be annular quasiconvex, and strongly
so. The following notion of ends of a metric space is a direct analog of the theory of
ends of Riemannian manifolds as described in [2].

Definition 5.1. A sequence of connected sets {�: }: is said to be an end (or end at
infinity) of - if there is a sequence of balls �: ⊂ - with �: ⊂ �:+1 such that �: is
a component of - \ �: and �:+1 ⊂ �: for each positive integer : . We say that an
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end {�: } is a ?-hyperbolic end if

lim inf
:→∞

Mod? (Γ(�1, �: )) > 0.

We say that an end is ?-parabolic if it is not ?-hyperbolic.

It is possible for a metric measure space to be ?-hyperbolic but have only ?-
parabolic ends. Indeed, if - is a  -regular tree (that is, each vertex has exactly
 number of edges attached to it) with  ≥ 3, with the edges of unit length and
equipped with the Lebesgue measureL1, then the measure on - is uniformly locally
doubling and supports a uniformly local 1-Poincaré inequality, see for example [5].
Observe that each end of - corresponds to a geodesic ray starting from a vertex in
- . Fix such an end, and we list the vertices that make up the corresponding geodesic
ray by G: , : ∈ N. We fix � = �(G1, 1). The function d: given by setting d: = 0 on
all the edges except on the edges [G2, G3], · · · , [G:−1, G: ], where it is set to take on
the value of 1/(: − 1). Then d: ∈ A(Γ(�, -: )) with -: the connected component
of - \ G: containing G:+1. Therefore

Mod? (Γ(�, -: )) ≤
∫
-

d
?

:
3` =

1
(: − 1) ? :,

and so
lim
:→∞

Mod? (Γ(�, -: )) = 0.

Therefore the end is a ?-parabolic end of - . However, - itself is ?-hyperbolic for
each ? > 1. This is a consequence of the following result from [7, Theorem 1.2]
together with the fact that there is a non-constant ?-harmonic function on - with
finite energy (see [6]). Indeed, fixing a base vertex E0, we set D = 0 at E0. We will
define the value of D at each vertex, with the understanding that a linear interpolation
will extend the function to the edges that make up - . For ease of computation, wewill
focus on ? = 2 and  = 3. Then with E1,1, E1,2 and E1,3 denoting the three vertices
that are neighbors of E0, we set D(E1,1) = 0, D(E1,2) = 1/2, and D(E1,3) = −1/2.
On the connected component of - \ {E0} containing E1,1 we set D = 0. We can then
extend D to vertices in the connected component of - \{E0} containing E1,2 by setting
D(F) = ∑:

9=1 2− 9 where F is a vertex in this component that is a distance : from
E1,2. We set D(F) = −∑:

9=1 2− 9 where F is a vertex in the component of - \ {E0}
containing E1,3, with : the distance between F and E1,3. A direct computation shows
that D is 2-harmonic in - with finite energy

∑∞
9=1 2−: ?2: with ? = 2.

Theorem 5.2. Suppose that in addition to being uniformly locally doubling and
supporting a uniformly local ?-Poincaré inequality, we have that - is unbounded
and proper. Then

• if - has a non-constant ?-harmonic function with finite energy, then - is ?-
hyperbolic.

• If - has at least two ?-hyperbolic ends, then it has a non-constant bounded
?-harmonic function with finite energy.
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Observe that when = > 1, the hyperbolic space H= has only one end, and this
end is indeed ?-hyperbolic when ? < =; the Euclidean space R= also has only one
end, and this end is ?-hyperbolic when ? < =. On the other hand, R= supports no
non-constant positive ?-harmonic functions while H= does.

Unlike the property of supporting a ?-singular function, the property of supporting
a non-constant positive or finite energy ?-harmonic function does not characterize
?-hyperbolic spaces; however, the above discussion shows that there is a connection
between the existence of non-constant positive/finite energy ?-harmonic functions
and ?-hyperbolicity. A deeper understanding of the structures of ?-hyperbolic ends
and ?-parabolic ends of - might lead to a characterization of the property of
supporting a non-constant positive or finite energy ?-harmonic functions, and this
field of enquiry is still under development. For other partial characterizations of
?-hyperbolicity using volume growth conditions see [17] (Riemannian manifold
setting) and [18] (metric setting). It was shown in [17, Proposition 1.7] that if - is a
non-compact complete Riemannian manifold and∫ ∞

1

(
1

`(�(G0, C))

)1/(?−1)
3C = ∞,

then it is ?-parabolic. Moreover, it is shown in [17, Corollary 2.29] that if there
is a constant � > 0 and a point G0 ∈ - such that each sequence G: ∈ - with
2 < 3 (G: , G0) → ∞ as : → ∞ can be connected to G0 by geodesics W: with the
property that ∫ 3 (G: ,G0)

1

(
1

`(�(W: (C), C/8))

)1/(?−1)
3C ≤ �,

then - is ?-hyperbolic. Versions of these results in the metric setting can be found
in [18], where large-scale dimension conditions are given to guarantee ?-parabolicity
and ?-hyperbolicity of the space.
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Part IV
Physical models and fractals





Breaking of continuous scale invariance to
discrete scale invariance: a universal quantum
phase transition

Omrie Ovdat and Eric Akkermans

Abstract We provide a review on the physics associated with phase transitions
in which continuous scale invariance is broken into discrete scale invariance. The
rich features of this transition characterized by the abrupt formation of a geometric
ladder of eigenstates, low energy universality without fixed points, scale anomalies
and Berezinskii-Kosterlitz-Thouless scaling are described. The important role of this
transition in various celebrated single and many body quantum systems is discussed
along with recent experimental realizations. Particular focus is devoted to a recent
realization in graphene.

Key words: discrete scale invariance, continuous scale invariance, universality,
limit cycles, graphene, Berezinskii-Kosterlitz-Thouless
Mathematics Subject Classifications (2010). Primary: 28A80; Secondary: 28A75,
60G22??

1 Introduction

Continuous scale invariance (CSI) – a common property of physical systems –
describes the invariance of a physical quantity 5 (G) (e.g., the mass) when changing a
control parameter G (e.g., the length). This property is expressed by a simple scaling
relation,

5 (0G) = 1 5 (G), (1.1)
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satisfied ∀0 > 0 and corresponding 1(0), whose general solution is the power law

5 (G) = � GW (1.2)

with W = ln 1/ln 0. Other physical systems possess the weaker discrete scale invari-
ance (DSI) expressed by the same scaling relation (1.1) but now satisfied for fixed
values 0, 1 and whose solution becomes

5 (G) = GW � (ln G/ln 0) , (1.3)

where � (D + 1) = � (D). Since � (D) is a periodic function, one can expand it in
Fourier series � (D) = ∑

2=4
2c8=D , thus,

5 (G) =
∞∑

==−∞
2=G

W+8 2c=
ln 0 . (1.4)

If 5 (G) is required to obey CSI, � (D) would be constraint to fulfill the relation
� (D) = � (D + 00) ∀00 ∈ R. In this case, � (D) can only be a constant function,
that is, 2= = 0 for all = ≠ 0 eliminating all terms with complex exponents in
(1.4). Therefore, real exponents are a signature of CSI and complex exponents
are a signature of DSI. DSI is a typical property of a class of fractal systems
[1, 2, 3, 76, 84, 25, 18, 26] and it underlines the construction of special geometric
objects such as the Cantor set, Sierpinski triangle. Koch snowflake and others.

In this article we describe a variety of distinct quantum systems in which a
sharp transition initiates the breaking of CSI into DSI. Essential to all these cases
is a DSI phase characterized by a sudden appearance of a low energy spectrum
arranged in an infinite geometric series. Accordingly, each transition is associated
with exponents that change from real to complex valued at the critical point. We
describe the universal properties of this transition. Particularly, in the framework of
the renormalization group it is shown that universality in this case is not associated
with trajectories terminating at a fixed point but with periodic flow known as a limit
cycle. Intrinsic to this phenomena is a special type of scale anomaly in which residual
discrete scaling symmetry remains at the quantum level.

We discuss the physical realizations of the CSI toDSI transition and present recent
experimental observations which provide evidence for the existence of the critical
point and for the universal low energy features of the DSI phase. We discuss the
basic ingredients that underline these features and the possibility of their occurrence
in other, yet to be studied systems.

2 The Schrödinger 1/r2 potential

Awell studied example exhibiting the breaking of CSI to DSI is given by the problem
of a quantum particle in an attractive inverse square potential [17, 53] described by
the Hamiltonian (ℏ = 1, < = 1/2)
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�( = ?
2 − _/A2. (2.5)

This system constitutes an effective description of the “Efimov effect” [23, 24] and
plays a role in various other systems [54, 16, 47, 67, 19, 79].

2.1 The spectral properties of NY

The Hamiltonian �( has an interesting yet disturbing property – the power law form
of the potential matches the order of the kinetic term. As a result, the Schrödinger
equation

�(k = �k (2.6)

depends on the single dimensionless parameter _ which raises the question of the
existence of a characteristic energy to express the eigenvalues �=. This absence of
characteristic scale implies the invariance of �(k = �k under the scale transforma-
tion [43]

G8 → 0G8 , � → 0−2� (2.7)

which indicates that if there is one negative energy bound state �= then there is an
unbounded continuum of bound states which render the Hamiltonian nonphysical
and mathematically not self-adjoint [59, 32].

The eigenstates of �( can be solved in terms of Bessel functions which confirm
these assertions in more detail. For � < 0 and lowest orbital angular momentum
subspace ; = 0, the most general decaying solution is described by the radial function

k (A) ≈ A− 3−2
2

(
(:A)−

√
_2−_

(
01 + O (:A)2

)
+ (:A)

√
_2−_

(
02 + O (:A)2

))
(2.8)

where : ≡
√
−� , 01, 02 are energy independent coefficients, 3 is the space dimension

and _2 ≡ (3 − 2)2/4 1. As seen in (2.8), for _ > _2 − 1, k0 (A) is normalizable
∀Re (�) < 0 which constitutes a continuum of complex valued bound states of �( .
Thus, for _ > _2 −1, �( is no longer self-adjoint, a property that originates from the
strong singularity of the potential and is characteristic of a general class of potentials
with high order of singularity [17].

A simple, physically instructive procedure to deal with the absence of self-
adjointness is to remove the singular A = 0 point by introducing a short distance
cutoff ! and to apply a boundary condition at A = ! [19, 5, 10, 63, 13, 37, 62]. The
most general boundary condition is the mixed condition

!
k ′ (!)
k (!) = 6, (2.9)

6 ∈ R, for which there is an infinite number of choices each describing different
short range physics.

1 For higher angular momentum channels _2 is larger and given by (3 − 2)2/4 + ; (; + 3 − 2)
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Equipped with condition (2.9) the operator �( is now a well defined self-adjoint
operator on the interval ! < A < ∞. The spectrum of �( exhibits two distinct
features in the low energy :! � 1 regime. For _ < _2 ≡ (3 − 2)2 /4, the expression
of !k ′ (!) /k (!) as given from (2.8) is independent of : to leading order in :A .
As a result, equation (2.9) does not hold for a general choice of 6. For _ > _2 , the
insertion of (2.8) into (2.9) leads to

(:!)28
√
_−_2 = 48W (2.10)

where W (6, _) is a phase that can be calculated (the explicit expression of W is not
important for the purpose of this section). The solution of (2.10) yields a set of bound
states with energies

:= = :04
− c=√

_−_2 (2.11)

where = ∈ / , such that :=! � 1 and :0 ≡ 1
!
4

W

2
√
_−_2 . Thus, for _ < _2 ≡ (3 − 2)2 /4,

the spectrum contains no bound states close to � = 0, however, as _ goes above _2 ,
an infinite series of bound states appears. Moreover, in this ”over-critical” regime,
the states arrange in a geometric series such that

:=+1/:= = 4
− c√

_−_2 . (2.12)

The absence of any states for _ < _2 is a signature of CSI while the geometric
structure of (2.11) for _ > _2 is a signature of DSI since := is invariant under {:=} →{

exp
(
−c/
√
_ − _2

)
:=

}
. Accordingly, as seen in (2.8), the characteristic behavior of

the eigenstates for :A � 1manifests an abrupt transition from real to complex valued
exponents as _ exceeds _2 . Thus, �( exhibits a quantum phase transition (QPT) at
_2 between a CSI phase and a DSI phase. The characteristics of this transition are
independent of the values of !, 6 which enter only into the overall factor :0 in
(2.11). The functional dependence of := on

√
_ − _2 is characteristic of Berezinskii-

Kosterlitz-Thouless (BKT) transitions as was identified in [47, 50, 44, 45]. Finally,
the breaking of CSI to DSI in the _ > _2 regime constitutes a special type of scale
anomaly since a residual symmetry remains even after regularization (see Table 1).

Table 1 Summary of the properties associated with the transition occurring at _ = _2 for the
Hamiltonian �( given in equation (2.5) on the interval ! < A < ∞.

_ < _2 _ > _2 − 1 _ > _2 Scale
anom

aly
=⇒

Formal Hamiltonian CSI CSI CSI

Self-adjointness � = � † � ≠ � † � ≠ � †

Regularization with ! Redundant Essential Essential

Symmetry of eigenspace CSI CSI DSI

Quantum Phase Transition =⇒
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2.2 Physical realizations of NY

A well known realization of �( for _ > _2 is the “Efimov effect” [23, 24, 12].
In 1970, Efimov studied the quantum problem of three identical nucleons of mass
< interacting through a short range (A0) potential. He pointed out that when the
scattering length 0 of the two-body interaction becomes very large, 0 � A0, there
exists a scale-free regime for the low-energy spectrum, ℏ2/<02 � � � ℏ2/<A2

0 ,
where the corresponding bound-states energies follow the geometric series �= =
−�04

−2c=/B0 where B0 ≈ 1.00624 is a dimensionless number and �0 > 0 a problem-
dependent energy scale. Efimov deduced these results from an effective Schrödinger
equation in 3 = 3 with the radial (; = 0) attractive potential + (A) = −_/A2 with
_ = B0 +1/4 > _2 (_2 = 1/4 for 3 = 3). Despite being initially controversial, Efimov
physics has turned into an active field especially in atomic and molecular physics
where the universal spectrum has been studied experimentally [51, 87, 72, 73, 35,
56, 65, 52] and theoretically [12]. The observation of the Efimov geometric spectral
ratio 42c/B0 ≈ 515.028 have been recently determined using an ultra-cold gas of
caesium atoms [42].

In addition to the Efimov effect, the inverse square potential also describes the
interaction of a point like dipole with an electron in three dimensions. In this case,
the dipole potential is considered as an inverse square interaction with non-isotropic
coupling [16]. The Klein Gordon equation for a scalar field on an Euclidean AdS
3 + 1 space time can be written in the form of (2.6). The over-critical regime _ > _2
corresponds to the violation of the Breitenlohner-Freedman bound [47].

3 Massless Dirac Coulomb system

The inverse square Hamiltonian (2.5), a simple system exhibiting a rich set of
phenomena, inspires studying the ingredients which lead to the aforementioned
DSI and QPT and whether they are found in other systems. One such candidate
system is described by a massless Dirac fermion in an attractive Coulomb potential
[60, 28, 27, 29, 36, 71, 81, 80] with the scale invariant Hamiltonian (ℏ = 2 = 1)

�� = W
0W 9 ? 9 − V/A (3.13)

where V specifies the strength of the electrostatic potential, 3 is the space dimension
and W` are 3 + 1 matrices satisfying the anti-commutation relation

{W`, Wa} = 2[`a (3.14)

with [00 = [88 = −1, 8 = 1, . . . , 3 and [`a = 0 for ` ≠ a.
Based on the previous example, it may be anticipated that, like �( , �� will

exhibit a sharp spectral transition at some critical V in which the singularity of the
potential will ruin self-adjointness. As detailed below, the analog analysis of the
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Dirac equation
��k = �k (3.15)

confirm these assertions and details a remarkable resemblance between the low
energy features of the two systems.

3.1 The spectral properties of NJ

Utilizing rotational symmetry, the angular part of equation (3.15) can be solved and
the radial dependence of k is given in terms of two functions Ψ1 (A) ,Ψ2 (A) [21]
determined by the following set of equations

Ψ′2 (A) +
(3 − 1 + 2 )

2A
Ψ2 (A) =

(
� + V

A

)
Ψ1 (A)

−Ψ′1 (A) −
(3 − 1 − 2 )

2A
Ψ1 (A) =

(
� + V

A

)
Ψ2 (A) (3.16)

where

 ≡
{
±

(
; + 3−1

2

)
3 > 2

< + 1/2 3 = 2
, (3.17)

; = 0, 1, . . . and < ∈ Z are orbital angular momentum quantum numbers. In terms
of these radial functions, the scalar product of two eigenfunctions k, k̃ is given by∫

3+ k†k̃ =

∫
3A A3−1

(
Ψ∗1 (A) Ψ̃1 (A) +Ψ∗2 (A) Ψ̃2 (A)

)
. (3.18)

Unlike �( in section 2, the spectrum of �� does not contain any bound states,
a property that reflects the absence of a mass term. As a result, the spectrum is a
continuum of scattering states spanning −∞ < � < ∞. In the absence of bound
states we explore the possible occurrence of “quasi-bound” states. Quasi bound
states are pronounced peaks in the density of states d(�), embedded within the
continuum spectrum. These resonances describe a scattering process in which an
almost monochromatic wave packet is significantly delayed by + (A) as compared to
the same wave packet in free propagation [31].

An elegant procedure for calculating the quasi-bound spectrum [31] is to allow
the energy parameter to be complex valued � → n ≡ �'−8,2 and look for solutions
of (3.16) with no outgoing 4−8�A plane wave component for A → ∞. The lifetime
of the resonance is given by,−1. Consider the lowest angular momentum subspace
 = ± (3 − 1) /2 and � < 0, the most general solution with no outgoing component
is given by
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Ψ1 (A)
Ψ2 (A)

)
≈ A− 3−1

2

(
(28�A)

√
V2
2−V2

((
011
012

)
+ O (|� | A)

)
+ (28�A)−

√
V2
2−V2

((
021
022

)
+ O (|� | A)

))
(3.19)

where V2 ≡ (3 − 1)/2 2 and 0 is a 2 × 2 energy independent coefficient matrix.
As in the case of �( above it is necessary at this point to remove the singularity

of the 1/A potential by introducing a radial short distance cutoff ! and imposing
a boundary condition. To identify this explicitly, consider the case where � = 8

in (3.19). Since (3.19) is (asymptotically) an ingoing 48�A plane wave solution if
� ∈ R, it decays exponentially for � = 8 and A → ∞. If additionally V2 > V2

2 − 1/4,
then (3.19) is a normalizable eigenfunction with a complex valued eignvalue which
renders �� not self-adjoint.

The equivalent mixed boundary condition of (3.15) can be written as follows [90]

ℎ =
Ψ2 (!)
Ψ1 (!)

(3.20)

where ℎ ∈ R is determined by the short range physics. Equipped with this condition
�� is now a well defined self-adjoint operator on the interval ! < A < ∞. The
spectrum of �� exhibits two distinct pictures in the low energy |� | ! � 1 regime.
For V < V2 ≡ (3 − 1) /2, the expression of Ψ2 (!) /Ψ1 (!) as given from (3.19) is
independent of � to leading order in |� | !. As a result, equation (3.20) does hold for
a general choice of ℎ. For V > V2 , the insertion of (3.19) to (3.20) reduces into

(28�!)28
√
V2−V2

2 = I0 (3.21)

where
I0 (ℎ, V) ≡

ℎ 021 − 022
012 − ℎ 011

(3.22)

is a complex valued number3 (the explicit exporession for I0, which can be found in
[69], is not important for the purpose of this section). The solution of (3.21) yields
a set of quasi-bound energies at

�= = �04
− c=√

V2−V2
2 (3.23)

where = ∈ Z, such that |�= | ! � 1 and �0 ≡ Re ©­« 1
28! I

1

28
√
V2−V2

2

0
ª®¬. It can be directly

verified that �' = Re �= < 0 and, = −2Im �= > 0 [69].

2 For higher angular momentum channels V2 is larger and given by | | where  is defined as in
(3.17)
3 Here I0 is not a phase like in (2.10), a reflection of the fact that the solutions for � would have an
imaginary component corresponding to a finite lifetime.
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Thus, in complete analogy with the −_/A2 inverse squared potential described
in section 2, for V < V2 ≡ (3 − 1) /2, the spectrum contains a CSI phase with no
quasi-bound states close to � = 0. As V exceeds V2 , an infinite series of quasi-bound
states appears which arrange in a DSI geometric series such that

�=+1/�= = 4
− c√

V2−V2
2 . (3.24)

As seen explicitly in (3.19), the characteristic behavior of the eigenstates for |� | A �
1 manifests an abrupt transition from real to complex valued exponents at V = V2 .
The characteristics of this transition are independent of the values of !, ℎwhich enter
only into the overall factor �0 in (3.21). Thus, under a proper trasformation between
_ and V, Table 1 represents a valid and consistent description of the massless Dirac
Coulomb system as well.

3.2 Distinct features associated with spin 1/2

On top of the similarities emphasized above, an interesting difference in the quantum
phase transition exhibited by �( and �� results from the distinct spin of the associ-
ated Schrödinger and Dirac wave functions. Unlike the scalar Schrödinger case, the
lowest angular momentum subspace of �� contains two channels corresponding to
 = ±(3 − 1)/2. As a result, not one but two copies of geometric ladders of the
form (3.23) appear at V = V2 (see Fig. 1). These two ladders may be degenerate or
intertwined depending on the choice of boundary condition in (3.20).

The breaking of the degeneracy between the ladders is directly related to the
breaking of a symmetry. To understand this point more explicitly consider the case
where 3 = 2. There, in a basis where W0 = fI , W1 = 8f1, W2 = −8f2, �� is given by

�� = f8 ?8 − V/A. (3.25)

From (3.25) it is seen that�� is symmetric under the following parity transformation

G → −G, H → H, �� → f2��f2, (3.26)

which in terms of Ψ1 (A) , Ψ2 (A) is equivalent to [69]

Ψ1 (A) → Ψ2 (A) , Ψ2 (A) → −Ψ1 (A) , < → −< − 1 (3.27)

where < is the orbital angular momentum. Consequently, the Dirac equation (3.16)
is invariant under (3.27), however, the boundary condition (3.20) can break (3.27).
Typical choices of boundary conditions are

1. Continuously connected constant potential + (A < !) = −V/! [70] correspond-
ing to ℎ = �<+1 (V + �!)/�< (V + �!), where �= (G) is Bessel’s function.
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Fig. 1 Density of states d(�) of �� for 3 = 2, V = 1.2 > V2 and different angular momentum
eigenstates. The yellow and blue curves correspond to the < = 0, −1 angular momentum channels
respectively. The boundary condition ℎ used here is the chiral boundary condition (3.28) which
breaks parity. The parameter ! is the short distance cutoff taken here to be 0.195nm. The numeric
values on both axis are in units of ℏ2 = 0.197 eV `m. The set of pronounced peaks in both curves
describes the quasi-bound spectrum in the overcritical regime V > V2 as calculated in (3.23). The
lower panel displays the detailed structure of the infinite geometric ladders of the quasi-bound states
in a logarithmic scale. The < = 0, −1 ladders are intertwined, indicative of the breaking of parity
by the boundary condition. These results are independent of the specific choice of ! or ℎ (provided
that it breaks parity).

2. Zero wavefunction of one of the spinor components [81] corresponding to ℎ = 0
or ℎ = ∞.

3. Infinite mass term on boundary [71] corresponding to ℎ = 1.
4. Chiral boundary conditions [68]

ℎ =

{
0 < ≥ 1
∞ < ≤ 0

(3.28)

inducing a zero mode localized at the boundary.

Under (3.27), a solution of the Dirac equation with angular momentum< obeying
boundary condition (3.20) will transform into a different solution with angular
momentum −< − 1 obeying (3.20) with ℎ → −ℎ−1. Thus, the boundary condition
respects parity if and only if

ℎ< = −ℎ−1
−<−1. (3.29)
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Thus case 1 above preserves parity while 2, 3, 4 break parity. If (3.29) holds,
transformation (3.27) links between the < ↔ −< − 1 eigenspace solutions. The
lowest angular momentum subspaces correspond to orbital angular momentum < =

0,−1. If (3.29) holds, then the two geometric ladders (3.23) associatedwith< = 0,−1
are degenerate. The reason is that, as seen in (3.19), under (3.27)

011 → 012, 012 → −011, 021 → 022, 022 → −021

ℎ→ −ℎ−1 (3.30)

which render I0 in (3.22) and consequently �0 invariant. Thus �0,<=±1/2 are identical
in this case. If (3.29) does not hold, this symmetry is not enforced and the degeneracy
between the ladders is broken.

The visualization of parity breaking is displayed in Fig. 1 where the density of
states d(�) of �� is plotted for the < = 0,−1 channels and V > V2 . The boundary
condition that was used in Fig. 1 is the chiral boundary condition (3.28) which
breaks parity. Both curves exhibit an identical set of pronounced peaks condensing
near � = 0−. These peaks describe quasi-bound states (3.23) and, accordingly, are
arranged in a set of two geometric ladders. The separation between the ladder is a
distinct signal of parity breaking.

3.3 Experimental realization

The CSI to DSI transition has recently received further validity and interest due to a
detailed experimental observation in graphene [69]. In what follows, we summarize
the results of this observation and emphasize its most significant features.

Graphene is a particularly interesting condensed matter system where �� is
relevant (for 3 = 2). The basic reason for this argument is that low energy excita-
tions in graphene behave as a massless Dirac fermion field with a linear dispersion
� = ±E� |? | where the Fermi velocity E� ≈ 106 m/s appears instead of 2 [48].
These characteristics have been extensively exploited to make graphene a useful
platform to emulate specific features of quantum field theory, topology and quantum
electrodynamics (QED) [60, 81, 80, 49, 82, 91, 89], since an effective fine structure
constant U� = 42/ℏE� of order unity is obtained by replacing the velocity of light 2
by E� .

It has been shown that single-atom vacancies in graphene can host a local and
stable charge [69, 57, 55]. This charge can be modified and measured at the vacancy
site by means of scanning tunneling spectroscopy and Landau level spectroscopy
[57]. The presence of massless Dirac excitations in the vicinity of the vacancy charge
motivates the assumption that these will interact in a way that can be described by
a massless Dirac Coulomb system. Particularly, the low energy spectral features
of the charged vacancy would be the same as that of a tunable Coulomb source.
The experimental results of [69] provide confirmation of this hypothesis as will be
detailed below.
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The measurements and data analysis presented below were carried out as follows:
positive charges are gradually increased into an initially prepared single atom va-
cancy in graphene. Using a scanning tunneling microscope (STM) the differential
conductance 3�/3+ (+) through the STM tip is measured at each charge increment
at the vacancy site. The conductance 3�/3+ (+) is expected to be proportional to
the local density of states of the system [69, 4]. Thus, quasi-bound states should also
appear as pronounced peaks in the 3�/3+ curves.

For low enough values of the charge, the differential conductance displayed in
Fig. 2b, shows the existence of a single quasi-bound state resonance whose distance
from the Dirac point increases with charge. The behaviour close to the Dirac point,
is very similar to the theoretical prediction of the under-critical regime V < V2
displayed in Fig. 2a. The V value associated with the data of Fig. 2b is obtained from
matching the position of the quasi-bound state with the theoretical model where
the cutoff ! and the boundary condition ℎ are fixed model parameters that will
be given later. The theoretical position of the under-critical quasi-bound state as a
function of V is displayed in Fig. 4 along with the positions of the peak extracted
from measurements. The existence of a quasi-bound state does not contradict CSI of
the undercritical phase since the absence of any states occurs only in the low energy
limit.

At the point where the build up charge exceeds a certain value, three additional
resonances emerge out of the Dirac point. These resonances are interpreted as the
lowest overcritical (V > 1/2) resonances which we denote �1, �

′
1, �2 respectively.

The corresponding theoretical and experimental behaviours displayed in Figs. 1, 3,
show a very good qualitative agreement. To achieve a quantitative comparison solely
based on the massless Dirac Coulomb Hamiltonian (3.25), the theoretical V values
corresponding to the respective positions of the lowest overcritical experimental
resonance �1 (as demonstrated in Fig. 3) are deduced for fixed ! and the boundary
condition ℎ (as before). This allows to determine the lowest branch �1 (V) represented
in Fig. 4. Then, the experimental points � ′1, �2 are now free points to be directly
compared to their corresponding theoretical branch as seen in Fig. 4. Parameters
! and ℎ, are determined according to the ansatz ℎ = 0(< + 1), and correspond to
optimal values of ! = 0.195 nm, 0 ' −0.85. The comparison of the experimental
�2/�1 ratio with the universal prediction �=+1/�= = 4−c/

√
V2−1/4 is given in Fig. 5.

A trend-line of the form 4−1/
√
V2−1/4 is fitted to the ratios �2/�1 yielding a statistical

value of 1 = 3.145 with standard error of Δ1 = 0.06 consistent with the predicted
value c. An error of ±1<4+ is assumed for the position of the energy resonances.

A few further comments are appropriate:

1. The points on the �2 (V) curve follow very closely the theoretical prediction
�=+1/�= = 4−c/

√
V2−1/4. This result is relatively insensitive to the choice of

ℎ, !.
2. In contrast, the correspondence between the � ′1 (V) points and the theoretical

branch is sensitive to the choice of ℎ, !. This reflects the fact that while each ge-
ometric ladder is of the form (3.23), the energy scale �0 is different between the
�1 (V) and � ′1 (V) channels thus leading to a shifted relative position. The ansatz
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Fig. 2 Experimental and theoretical picture in the undercritical regime. (a) Theoretical behaviour
of the density of states d(�) of the Dirac Hamiltonian �� in (3.13) with 3 = 2, 2 → E� = 0.0032
and angular momentum channels < = −1 (blue) and < = 0 (yellow). The cutoff and boundary
conditions are assigned here with the optimized values ! = 0.195 nm, ℎ = −0.85(< + 1) as
explained in the text. The < = −1 (blue) branch contains a single peak and the < = 0 (yellow)
branch shows no peak. While increasing V, the resonance shifts to lower energy and becomes
broader. (b) The conductance 3� /3+ measured at a single vacancy in graphene using STM as a
function of the applied voltage + . The determination of the parameter V is obtained from matching
the position of the peak in the 3�/3+ curve with the theoretical model where the cutoff ! and the
boundary condition ℎ are fixed model parameters.

taken for ℎ is phenomenological, however, in order to get reasonable correspon-
dence to theory, the explicit dependence on < is needed. More importantly, it
is necessary to use a parity breaking boundary condition (see section 3.2) to
describe the � ′1 (V) points, otherwise, both angular momentum channels �1 (V),
� ′1 (V) will become degenerate and there would be no theoretical line to describe
the � ′1 (V) points. The existence of the experimental � ′1 (V) branch is therefore
a distinct signal that parity symmetry in the corresponding Dirac description
is broken. In graphene, exchanging the triangular sub-lattices is equivalent to a
parity transformation. Creating a vacancy breaks the symmetry between the two
sub-lattices and is therefore at the origin of broken parity in the Dirac model.

3. The optimal value obtained for the short distance cutoff ! = 0.195 nm is fully
consistent with the low energy requirement �1!/ℏE� ' 0.03 � 1 necessary to
be in the regime relevant to observe the V-driven QPT. Furthermore, it is quite
close the lattice spacing of graphene (≈ 0.15 nm)
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Fig. 3 Experimental and theoretical picture in the overcritical regime. Upper plot: Theoretical
behaviour of the low energy density of states d(�) for overcritical V = 1.33. The Blue (Yellow)
line corresponds to < = −1 (< = 0) orbital angular momentum. The peaks on the vertical scale
describe the first quasi-bound states with two (Blue and Yellow) infinite geometric towers of states.
Lower plot: Experimental values of the tunnelling conductance measured at the charged vacancy
site in graphene.

One of the most interesting features of observed quasi bound states is their
similarity with the Efimov spectrum. As discussed in section 2.2, Efimov states
are a geometric tower of states with a fixed geometric factor which is derived
from an effective Schrödinger equation with a + = −_/A2 potential (as in (2.5))
and overcritical potential strength _ = B0 + 1/4, B0 ≈ 1.00624. To emphasize the
similarities between the Dirac quasi bound spectrum and the Efimov spectrum or,
more generally, between the CSI to DSI transition in the Dirac and Schrödinger
Hamiltonians �� , �( , two additional experimental points (pink x’s) are presented
in Fig. 4. These points are the values of Efimov energy states measured in Caesium
atoms [51, 42] and scaled with an appropriate overall factor. The points are placed
at the (overcritical) fixed Efimov value VE = 1.1236 corresponding to the geometric
factor of Efimov states. The universality of the transition is thereby emphasized
in Fig. 4 in which curves calculated from a massless Dirac Hamiltonian, energy
positions of tunneling conductance peaks in graphene and resonances of a gas of
Caesium atoms are combined in a meaningful context.
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Fig. 4 Comparison of lowest quasi bound state energy curves�= (V) with experimentallymeasured
tunneling conductance peaks. The curves�1 (V) , �′1 (V) , �2 (V) describe resonances extracted from
the density of states of the < = 0 (�1, �2) and < = −1 (�′1) angular momentum channels. �1, �2
and �′1 are the first quasi bound states appearing for V > 1/2 in the< = 0, −1 channels respectively.
The brown curve is the position of the single under-critical quasi bound state as a function of V < V2
scaled by a factor of 1/3 in the vertical axis. The black and cyan dots correspond to the positions
of the tunneling conductance peaks as measured in graphene. The determination of the V value
associated with these points is obtained from matching the position of the single under-critical
peak and first over-critical peak (�1) in the 3�/3+ curves with the theoretical model where the
cutoff ! and boundary condition ℎ are fixed parameters. The two pink x’s are the values of Efimov
energy states as measured in Caesium atoms [51, 42] and rescaled by an appropriate overall factor.
These points corresponds to the (overcritical) fixed Efimov value VE = 1.1236. Similarly, additional
experimental points obtained in [87, 72] are displayed in the inset.

4 Relation to universality

In sections 2, 3 we obtained the properties of the CSI to DSI transition from a
direct analysis of the corresponding eigenstates of each system. In what follows, we
describe the same physics, but this time through the language of the renormalization
group (RG). As will be detailed next, the description of this phenomenon in a RG
picture provides a notable example of a case in which there is universality even in the
absence of any fixed points. To understand this point more clearly, we first recall the
physical meaning of the RG formalism and the usual context for which universality
is understood with relation to RG.

Universality is a central concept of physics. It refers to phenomena for which
very different systems exhibit identical behavior when properly coarse-grained to
large distance (or low energy) scales. Important representatives of universality are
systems that are close to a critical point, e.g., liquid-gas or magnetic systems. Near
the critical point, these systems exhibit continuous scale invariance (as in (1.1))
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Fig. 5 Comparison between the experimentally obtained �2/�1 ratio and the universal factor
4−c/
√
V2−1/4. Blue points: the ratio �2/�1 obtained from the position of the points in Fig. 4. Green

point: Universal Efimov energy ratio as measured in Caesium atoms [51, 42]. Blue line (dashed):
the corresponding optimized curve, fitted according to the model 4−1/

√
V2−1/4 and corresponding

to 1 = 3.145 with standard error of Δ1 = 0.06 consistent with the predicted value c. The shaded
pink region is the ±2Δ1 confidence interval of the curve. Cyan line: universal low energy factor
4−c/
√
V2−1/4. Purple line: theoretical ratio �2/�1 obtained from the exact solution of the Dirac

equation. As V → 0.5, |�= | becomes smaller therefore the green and purple curves coincide for
low V. The error bar on the resonance energies is ±1<4+ .

where the free energy and correlation length vary as a power of the temperature (or
some other control parameter). The exponents of these functions are real valued and
are identical for a set of different systems thereby constituting a “universality class”.

The contemporary understanding of university in critical phenomena is provided
by the tools of RG and effective theory. In the framework of the later, low energy
physics is described by a Hamiltonian � with a series of interaction terms 6=O=
constrained by symmetries. Intrinsic to this description is an ultraviolet cutoff Λ
reflecting the conceptual idea that� is obtained from somemicroscopic Hamiltonian
�0 by integrating out degrees of freedom with length scale shorter than 1/Λ. The
dependence of ®6 ≡ (61, 62 . . .) on Λ defines the RG space of parameters ®6 (Λ)
which represent a large set of Hamiltonians � ( ®6 (Λ)). Within this picture, the scale
invariant character of critical phenomena is attributed to the case where �0 ( ®60)
flows in the infrared limit, Λ→ 0, to � ( ®6∗) where ®6∗ is a fixed point. Additionally,
universality classes arise since trajectories starting at distinct positions on RG space
can flow to the same fixed point for Λ → 0. The role of RG fixed points in the
description of universality, effective theory and scale invariance is central and extends
throughout broad sub-fields in physics.
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4.1 Renormalization group formalism for the Schrödinger 1/r2

potential

The RG picture which describes the low energy physics of the Schrödinger −_/A2

potential in the _ > _2 regime cannot be associated with a fixed point because of the
absence of CSI. However, even without fixed points, we expect universality to appear
in this regime since the geometric series factor �=+1/�= = exp

(
−2c/

√
_ − _2

)
is

independent of the short distance parameters associated with the cutoff ! and the
boundary condition 6

To see this explicitly [47, 5, 10, 63, 50], consider the radial Schrödinger equation
for �( given by

−
(
32

3A2 +
3 − 1
A

3

3A
− ; (; + 3 − 2)

A2

)
− _

AB
k (A) = �k (A) , ! < A < ∞ (4.31)

where k (A) is the radial wavefunction, ; the orbital angular momentum, 3 the space
dimension, ! a short distance cutoff and B = 2 but remains implicit for a reason that
will be clear shortly. A well defined eigenstate of (4.31) is obtained by imposing a
boundary condition at A = !

!
k ′ (!)
k (!) = 6, (4.32)

6 ∈ R, which encodes the short-distance physics. To initiate a RG transformation we
transform

! → ! + 3! ≡ n! ; 0 < n − 1 � 1 (4.33)

and obtain an equivalent effective description with the short distance cut-off n! and
correspondingly, a new boundary condition at A = n!:

n!
k ′ (n!)
k (n!) = 6 (n!) . (4.34)

As a result of (4.33), equation (4.31) is now defined in the range n! ≤ A < ∞
with the same functional form. With the help of the rescaling A ′ ≡ n−1A, � ′ ≡ n2� ,
equation (4.31) is modified to the equivalent form

−
(
32

3A ′2
+ 3 − 1

A ′
3

3A ′
− ; (; + 3 − 2)

A ′2

)
− _n

2−B

A ′B
k (A ′) = � ′k (A ′) ! < A ′ < ∞.

(4.35)
Thus, transformation (4.33) is accounted in (4.31) by _ → _n2−B and using (4.33)
leads to the infinitesimal form

!
3_

3!
= (2 − B) _. (4.36)

Similarly, 6 (n!) in (4.34) can be related to 6 (!) as follows. The series expansion
of 6 (n!) in n − 1 is
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6 (n!) = !k
′ (!)
k (!) + (n − 1)

(
!
k ′ (!)
k (!) − !

2
(
k ′ (!)
k (!)

)2
+ !2k

′′ (!)
k (!)

)
+ O (n − 1)2 .

(4.37)
Manipulation of (4.37) by insertion of the radial Schrödinger equation (4.31) and
the definition of 6 (!) yield

6 (n!) = 6 (!) + (n − 1)
(
(2 − 3) 6 (!) − 6 (!)2 − _!2−B + ; (; + 3 − 2) − !2�

)
(4.38)

where terms of order (n − 1)2 or higher were eliminated. The equivalent differential
form is thus

!
36

3!
= (2 − 3) 6 − 62 − _!2−B + ; (; + 3 − 2) − !2�. (4.39)

In the low energy regime

!2 |� | � |_ − ; (; + 3 − 2) | (4.40)

equation (4.39) reduces to

!
36

3!
= (2 − 3) 6 − 62 − _ (4.41)

where the orbital angular momentum was taken to be ; = 0 and B set to B = 2 for
brevity. Finally, the combination of (4.36), (4.41) constitutes the RG equations

V (_) ≡ ! 3_
3!

= (2 − B) _

V (6) ≡ ! 36
3!

= − (6 − 6+) (6 − 6−) (4.42)

where
6± =

2 − 3
2
±

√
_2 − _ (4.43)

and _2 = (3 − 2)2 /4.
Since V (_) = 0 for B = 2, _ (!) remains unchanged under the RG transformation.

In contrary, the function V (6) is not trivial and has two roots 6± . For _ < _2 , the
two roots correspond to two fixed points, 6− unstable and 6+ stable. However, as
_ increases, the two fixed points get closer and merge for _ = _2 . For _ > _2 , 6±
become complex valued and the two fixed points vanish as can be seen in Fig. 6a.
The solution for 6 (!) in this regime is given explicitly by (see Fig. 6b)

6 (!) = 2 − 3
2
−

√
_ − _2 tan

[√
_ − _2 ln (!/!0) − q6

]
(4.44)
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where q6 ≡ arctan
(
60− 2−3

2√
_−_2

)
. Unlike the case of a fixed point, the flow of 6 (!) in

(4.44) does not terminate at any specific point but rather oscillate periodically in
log ! with period ! → 4c/

√
_−_2 ! independent of the initial condition 6 (!0) = 60.

The appearance of two fixed points for _ < _2 , which annihilate at _2 and give rise
to a log-periodic flow for _ > _2 is the transcription of the CSI toDSI transition in the
RG picture. The periodicity 4c/

√
_−_2 , being independent on the initial conditions,

6 (!0) = 60, represents a universal content even in the absence of fixed points.

 ln x

Fig. 6 Visualization of the renormalization group picture associated with the boundary condition
6 (!) at the short distance cutoff A = ! for the case of the Schrödinger + (A ) = −_/A2 potential
�( . (a) The V (6) function in the over-critical and under-critical regimes. For _ < _2 , V (6) has
two roots correspond to two fixed points, 6− unstable and 6+ stable. The point _ = _2 is a transition
point where the roots merge into a single fixed point. For _ > _2 there are no real fixed points.
(b) The behaviour of the boundary condition 6 (!) in the overcritical regime _ > _2 and 3 = 3
as a function of ln (G) with G ≡

√
_ − _2 ln (!/!0) − q6, q6 ≡ arctan

(
60− 2−3

2√
_−_2

)
. Independent of

the initial condition 60 (!0) , 6 (!) is a log-periodic function of ! which, as shown in (1.3), is a
generic feature of DSI.

An analogue of the RG equations (4.42) can be derived for the boundary condition
ℎ (!) in (3.20) of the massless Dirac Coulomb system described in section 3 [33].

5 Discussion

The similarities between the Dirac and Schrödinger system �( , ��

�( = ?
2 − _/A2 (5.45)

�� = W
0W 9 ? 9 − V/A (5.46)

presented in sections 2, 3 motivate the study of whether a similar transition from
CSI to DSI is possible for a generic class of systems and, if so, what are the common
ingredients within this class. Below we briefly survey some other setups which
interestingly give rise to a CSI to DSI transition. The relation between all these cases
is summarized in table 2.
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Table 2 Comparison between the various cases discussed in the text for which a transition between
a continuous scale invariant phase and a discrete scale invariant phase occurs. In the DSI regime
each system is characterized by the sudden appearance of a geometric tower of modes with the
universal form$= = $0 exp

(
−1 c=√

G−G2

)
. In lines 1–3 of the table,$= are one body bound states.

Lines 4–5 describe many body quantum systems where$= are fermion masses and 3-body bound
states respectively. Line 6 provides a comparison with the Berezinskii-Kosterlitz-Thouless phase
transition where the analog quantity for $= is the free energy � for ) & )2 . In line 4, U# is a #
dependent real number whose exact value can be found in [15]. In line 5, 2− is a 3 dependent real
positive number defined in section 5.3.

System $= G G2 1

�( = ?
2 − _/A2 �= _ (3 − 2)2 /4 2

�� = W0W 9 ? 9 − V/A �= V2 (3 − 1)2 /4 1

�! =

(
− 3

2

3G2

)#
− _!

G2# �= _!

(
(2# − 1)!!

2#

)2
# U#

QED3 with # massless flavours <= # −1 c2/32 c/
√

8

Efimov effect in 3 dimensions �= 3 2.3 1/2± (3)
BKT � ) )2 system dependent

5.1 Lifshitz scaling symmetry

Since �( and �� share the property that the power law form of the corresponding
potential matches the order of the kinetic term, it is interesting to examine whether
this property is a sufficient ingredient by considering a generalized class of one
dimensional Hamiltonians,

�! =

(
− 3

2

3G2

)#
− _!

G2# , (5.47)

where # is a natural integer and _! a real valued coupling. The Hamiltonian �!
describes a quantum system with non-quadratic anisotropic scaling between space
and time for # > 1. This so called “Lifshitz scaling symmetry” [6], manifest in
(5.47), can be seen for example at the finite temperature multicritical points of
certain materials [41, 34] or in strongly correlated electron systems [30, 88, 9].
Quartic dispersion relations � ∼ ?4 can also be found in graphene bilayers [58]
and heavy fermion metals [74]. It may also have applications in particle physics [6],
cosmology [64] and quantum gravity [46, 39, 40].

The detailed solution of the corresponding Schrödinger equation �!k = �k

[15] confirms that a transition from CSI to DSI occurs at _!,2 = (2# − 1)!!2/22# ,
∀# ≥1. The CSI phase contains no low energy, |� |1/2# ! � 1 (! is a short distance
cutoff), bound states and the DSI phase is characterized by an infinite set of bound
states forming the geometric series
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�= = −�04
− #U# c=√

_!−_!,2 , 0 < _! − _!,2 � 1 (5.48)

where �0 > 0 and U# is an # dependent real number. For _! − _!,2 → 0+,
the analytic behavior of the spectrum is characteristic of the Berezinskii-Kosterlitz-
Thouless (BKT) scaling in analogy with the # = 1 case. However, unlike the # = 1
case, the BKT scaling appears only for _! − _!,2 → 0+. Deeper in the overcritical
regime, the dependence on

(
_! − _!,2

)1/2 in (5.48) is replaced by amore complicated
function of _! −_!,2 [15]. The transition as well as the value of _!,2 is independent
of the short distance physics characterized by the boundary conditions and cutoff !.

Since�! is a high order differential operator it requires the specification of several
G = ! boundary condition parameters (unlike the one parameter 6 in section 2.1) in
order to render it as a well defined self-adjoint operator on the interval ! < G < ∞.
The most general choice of boundary conditions is parameterized by a unitary # ×#
matrix. Accordingly, the corresponding #2 dimensional RG space is characterized
by fixed points in the under-critical regime _! < _!,2 . Interestingly, the DSI over-
critical regime _! > _!,2 is not filled with an infinite number of cyclic flows such
as represented in Fig. 6b. Instead, there is a ’limit cycle’ [85], i.e., an isolated closed
trajectory at which flows terminate [14] (see Fig. 7).

××

U2 =
cos(θ) -sin(θ)

sin(θ) cos(θ)

-1.0 -0.5 0.5 1.0
Re(U11)

-1.0

-0.5

0.5

1.0
Re(U12)

Fig. 7 A two dimensional projection of the (four dimensional) RG picture of the system � =

34
G − 2/G4. The four boundary conditions at G = ! are parametrized by a unitary 2 × 2 matrix* .

The initial conditions for the dashed blue flows are specified by choosing \ = −c, . . . , −c/10, 0
for the * matrix as displayed. All the trajectories flow towards a limit cycle. There exists a non-
unitary fixed point, denoted by the blue cross, which is enclosed by the cycle when projected down
onto any two dimensional subspace.

5.2 QED in 2 + 1 dimensions and T fermionic flavors

The study of dynamical fermion mass generation in 2 + 1 dimensional quantum
electrodynamics (QED) [8, 38] provides an interesting many body instance of the
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CSI to DSI transition. Consider the 2 + 1 dimensional QED Lagrangian

L = 8Ψ̄W`
(
m` − 84�`

)
Ψ − 1

4
�`a�

`a (5.49)

where Ψ is a vector of # identical types of fermion fields with zero mass. In this
theory, 42 or alternatively U ≡ #42/8, is a dimension-full coupling. Analogous to
the short distance cutoff ! of sections 2, 3, 5.1, U constitutes the only energy scale
of the theory. Consequently, the low energy regime � � U can be shown to exhibit
CSI.

The understand whether or not fermion mass appears as a result of quantum
fluctuations it is required to calculate the fermion propagator, specifically, the self-
energy Σ (?). Under a particular (non-perturbative) approximation scheme [8], the
expression for Σ (?) can be extracted from the solution of the following differential
equation

− Σ′′ (?) − 2
?
Σ′ (?) −

_&

?2 + Σ (?)2
Σ (?) = 0, 0 < ? < U (5.50)

with boundary condition

U
Σ′ (U)
Σ (U) = −1 (5.51)

where _& ≡ 8/
(
c2#

)
. Close to a transition point the fermion mass and thereby Σ (?)

are non-zero but arbitrarily small such that Σ (?) � ? < U. As a result, (5.50) can
be further approximated by assuming Σ (?)2 in the denominator is a constant which
we define as Σ (?)2 → <2/_&. Expanding to order <2 yields

− Σ′′ (?) − 2
?
Σ′ (?) −

_&

?2 Σ (?) = −
<2

?4 Σ (?) . (5.52)

A closer look on equations (5.51), (5.52) reveals that they are the same as the
radial form of the Schrödinger equation with a + = −_/A2 potential

−
(
32

3A2 +
3 − 1
A

3

3A
− ; (; + 3 − 2)

A2

)
− _

A2k (A) = −:
2k (A) , ! < A < ∞(5.53)

!
k ′ (!)
k (!) = 6 (5.54)

where : =
√
−� as described in section 2 and in equations (4.31), (4.32). To see this

explicitly, we rewrite (5.51), (5.52) in terms of A ≡ 1/?, k (A) ≡ Σ (?), ! ≡ 1/U
which then yields

−k ′′(A) −
_&

A2 k(A) = −<
2k(A), ! < A < ∞ (5.55)

!
k ′ (!)
k (!) = 1. (5.56)
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Thus, the appearance of a non-vanishing fermion self energy constitutes a system
of the form (5.53), (5.54) with 3 = 1, _ = _& and 6 = 1. The resulting implication
is that a transition from a CSI to DSI occurs at _&,2 = 1/4. For _&,2 < 1/4 there
will be no Σ (?) ≠ 0 solution for the self-energy in the </U � 1 regime. However,
once _& exceeds _&,2 = 1/4 an infinite geometric tower of possible non-trivial
self-energy solutions appears with eigenvalues

<=+1/<= = 4
− c√

_&−_&,2 . (5.57)

The critical point _&,2 = 1/4 corresponds to a critical fermion number #2 = 32/c2

for which the DSI regime is # < #2 . In these term, (5.57) reduces to

<=+1/<= = 4
− c√

1
#
− c2

32

c/
√

8

. (5.58)

5.3 Efimov effect in d dimensions

As described in 2.2, the Efimov effect [23, 24, 12] is a remarkable phenomenon in
which three particles form an infinite geometric ladder of low energy bound states.
The effect occurs when at least two of the three pairs interact with a range that is
small compared to the scattering length. It can be shown that the Efimov effect is
possible only for space dimensions 2.3 < 3 < 3.76 [66] which essentially limits
the phenomenon to 3 dimensions. Interestingly, in the case where 3 is allowed to be
tuned continuously, two CSI to DSI transitions are initiated at the critical dimensions
3− = 2.3, 3+ = 3.76 [61]. In what follows we outline the main features of this result.

Fig. 8 Diagrammatic representation of the atom-diatom scattering amplitude and the diatom prop-
agator [12]. (a) Diagrammatic self-consistent equation for the atom-diatom scattering amplitude.
(b) Diagrammatic self-consistent equation for the diatom field propagator.
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Low energy 3-body observables of locally interacting identical bosons can be
described by an effective field theory with Lagrangian

L = k†
(
8
m

mC
+ 1

2
∇2

)
k + 62

4

(
Δ†Δ

)
− 62

4

(
Δ†k2 + k†2

Δ

)
− 63

36

(
Δ†Δk†k

)
(5.59)

where k is a non-relativistic bosonic atom field, Δ is a non dynamical ’diatom’ field
annihilating two atoms at one point and 62, 63 are bare 2-body and 3-body couplings
respectively. With the diatom field and these interaction terms, it is possible to
reproduce the physics of the Efimov effect [11]. Themain ingredient of this procedure
is the diagramatic calculation of the atom-diatom scattering amplitude as shown in
Fig. 8. The self-consistent equations described in Fig. 8 leads to the following
approximate relation for the s-wave atom-diatom amplitude �B

�B (?) = −
(

4
3

) 3−2
2 4 sin

(
3
2 c

)
c

∫ ∞

0
3@

@

?2 + @2 2�1

( 1
2 1
3
2

;
?2@2

?2 + @2

)
�B (@)

(5.60)
Since there are no dimension-full parameters in (5.60) we are, once again, faced with
a CSI equation, in analogy with the characteristics of equations (2.6), (3.15), (5.47)
and (5.52). By inserting the ansatz �B (?) = ?B−1, two possible solutions for (5.60)
are obtained

�B ≈ 01?
√
B2−1 + 02?

−
√
B2−1 (5.61)

where B2 (3) is a solution of the B→ −B invariant equation

2 sin
(
3c

2

)
2�1

(
3−1+B

2
3−1−B

2
3
2

;
1
4

)
+ cos

( B
2
c

)
= 0. (5.62)

The numerical solution B2 (3) of (5.62) shows that near 3 = 3±, B2 (3±) = 0,
m3B

2 (3−) < 0, m3B2 (3+) > 0 and it is analytic. Consequently, near the critical
dimensions 3±

B2 (3) = ±22
± (3 − 3±) + O (3 − 3±) (5.63)

with 2± > 0. The insertion of (5.63) into (5.61) imply a CSI to DSI transition from
real to complex valued power law behaviour of �B . The DSI regime 3− < 3 < 3+
is consistent with the strip within which the Efimov states appear. Consequently,
close to the critical points 3 = 3±, �B (?) in (5.61) obeys the following DSI scaling
relation (as in (1.1))

�B

(
4

c=

2±
√
|3−3± | ?

)
= 4
− c=

2±
√
|3−3± | �B (?) . (5.64)

The corresponding RG equation for the couplings is

Λ
3

3Λ
� =

1 − B2 (3)
2

(� − �−) (� − �+) (5.65)



222 Omrie Ovdat and Eric Akkermans

where � (Λ) ≡ Λ263 (Λ) /962 (Λ)2, Λ is a UV cutoff and

�± ≡ −
(
1 ±

√
B2 (3)

)
/
(
1 ∓

√
B2 (3)

)
. (5.66)

In accordance with the RG picture detailed in section 4.1, the insertion of (5.63)
shows that the V-function of� contains twofixed points outside the strip 3− < 3 < 3+
which annihilate at 3 = 3±.

6 Summary

The breaking of continuous scale invariance (CSI) into discrete scale invariance
(DSI) is a rich phenomenon with roots in multiple fields in physics. Theoretically,
this transition plays an important role in various fundamental quantum systems such
as the inverse-squared potential (section 2), the massless hydrogen atom (section
3), 2 + 1 dimensional quantum electrodynamics (section 5.2) and the Efimov effect
(sections 2.2 and 5.3). This CSI to DSI transition constitutes a quantum phase
transition which appears for single body and strongly coupled many body systems
and extends through non-relativistic, relativistic and Lifshitz dispersion relations.
In a RG picture the transition describes universal low energy physics without fixed
points and constitutes a physical realization of a limit cycle. Remarkably, the features
of this transition have been measured recently in various systems such as cold atoms,
graphene and Fermi gases [20]. In the DSI phase, the dependence of the geometric
ladder of states on the control parameter (see Table 2) is in the class of Berezinskii-
Kosterlitz-Thouless transitions. This provides an interesting, yet to be studied, bridge
between DSI and two dimensional systems associated with BKT physics.

The characteristics described above provide the motivation to further study the
ingredients associatedwithCSI toDSI transitions andwe expect that these transitions
will have an increasingly important role across the physics community in the future.

More generally, it will be interesting to understand how this phenomenon relate
to recent realization of fractal structure in theories of quantum gravitation [75, 78,
76, 77] or to the characteristics of systems that are placed on an explicit fractal space
[1, 2, 3, 84, 25, 18, 26, 86, 83, 7, 22].
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The random conductance model with heavy tails
on nested fractal graphs

David A. Croydon

Abstract Recently, Kigami’s resistance form framework has been applied to provide
a general approach for deriving the scaling limits of random walks on graphs with
a fractal scaling limit [20, 21]. As an illustrative example, this article describes an
application to the random conductance model with heavy tails on nested fractal
graphs.

Key words: nested fractal, random conductance model, scaling limit, FIN diffusion
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1 Introduction

One of the early motivations for the study of stochastic processes on fractals came
from physics, where there was an interest in understanding the dynamical properties
of disordered media. Specifically, certain examples of the latter were modelled by
critical percolation, which is believed to exhibit large scale fractal structure. (See
[15] for background.) The initial response from the mathematics community was
to construct Brownian motion on idealised fractals, such as the Sierpiński gasket
[27, 34]. Since then, the technology has developed to the point where it can engage
with some of the original questions about critical percolation. For instance, recent
work in this direction underlines that the notion of a resistance form, as introduced
by Kigami to provide a broad framework for studying analysis on fractals [30, 31],
is useful for understanding the scaling limits of various models of random walks
on random graphs in critical regimes [20, 21]. We highlight that resistance forms
are only really applicable in low-dimensional settings, with the stochastic processes
constructed from them typically being point recurrent (note that in the case of the
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standard Brownian motion on R3 , the latter property holds only when 3 = 1, and
this is indeed the only dimension in which the Brownian motion can be described
by a resistance form). A brief introductory survey of the work of [20, 21] already
appears in [19], where a number of applications to random graphs are listed (see also
[4, 5] for some further ones that have appeared more recently), and a conjecture for
critical percolation is made. Here, the aim will be to introduce the general resistance
form results of [20, 21] specifically to an audience that has some familiarity with
analysis on self-similar fractals by presenting in detail an example from [21] which
is of interest in its own right: the random conductance model with heavy tails on
nested fractal graphs.

The nested fractals were originally introduced in [35], and are a class of self-
similar fractals that are finitely-ramified, embedded into Euclidean space and admit
a high degree of symmetry. In the next section we will introduce sequences of graphs
associated with nested fractals, but to keep the presentation concise here, we focus
for the moment on a concrete example of a nested fractal, the Sierpiński gasket in
two dimensions. Let +0 := {G0, G1, G2} ⊆ R2 consist of the vertices of an equilateral
triangle of side length 1. Write k8 (G) := |G + G8 |/2 for 8 = 0, 1, 2. Then there exists
a unique compact set � such that � = ∪2

8=0k8 (�); this is the Sierpiński gasket.
We define the associated Sierpiński gasket graphs (�=)=≥0 by setting the vertex
set + (�=) := +=, where += := ∪2

8=0k8 (+=−1) for = ≥ 1, (note that +0 was already
defined,) and defining the edge set � (�=) to be the collection of pairs of elements
of += at a Euclidean distance 2−= apart. (The first three graphs in this sequence are
shown in Figure 1.) For each =, we associate a stochastic process -= = (-=C )C≥0 by
supposing -= is the continuous timeMarkov chain that has exponential holding times
of unit mean, and at jump times moves to a neighbour of the current location with
uniform probability amongst the possibilities. If we moreover assume that -=0 = G0
for each =, then, from the seminal early works in the area [13, 27, 34, 35] it is known
that (

-=5=C
)
C≥0 →

(
-(�C

)
C≥0

(1.1)

in distribution in � ( [0,∞),R2) (that is, the space of cadlag processes on R2, i.e.
those that are right-continuous and have left-hand limits, equipped with the usual
Skorohod �1-topology – for elementary introductions to this framework, see [16,
Chapter 3] or [39, Chapter 3], for example), where -(� is a strong Markov diffusion
– the so-called Brownianmotion on the Sierpiński gasket, started from G0.We remark
that the terminology ‘Brownian motion’ reflects the fact that -(� is apparently the
most natural stochastic process on the Sierpiński gasket – apart from being a strong
Markov diffusion that arises as a scaling limit of random walks on approximating
lattices, it has a distribution that is invariant under the symmetries of the underlying
space, and also satisfies natural scale invariance properties. Given this, as in other
settings, it is natural to ask how robust a result such as (1.1) is to perturbations in the
environment in which the process -= is based.

One simple, canonical way in which to introduce disorder into the situation is in
terms of the random conductance model. Specifically, let � = (+� , ��) be a locally
finite, connected graph. Let l = (l4)4∈�� be a collection of independent and
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Fig. 1 The Sierpiński gasket graphs �0, �1, �2.

identically distributed (i.i.d.) strictly-positive random variables built on a probability
space with probability measure P; these are the so-called random conductances.
(Actually, for our model of self-similar fractals, we will later allow some local
dependence.) Conditional on l, we define the variable speed random walk (VSRW)
-+ = (-+C )C≥0 to be the continuous-time +�-valued Markov chain with jump rate
from G to H given by lGH if {G, H} ∈ �� , and jump rate 0 otherwise. We obtain the
associated constant speed random walk (CSRW) -� = (-�C )C≥0 by setting the jump
rate along edge G to H to be lGH/a({G}), where

a ({G}) :=
∑

4∈�� : G∈4
l4; (1.2)

note that the latter process has unit mean holding times at each vertex, and so -= as
described in the previous paragraph is simply the CSRW when �= is equipped with
unit conductances l4 ≡ 1.

An important observation is that the VSRW and CSRW experience different
trapping behaviour on edges of large conductance. In particular, if we have an edge
of conductance l4 � 1 (surrounded by other edges of conductance close to 1),
then both the VSRW and CSRW cross the edge order l4 times before escaping.
However, each crossing only takes the VSRW a time of 1/l4, meaning that it is
only trapped for a time of order 1, whereas each crossing for the CSRW takes a
time of order 1, and so the latter process is trapped for a total time of order l4. In
particular, when the weights are bounded away from 0, but not bounded above, we
might expect the VSRW of the random conductance model to behave like the VSRW
on the unweighted graph. For the CSRW, however, we would expect the trapping
to be more significant, potentially leading to anomalous scaling if the weights are
suitably inhomogeneous.

The random conductance model has been studied in a range of settings, via which
the intuition of the previous paragraph has been shown to reflect the actual behaviour
of the VSRW and CSRW. In the case of Z3 with 3 ≥ 2, for example, it has been
established that if the weights are bounded away from 0, then the VSRW always
scales diffusively to a Brownian motion [12]. On the other hand, for the CSRW this
is only true when the weights also have a finite first moment [12]. (In fact, both these
results also apply when 3 = 1, cf. remarks in [17, 21]. See also [2] for the case
when the weights are unbounded below, and [3] for results beyond the case of i.i.d.
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conductances.) For weights whose tail no longer has a first moment, but is in the
normal domain of attraction of an U-stable random variable, namely there exists a
constant 2 ∈ (0,∞) such that

DUP (l4 > D) → 2 (1.3)

as D → ∞, one instead sees as a scaling limit for the CSRW the fractional kinetics
process – this is a Brownian motion subordinated by an U-stable process, which
is subdiffusive [14, 38]. The subordination here reflects that in its first = jumps,
the random walk visits �= sites, and the time spent in these grows like a sum of
= i.i.d. U-stable random variables, so is of order =1/U � = (there are logarithmic
corrections needed when 3 = 2 [38]). In 3 = 1, the simple random walk revisits
sites more often, and so although it is also true that the CSRW is subdiffusive when
the weights satisfy (1.3), the nature of the process is different. Rather, the limiting
process, is a Brownian motion time-changed by the Poisson random measure

a(3G) =
∑
8

E8XG8 (3G), (1.4)

where (E8 , G8)8∈N is a Poisson point process with intensity UE−1−U3E3G, and XG8 is the
probability measure placing all its mass at G8; this random measure can be viewed as
the scaling limit of the random trapping environment [38]. After its introduction in
[25] as a scaling limit for a random walk with strongly inhomogeneous random jump
rates, the Brownian motion time-changed by a is called the Fontes-Isopi-Newman
diffusion.

For fractals, the random conductance model has previously been studied in [32,
33], where homogenisation was shown for certain classes of fractal graphs when the
weights were bounded uniformly below and above. Here, we explain the progress
of [21], in which a framework was developed that allowed unbounded weights, and
particularlyweights satisfying (1.3) to be considered. For the particular case of nested
fractals (the precise definition of which is recalled in the next section), one knows
that diffusions on such spaces are point recurrent, and so it is natural to conjecture
that the nature of the random conductance model is likely to be more closely related
to the one-dimensional Euclidean picture than the higher dimensional situation. The
aim of this article is to explain that this is indeed the case, with the main result
being stated as Theorem 4.5. We note that, although we restrict to nested fractals
here, in [21], the slightly more general setting of uniformly finitely ramified fractals
was considered. Moreover, we also remark that heat kernel estimates for the limiting
processes are given in [22].

The remainder of the article is organised as follows. After introducing the model
in Section 2, we go on to study the renormalisation and homogenisation of associated
resistance metrics in Section 3, and then present the main scaling result in Section 4.
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2 Random conductance model on nested fractal graphs

In this section, we introduce precisely the model that will be of interest in the
remainder of the article, starting with the notion of a nested fractal. For V > 1
and � = {1, 2, · · · , #}, let (k8)8∈� be a family of contraction maps on R3 such that
k8 (G) = V−1*8G + W8 for G ∈ R3 , where*8 is a unitary map and W8 ∈ R3 . As (k8)8∈�
is a family of contraction maps, there exists a unique non-void compact set � such
that � = ∪8∈�k8 (�). We assume the following.

Open set condition There is a non-empty, bounded open set, such that the sets
(k8 (,))8∈� are disjoint and ∪8∈�k8 (,) ⊆ , .

The maps (k8)8∈� have unique fixed points, and we denote the set of these by �8G.
A point G ∈ �8G is called an essential fixed point if there exist 8, 9 ∈ �, 8 ≠ 9 and
H ∈ �8G such that k8 (G) = k 9 (H). We write +0 for the set of essential fixed points.
Denoting k81 ,...,8= = k81 ◦ · · · ◦ k8= for each = ≥ 0 and 81, · · · , 8= ∈ �, we call a set of
the form k81 , · · · ,8= (+0) an =-cell. The further assumptions we make are the following.

Connectivity For any 1-cells � and � ′, there is a sequence � = �0, �1, . . . , �= =
� ′ of 1-cells such that �8−1 ∩ �8 ≠ ∅ for 8 = 1, . . . , =.

Symmetry For any G, H ∈ R3 with G ≠ H, let �GH denote the hyperplane per-
pendicularly bisecting G and H, and *GH denote reflection with respect to �GH . If
G, H ∈ +0 and G ≠ H, then*GH maps =-cells to =-cells, and maps any =-cell which
contains elements on both sides of �GH to itself for each = ≥ 0.

Nesting/Finite ramification If = ≥ 1 and if (81, · · · , 8=) and ( 91, · · · , 9=) are
distinct elements of �=, then

k81 ,...,8= (�)
⋂

k 91 ,..., 9= (�) = k81 ,...,8= (+0)
⋂

k 91 ,..., 9= (+0).

A nested fractal � is a set determined by (k8)8∈� satisfying the above assumptions
with |+0 | ≥ 2. Throughout, we assume without loss of generality that k1 (G) = V−1G
and 0 belongs to +0. We observe that the class of nested fractals was introduced
in [35], and is included in the class of uniformly finitely ramified fractals, first
introduced in [28] (and upon which the random conductance model was studied
in [21]), and the latter collection is included in the class of post-critically finite
self-similar sets [30]. We note that the Sierpiński gasket is a nested fractal, other
examples include the Vicsek set, and Lindstrøm’s snowflake. Some discussion about
the restrictiveness of the axioms for nested fractals appears in [8, Remark 5.25].

Related to the nested fractal itself, we now introduce a sequence of nested fractal
graphs (�=)=≥0. As in the case of the Sierpiński gasket described in the introduction,
the �= has vertex set += given by ∪#

8=1k8 (+=−1), where +0 is as defined above.
Moreover, for each =, the edge set �= of �= consists of the collection of pairs of
vertices that are contained in the same =-cell. We let `= be the counting measure on
+= (placing mass one on each vertex).

Finally for this section, let us describe the version of the random conductance
model that is of interest here. For each = ≥ 1, let l= = (l=4 )4∈�= be a collection
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of strictly-positive random variables built on a probability space with probability
measure P. We assume the following conditions on the weights.

Independence Weights within each =-cell are independent copies of l0.
Uniform lower bound There exists a deterministic constant 2 > 0 such that, P-

a.s.,
l0
4 ≥ 2.

U-stable tail decay There exist constants U ∈ (0, 1) and 2 ∈ (0,∞) such that the
random conductance distribution satisfies

DUP

( ∑
4∈�0

l0
4 > D

)
→ 2 (2.5)

as D →∞.
Given a realisation of weights satisfying these assumptions, we define the variable
speed random walk -=,+ and constant speed random walk -=,� on �=, as per the
conventions in the introduction. Specifically, both have jump chains given by the
simple random walk on the graph �=. The process -=,+ has exponential holding
times, with the mean of the holding times at vertex G ∈ += being given by 1/a= ({G}),
where, similarly to (1.2),

a= ({G}) :=
∑

4∈�=: G∈4
l=4 ; (2.6)

the process -=,� has unit mean exponential holding times. The so-called quenched,
i.e. conditional on the conductances, laws of -=,+ and -=,� started from a vertex
G ∈ += will be denoted %

=,+
G and %

=,�
G , respectively. The corresponding aver-

aged/annealed laws are then given by

P=,+G :=
∫

%=,+G (·) 3P, P=,�G :=
∫

%=,�G (·) 3P.

The aim of this article is to describe scaling limits for both -=,+ and -=,� under
their annealed laws; the main result is stated as Theorem 4.5. Some discussion as
to why we consider the annealed laws, rather than the quenched laws, is given in
Remark 4.8.

3 Homogenisation of resistance

In this section, we will briefly recall the now classical construction of a resistance
metric on a nested fractal via graphical approximations. Following this, we explain
what is perhaps the main result of [21] concerning self-similar fractals, which is that
the same resistance metric arises from the random conductance model defined in the
previous section, i.e. homogenisation of the resistance occurs. Roughly speaking this
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can be interpreted as meaning that, apart from normalisation by a deterministic con-
stant, the randomness of the conductances is insignificant on large scales. Intuitively,
this might be expected since, whilst the tail decay at (2.5) leads to the occasional
exceptionally large edge conductance, or equivalently the occasional exceptionally
small edge resistance, as we rescale, neighbouring points are anyway close in terms
of resistance, and so this does not lead to large scale distortions.

Before getting to resistancemetrics, however, we introduce the canonical Dirichlet
form and Brownian motion on a nested fractal. In Lindstrøm’s original work on
nested fractals [35], transition probabilities (@G,H)G,H∈+0 satisfying @G,G = 0 and∑
H∈+0 @G,H = 1 for G ∈ +0, and also @G,H = @H,G > 0 for G ≠ H ∈ +0 were

introduced. Importantly, it was further established that the quantities (@G,H)G,H∈+0

could be chosen to be invariant under renormalisation in the sense we now describe.
Specifically, define a quadratic form by setting

E0 ( 5 , 5 ) =
1
2

∑
G,H∈+0

@G,H ( 5 (G) − 5 (H))2

for 5 ∈ F0 := { 5 : +0 → R}. One obtains a further quadratic form on the same space
by defining

Ẽ0 ( 5 , 5 ) = inf

{∑
8∈�
E0 (6 ◦ k8 , 6 ◦ k8) : 6 : +1 → R, 6 |+0 = 5

}
for 5 ∈ F0. The invariance under renormalisation of [35, Theorem V.5] then has
the equivalent statement that there exists a constant d > 1 such that E0 = dẼ0.
Moreover, it is now known that the latter condition, together with the assumption
that @ are the entries of a stochastic matrix, ensure the uniqueness of (@G,H)G,H∈+0

(see [37, Theorem 6.8] and [33, Corollary 3.5]). Given (@G,H)G,H∈+0 and d, for = ≥ 1
we then let

E= ( 5 , 5 ) = d=
∑

81 ,...,8=∈�
E0

(
5 ◦ k81 ,...,8= , 5 ◦ k81 ,...,8=

)
for 5 ∈ F= := { 5 : += → R}. One then obtains a canonical quadratic form on � by
setting

E( 5 , 5 ) := lim
=→∞
E= ( 5 |+= , 5 |+= )

for any 5 ∈ F := { 5 ∈ � (�,R) : lim=→∞ E= ( 5 |+= , 5 |+= ) < ∞}. Importantly, the
resulting quadratic form (E, F ) turns out to be a Dirichlet form on !2 (�, `), where
` is the unique self-similar probability measure on �, that is, the only probability
measure satisfying

` =
1
#

∑
8∈�

` ◦ k−1
8 .



236 David A. Croydon

As a consequence, standard machinery from probability theory (see [26], for exam-
ple) yields that there exists a corresponding Markov process -� = (-�C )C≥0, which
is now commonly called the Brownian motion on the nested fractal �.

We next describe the parallel construction of the resistance metric on �. To start
with one possible definition, we observe that from the quadratic form (E, F ), one
obtains a metric on � by defining

'(G, H)−1 := inf {E( 5 , 5 ) : 5 ∈ F , 5 (G) = 1, 5 (H) = 0} , G, H ∈ �, G ≠ H;
(3.7)

this is the resistance metric on �. In fact, the above description of ' yields a one-to-
one relationship between a class of quadratic forms called resistance forms (of which
(E, F ) is one) and a class of metrics called resistance metrics (see [30, Theorems
2.3.4, 2.3.6], for example). An alternative definition of ' is via resistance metrics
on the finite graphs. Specifically, suppose '= is the resistance metric on += induced
by placing conductances according to (d−=@G,H)G,H∈+0 along edges of =-cells, i.e.
setting the conductance from k81 ,...,8= (G) to k81 ,...,8= (H) to be d−=@G,H; alternatively,
'= can be defined from (E=, F=) analogously to (3.7). From the invariance under
renormalisation of E0, one can check that

'= = '< |+= , ∀< ≥ =.

From this it readily follows that we have ' = lim=→∞ '= (G, H) on +∗ = ∪=≥0+=.
In particular, ' |+= = '=. With some additional work to check that (�, ') is the
completion of (+∗, '), we obtain that += converges to � with respect to Hausdorff
topology on compact subsets of (�, '). (See [29] for proofs of these claims.)

It transpires that one obtains the limit described in the preceding paragraph if the
deterministic conductances characterised by (@G,H)G,H∈+0 are replaced by the random
conductances of the previous section. That is, suppose 'l= is the resistance metric
on += induced by placing conductances according to (2d−=l=4 )4∈�= along edges of
the graph, where 2 ∈ (0,∞) is a deterministic constant that depends on the law of
the conductances; this is the metric given by (3.7) for the following quadratic form

1
22
d=

∑
81 ,...,8=∈�

∑
G,H∈+0

l=
k81 ,...,8= (G) ,k81 ,...,8= (H)

(
5 ◦ k81 ,...,8= (G) − 5 ◦ k81 ,...,8= (H)

)2
,

which is defined for 5 ∈ F=. From [21, Theorem 6.11], we then have that, in
P-probability, (

'l= (G, H)
)
G,H∈+0

→ ('(G, H))G,H∈+0 , (3.8)

wherewe note that the constant 2 is determined by this result. The proof in [21], which
can heuristically be understood as establishing contractivity of a renormalisation
map, resembles that of the corresponding results in [32, 33]. However, the lack of a
uniform upper bound on the conductances leads to significant technical challenges,
particularly in checking that certain quantities are integrable, as is required for the
argument to work. From (3.8) and the trivial bound that 'l= ≤ �'=, (which follows
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from the fact that the conductances are bounded away from 0,) we readily obtain the
following proposition.

Proposition 3.1 ([21, Lemma 6.14]). In P-probability,

sup
G,H∈+=

��'l= (G, H) − '(G, H)��→ 0.

Since (+=, 'l= ) can not in general be isometrically embedded into (�, '), then the
usual Hausdorff topology on (�, ') is not the right topology with which to discuss
convergence. However, one can instead conclude from the previous result (and some
small additional technical work again depending on the bound 'l= ≤ �'=) that
(+=, 'l= ) converges to (�, ') with respect to the Gromov-Hausdorff topology, that
is, all the spaces in question can be isometrically embedded into a common metric
space so that the += converges to � with respect to the usual Hausdorff metric on
this space (see [18, Chapter 7] for background on the Gromov-Hausdorff topology).

4 Random walk scaling limits

Proposition 3.1 is the main ingredient to proving scaling limits for the variable
speed random walk -=,+ and the constant speed random walk -=,� . Indeed, the
only additional input required is the convergence under scaling of the counting
measure `= and the measure a= defined in terms of conductances at (2.6), which is
straightforward to prove. The machinery that allows us to proceed with this program
is the main result of [20] (which gives a more general version of the result of [21]).

To introduce the abstract result we appeal to precisely, let us fix the frame-
work. In particular, we write F∗2 for the collection of quintuples of the form
( , ' , ` , d , q ), where:  is a non-empty set; ' is a resistance metric on  
such that ( , ' ) is compact; ` is a locally finite Borel regular measure of full
support on ( , ' ); d is a marked point in  , and q is a continuous map from
 to some fixed metric space (", 3" ). From the point of view of metric geome-
try, there is a natural notion of convergence of such spaces which gives rise to the
marked spatial Gromov-Hausdorff-Prohorov topology. Specifically, convergence of
some sequence in F∗2 means that all the spaces can be isometrically embedded into
a common metric space (M, 3M) in such a way that: the embedded sets converge
with respect to the Hausdorff distance, the embedded measures converge weakly, the
embedded marked points converge, and the image of the continuous map is close
in " for points that are close in M. We note that such Gromov-Hausdorff-type
topologies have proved useful for studying various kinds of random metric spaces;
see [18] for an introduction to the classical theory. More specifically, the marked
spatial Gromov-Hausdorff-Prohorov topology was introduced in [11], building on
the notions of the Gromov-Hausdorff-Prohorov/Gromov-Hausdorff-vague topolo-
gies of [1, 7, 24, 36] and the topology for spatial trees of [23] (cf. the spectral
Gromov-Hausdorff topology of [21]).
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Importantly, that the elements ( , ' , ` , d , q ) of F∗2 incorporate a resistance
metric means that there is a naturally associated stochastic process. For, it is a
result of Kigami that the corresponding resistance form, characterised via (3.7), is
a regular Dirichlet form on !2 ( , ` ), and so naturally associated with a Markov
process (see [31], Chapter 9, for example). The following result establishes that, if
the convergence described in the previous paragraph occurs, then we also obtain
convergence of stochastic processes.

Theorem 4.1 ([20, Theorem 7.2]). Suppose that ( =, ' = , ` = , d = , q = )=≥1 is a
sequence in F∗2 satisfying(

 =, ' = , ` = , d = , q =
)
→ ( , ' , ` , d , q ) (4.9)

in the marked spatial Gromov-Hausdorff-Prohorov topology for some element
( , ' , ` , d , q ) ∈ F∗2 . It then holds that

%=d =

( (
q = (-=C )

)
C≥0 ∈ ·

)
→ %d 

(
(q (-C ))C≥0 ∈ ·

)
weakly as probability measures on � (R+, "), where ((-=C )C≥0, (%=G)G∈ = ) is the
Markov process corresponding to ( =, ' = , ` = , d = ), and ((-C )C≥0, (%G)G∈ ) is
the Markov process corresponding to ( , ' , ` , d ).

Remark 4.2. The key to the proof of the above result in [20] is the observation
that for a process associated with a resistance metric, it is possible to explicitly
express the associated resolvent kernel in terms of the resistance metric. (This was
also the basis of the corresponding argument for trees from [6].) Specifically, if
((-C )C≥0, (%G)G∈ ) is the Markov process associated with ( , ' , ` , d , q ) ∈
F∗2 , define the resolvent of - killed on hitting G by

�G 5 (H) = �H
∫ fG

0
5 (-B)3B,

where �H is the expectation under %H , and fG := inf{C ≥ 0 : -C = G} is the hitting
time of G by - . (NB. Processes associated with resistance forms hit points; the above
expression is well-defined and finite.) One can then write

�G 5 (H) =
∫
 

6G (H, I) 5 (I)` (3I),

where the resolvent kernel is given by

6G (H, I) =
' (G, H) + ' (G, I) − ' (H, I)

2
.

(See [31, Theorem 4.3].) Appealing to this formula, the metric measure convergence
at (4.9) enables one to check the convergence of resolvents in a certain sense. One
can then use more standard machinery from probability theory to establish semi-
group convergence, and moreover convergence of finite dimensional distributions.
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To complete the proof, one is also required to check tightness of the processes (see
[16, Chapter 16]), but again this can be deduced from the above resolvent density
formula (or, more precisely, a slight generalisation thereof). See [20] for details.

Remark 4.3. Whilst Theorem 4.1 has an appealingly concise statement, checking the
assumption at (4.9) is by no means trivial. Indeed, beyond the case of graph trees
(or graphs that are close to trees), where the resistance metric corresponds to (or is
close to, respectively) a shortest path metric, or certain finitely ramified self-similar
fractals, where the resistance metric can be studied by using the particular structure
of the space, understanding detailed properties of the resistance metric remains a
challenge. To give just one example of an open problem from theworld of self-similar
fractals, it is still not known how to compute the value of the resistance exponent for
graphs based on the two-dimensional Sierpiński carpet, see [9] for some work in this
direction, and the discussion in [10, Example 4] concerning the graphical Sierpiński
carpet in particular.

We will apply Theorem 4.1 with  = = +=, ' = = 'l= , ` = = `= or ` = = a=,
d = = 0, and q = := �=, where �= is the identity map from  = intoR3 . The following
lemma gives us the scaling limits of the measures. To state the result, we introduce
a Poisson random measure on � by setting

a(3G) =
∑
8

E8XG8 (3G),

where (E8 , G8)8∈N is a Poisson point process with intensity UE−1−U3E`(3G), and XG8
is the probability measure placing all its mass at G8 . (This is the analogue of the
measure defined at (1.4) in the present setting.) Note that the exponent U is given by
the tail of the conductance distribution (2.5).

Lemma 4.4. It holds that #−=`= → `, and also there exists a deterministic constant
20 ∈ (0,∞) such that 2−1

0 #−=/Ua= → a in distribution, in both cases with respect to
the weak topology for finite measures on R3 .

Combining Proposition 3.1 and Lemma 4.4, we readily obtain that(
+=, '

l
= , #

−=`=, 0, �=
)
→ (�, ', `, 0, �) , (4.10)

in P-probability, and(
+=, '

l
= , 2

−1
0 #−=/Ua=, 0, �=

)
→ (�, ', a, 0, �) ,

in distribution under P with respect to the marked spatial Gromov-Hausdorff-
Prohorov topology, where � is the identity map from � into R3 . Since -=,+ is
the process associated with (+=, 2−1d='l= , `=, 0, �=), and -=,� is the process nat-
urally associated with (+=, 2−1d='l= , a=, 0, �=), we are consequently able to apply
Theorem 4.1 to deduce a scaling limit for these processes. (By considering the gen-
erators of the relevant Markov processes, it is readily checked how the resistance
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and mass scaling factors can be interpreted in terms of time scaling.) As for the
limiting processes, we note that the Brownian motion -� is the process associated
with (�, ', `, 0) – we write the law of this process started from 0 as %0. Moreover,
the process associated with (�, ', a, 0) is the time-change of -� according to a, that
is, defining an additive functional

�C :=
∫ C

0
!C (G)a(3G),

where (!C (G))G∈�, C>0 are the jointly continuous local times of -� (with respect to
`), and its right-continuous inverse g(C) := inf{B > 0 : �B > C}, we set

-
�,a
C := -�

g (C) ;

following the definition of the corresponding one-dimensional process in [25], we
call this the FIN diffusion on �. The averaged/annealed law of the FIN diffusion on
�, started from 0, will be denoted

PFIN
0 :=

∫
%0

(
-�,a ∈ ·

)
3P,

i.e. one chooses a according to P, and then the law of -�,a is determined by the law
of -� under %0.

Theorem 4.5. There exists a deterministic constant 21 ∈ (0,∞) such that

P=,+0

((
-
=,+

21C (d# )=
)
C≥0
∈ ·

)
→ %0

((
-�C

)
C≥0
∈ ·

)
weakly as probability measures on � (R+,R3). Moreover, there exists a deterministic
constant 22 ∈ (0,∞) such that

P=,�0

((
-
=,�

22C (d# 1/U)=

)
C≥0
∈ ·

)
→ PFIN

d

((
-
�,a
C

)
C≥0
∈ ·

)
weakly as probability measures on � (R+,R3).

Remark 4.6. To state the result for the Sierpiński gasket explicitly, note that in this
case we have # = 3 and d = 5/3, so that

P=,+0

((
-
=,+

21C5=

)
C≥0
∈ ·

)
→ %0

((
-�C

)
C≥0
∈ ·

)
,

and we also have

P=,�0

((
-
=,�

22C5= (3
1
U −1)=

)
C≥0
∈ ·

)
→ PFIN

0

((
-
�,a
C

)
C≥0
∈ ·

)
.

In particular, the scaling regime for the variable speed random walk matches that
of the simple random walks on the unweighted graphs, as stated at (1.1); and since
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U < 1, the constant speed random walk (or limiting diffusion) moves through the
relevant graph more slowly than the unweighted simple random walk (or Brownian
motion, respectively). Together with known results for simple random walks on
nested fractal graphs, Theorem 4.5 implies that these qualitative comments apply to
nested fractal graphs in general.

Remark 4.7. When El0
4 < ∞ for each 4 ∈ �0, one obtains in place of the second

claim of Lemma 4.4 that there exists a constant 20 such that 2−1
0 #−=a= → `.

Consequently, if (2.5) is replaced by the assumption of finite first moments, then
one can check the annealed limit of -=,� is Brownian motion, rather than the FIN
diffusion that appears in the second statement of Theorem 4.5.

Remark 4.8. A stronger notion of convergence than convergence with respect to the
annealed law is convergence with respect to the quenched law for P-a.e. realisation
of the conductances. Typically, one might hope to be able to prove such a quenched
convergence statement in the case where the conductances homogenise, as has been
established when the underlying graph is a Euclidean lattice (see [2, 3, 12], for ex-
ample). In particular, it would be natural to conjecture that for the example described
in this article, the quenched law of the VSRW -=,+ converges as =→∞ for typical
realisations of the environment. To do this, it would be sufficient to replace the weak
(i.e. in probability) statement of (4.10) with a strong (i.e. P-a.s.) one. However, the
techniques of [21] are not sufficient to yield such a result. As for the CSRW -=,� ,
the typical fluctuations of the conductance environment as = varies will be too large
to permit a quenched limit statement (cf. the law of the iterated logarithm for simple
random walk on Z, which implies that individual sample paths can not be rescaled
to a realisation of Brownian motion on R, even though the discrete paths have the
latter process as a distributional limit).
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Space-time duality for semi-fractional diffusions

Peter Kern and Svenja Lage

Abstract Almost sixty years ago Zolotarev proved a duality result which relates an
U-stable density for U ∈ (1, 2) to the density of a 1

U
-stable distribution on the positive

real line. In recent years Zolotarev duality was the key to show space-time duality
for fractional diffusions stating that certain heat-type fractional equations with a
negative fractional derivative of order U in space are equivalent to corresponding
time-fractional differential equations of order 1

U
. The point source solutions of the

former are given by negatively skewed U-stable densities, whereas the latter are
solved by densities of corresponding inverse 1

U
-stable subordinators. We review this

space-time duality and take it as a recipe for a previously unknown generalization
from the stable to the semistable situation.

Keywords: Zolotarev duality, fractional diffusion, semi-fractional derivative, semi-
stable Lévy process, subordinator, hitting-time
Mathematics Subject Classifications (2010). Primary: 35R11; Secondary: 26A33,
60G18, 60G22, 60G51, 82C31

1 Introduction

The objects of our study are one-dimensional Lévy processes with a certain self-
similarity property. A Lévy process - = (-C )C≥0 on R is a stochastic process starting
in -0 = 0 with the following properties:
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• - has independent increments, i.e. (-C (:) − -C (:−1) ):=1,...,= are independent
random variables for finitely many time points 0 = C (0) < C (1) < · · · < C (=).

• - has stationary increments, i.e. -C − -B
d
= -C−B for all 0 ≤ B ≤ C, where d

=

denotes equality in distribution.
• - is stochastically continuous, i.e. %{|-C − -B | > Y} → 0 as |C − B | → 0 for all
Y > 0.

We will further assume that the process is strictly self-similar in the statistical sense
that

(-2C )C≥0
fd
= (21/U-C )C≥0 for all 2 > 0, (1.1)

where fd
= denotes equality of all joint distributions for finitely many time points. Then

necessarily - is a stable Lévy process with parameter U ∈ (0, 2], where we exclude
the degenerate case -C = `C for some ` ∈ R, corresponding to U = 1. In the case of
U = 2we have Brownianmotionwith a certain variance parameterf2 > 0. Brownian
motion is exceptional among the U-stable Lévy processes, since its sample paths
C ↦→ -C (l) are continuous for almost all l ∈ Ω of the underlying probability space
(Ω,A, %), whereas for 0 < U < 2 the sample paths of an U-stable process are almost
surely càdlàg functions (right-continuous with left limits) with jumps as illustrated
in Figure 1. For all U ∈ (0, 2] the paths of an U-stable process can be considered as
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Fig. 1 Sample paths of a Brownian motion for U = 2 are continuous (left), whereas sample paths
of a stable Lévy process with U ∈ (0, 2) have jumps (right).

random fractals which in many aspects almost surely share the same fractal behavior.
E.g. the Hausdorff dimension of the range, the graph or multiple points only depend
on U and the space dimension for multivariate stable Lévy processes. Classical
results on the fractal behavior of Brownian paths [7, 44, 21] were later extended to
the case of multivariate stable processes in [4, 11, 36, 37, 45, 46, 34, 13] to mention
just a few striking results. For an excellent overview on fractal path behavior we refer
to the survey article [48].

It is further known that -C has a smooth probability density G ↦→ ?(G, C) for
every C > 0, in particular these are �∞ (R)-functions such that the density itself and
all its derivatives belong to �0 (R) ∩ !1 (R). However, no closed form solution of
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stable densities are known besides U = 2 (Gaussian), U = 1 (Cauchy) and a certain
density for U = 1

2 called Lévy density, which becomes important later on. In the
following we will exclude the often exceptional cases U = 2 (Brownian motion)
and U = 1 (Cauchy and degenerate process). Since the description of stable Lévy
processes by their probability densities are not easily accessible, the processes are
best characterized by their Fourier transforms (FT) in terms of the Lévy-Khintchine
formula

E[exp(8: -C )] = ?̂(:, C) = exp(Ck(:))

with log-characteristic function

k(:) = 8`: +
∫
R\{0}

(
48:G − 1 − 8:G

1 + G2

)
3q(G) (1.2)

for some unique drift parameter ` ∈ R and a unique Lévy measure

3q(G) = �
(
? · G−U−11{G>0} + @ · |G |−U−11{G<0}

)
3G, (1.3)

where � > 0 and ?, @ ≥ 0 with ? + @ = 1. Thus it is sufficient to describe the
distribution of -1 for which three additional parameters � > 0, ? ∈ [0, 1] and
` ∈ R are needed besides the parameter U ∈ (0, 2) \ {1}. According to [38], there
is an alternative parametrization of the probability density ?(G, 1) = 6(G;U, V, f, E)
as the unique function with FT

6̂(:;U, V, f, E) = ?̂(:, 1) = exp
(
8E: − fU |: |U

(
1 − 8V sign(:) tan(U c2 )

) )
, (1.4)

where V = ?−@ ∈ [−1, 1] is a skewness parameter, f = (� · | cos(U c2 ) |)
1/U > 0 is a

scale parameter, and E = `−
∫
R\{0} (

G

1+G2 − G 1{U>1})3q(G) is a centering parameter.
In particular, the strict self-similarity (1.1) holds iff E = 0. To visualize the impact

Fig. 2 Stable densities 6 (G; U, 0, 4, 0) for U = 2, U = 1.7 and U = 1.1 (left) and 6 (G; 1.5, V, 1, 0)
for V = 0, V = −0.3, V = −0.6 and V = −1 (right).

of the parameters U and V on ranges that will become important later in this article,
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various stable densities for constant a = 0 and f > 0 are plotted in Figure 2 using
Fourier inversion techniques.

A further description of stable Lévy processes comes from the fact that for suitable
functions 5 the operators )C 5 (G) = E[ 5 (G − -C )], C ≥ 0, determine a �0-semigroup
with generator

! 5 (G) = −` 5 ′(G) +
∫
R\{0}

(
5 (G − H) − 5 (G) + H 5

′(G)
1 + H2

)
3q(G) (1.5)

and FT !̂ 5 (:) = k(:) · 5̂ (:) withk from (1.2) and q as in (1.3). For a comprehensive
overview on (stable) Lévy processes we refer to the monographs [38, 40].

It is well known that for U = 2 the Brownian motion with variance parameter
f2 > 0 has probability density

?(G, C) = 1
√

2cf2C
exp

(
−1

2
G2

f2C

)
for G ∈ R and C > 0

which is a solution to the one-dimensional heat equation

m

mC
?(G, C) = f

2

2
m2

mG2 ?(G, C)

with initial point source ?(G, 0) = X(G). As laid out in [32], for U ∈ (0, 2) \ {1} the
stable densities are point source solutions to the fractional diffusion equation

m

mC
?(G, C) = −E m

mG
?(G, C) + �

(
1 + V

2
mU

mGU
?(G, C) + 1 − V

2
mU

m (−G)U ?(G, C)
)
, (1.6)

where � > 0 if U ∈ (1, 2), � < 0 if U ∈ (0, 1), E ∈ R is a velocity (centering) pa-
rameter, and V ∈ [−1, 1] is the skewness parameter. Here mU

mGU
5 (G) and mU

m(−G)U 5 (G)
denote the positive and negative Riemann-Liouville fractional derivatives defined
for suitable functions 5 as the unique functions with FT (−8:)U 5̂ (:), respectively
(8:)U 5̂ (:). Due to !̂ 5 = k · 5̂ these can also be defined by means of the generators
of U-stable Lévy processes with a = 0 and skewness parameter V = 1, respectively
V = −1. Formally, for integers U ∈ N the FT of the Riemann-Liouville fractional
derivative coincides with

∫
R
4±8:G 5 (U) (G) 3G = 5̂ (U) (±:) and thus fractional deriva-

tives generalize integer order derivatives. For details on fractional calculus we refer
to the monographs [22, 39].

Since stable Lévy processes contain both fractal behavior of sample paths and
probability densities solving a fractional pde, they contribute to an ongoing discus-
sion on the connection of fractal geometry and fractional calculus [23, 43, 6]. The
fractional pde (1.6) is our starting point towards space-time duality for fractional
diffusions. In Section 2 we will review this fractional pde approach and a remarkable
connection to Zolotarev duality. In the special case of a negatively skewed stable
Lévy process with U ∈ (1, 2), the fractional diffusion equation is known to be equiv-
alent to a time-fractional pde with an ordinary first-order derivative in space, which



Space-time duality for semi-fractional diffusions 249

is called space-time duality [1, 19]. This perfectly reflects Zolotarev duality for the
related stable densities. From a physical point of view this space-time duality has
an important impact. Since fractional derivatives are non-local operators, the frac-
tional diffusion equation lacks a meaningful physical interpretation. As mentioned
by Hilfer [12], due to non-locality in space, experimentally a closed system cannot be
separated from its outer environment, whereas non-locality in time does not violate
physical principles if one accepts long memory effects.

We will further consider Lévy processes with a discrete scaling property such
that (1.1) only holds for some 2 > 1 and thus for all integer powers of 2, but not
necessarily for all 2 > 0:

(-2<C )C≥0
fd
= (2</U-C )C≥0 for some 2 > 1 and all < ∈ Z.

These processes are called semistable Lévy processes and are determined by log-
periodic perturbations of the tails of the Lévy measure, i.e. instead of (1.3) we have
for all G > 0

q(G,∞) = G−U\+ (log G) and q(−∞,−G) = G−U\− (log G), (1.7)

where \± are non-negative, log(21/U)-periodic functions such that G ↦→ G−U\± (log G)
are non-increasing, which we call admissable. Replacing the Lévy measure (1.3) by
(1.7), the formulas (1.2) for the log-characteristic function and (1.5) for the generator
remain valid for a semistable Lévy process. For details on semistable distributions
and Lévy processes we refer to the monographs [30, 40]. Log-periodic disturbances
of power law behavior frequently appears in a variety of physical applications [41, 49]
and also in finance [42]. The most prominent example of a semistable Lévy process
which is not stable is the limiting process for the normalized gain in successive
St. Petersburg games derived in [29, 8]. Here, the Lévy measure q is concentrated
on 2Z with q({2<}) = 2−< for all < ∈ Z such that 2 = 2, U = 1, \− ≡ 0
and \+ (G) = 2〈

G
log 2 〉 , where 〈G〉 = G − bGc denotes the fractional part of G ∈ R.

For details see [17] where also fractal path properties of this particular semistable
Lévy process are investigated. However, since U = 1 the example is outside the
scope of this article. In recent years the fractal path behavior of general semistable
Lévy processes has been investigated, complementing the above mentioned classical
results for their stable counterparts. It turned out that in terms ofHausdorff dimension
the range, the graph and multiple points of the sample paths almost surely are not
affected by the log-periodic perturbations [15, 16, 28, 47] even in terms of exact
Hausdorff measure [18]. Nevertheless, semistable Lévy processes show a different
behavior when turning to probability densities which are known to be of class
�∞ (R) again with all its derivatives belonging to �0 (R) ∩ !1 (R). Recently, semi-
fractional derivatives have been introduced in [14] such that densities of semistable
Lévy processes solve corresponding semi-fractional diffusion equations. This new
class of fractional derivatives can be seen as a special case of general fractional
derivatives as in [24, 25]. In Section 3 we ask for a new duality result concerning
the more general class of semistable Lévy processes. The approach allows us to
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develop a novel dual equation with a semi-fractional derivative in time in which
the log-periodic disturbances cause an additional inhomogeneity and thus shows a
significantly different behavior compared to their stable counterpart. Finally, proofs
of our new results are given in Section 4.

2 Fractional Diffusions and Zolotarev Duality

In this section we follow the arguments laid out in [19, 32] to derive the probabilistic
solution to certain fractional diffusion equations by stable densities, and the approach
in [19] to space-time duality in the negatively skewed case. This is best suited to our
desired generalization towards the semistable setting in Section 3.

Wewill frequently make use of the following transforms of our densities for : ∈ R
and B > 0.

Fourier transform (FT): ?̂(:, C) =
∫
R
48:G ?(G, C) 3G

Laplace transform (LT): ?̃(G, B) =
∫ ∞

0
4−BC ?(G, C) 3C

Fourier-Laplace transform (FLT): ?̄(:, B) =
∫ ∞

0

∫
R
4−BC+8:G ?(G, C) 3G 3C

Turning to the FT on both sides of (1.6) yields

m

mC
?̂(:, C) = E 8: ?̂(:, C) + �

(
1 + V

2
(−8:)U + 1 − V

2
(8:)U

)
?̂(:, C)

= E 8: ?̂(:, C) − fU |: |U
(
1 − 8V sign(:) tan(U c2 )

)
?̂(:, C),

(2.8)

where the last equality follows after a short calculation with the scale parameter
f = (−� cos(U c2 ))

1/U > 0; see equations (5.5) and (5.6) in [32] for details. With the
initial conditions ?̂(0, C) = 1 for a probability density, and ?̂(:, 0) = 1 corresponding
to the point source ?(G, 0) = X(G), using (1.4) the unique solution to the ode
(2.8) is given by ?̂(:, C) = 6̂(:;U, V, fC1/U, EC), showing that the stable densities
?(G, C) = 6(G;U, V, fC1/U, EC) solve (1.6).

We now restrict our considerations to the negatively skewed case V = −1 with
U ∈ (1, 2), E = 0 and � = 1. The corresponding fractional diffusion equation

m

mC
?(G, C) = mU

m (−G)U ?(G, C) (2.9)

is solved by the stable densities

?(G, C) = 6
(
G;U,−1,

(��cos
(
U c2

) �� C)1/U
, 0

)
. (2.10)
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Applying FLT to both sides of (2.9) yields B ?̄(:, B) − 1 = (8:)U ?̄(:, B) for the point
source fulfilling ?̂(:, 0) = 1 with solution

?̄(:, B) = 1
B − (8:)U =

1
B − k(:) , (2.11)

where k is as in (1.2) for the Lévy measure q concentrated on the negative axis with
q(−∞,−G) = G−U U−1

Γ(2−U) and ` =
∫ 0
−∞ (

G

1+G2 − G) 3q(G). Note that ?̄ has a single pole
at : = −8 B1/U. Inverting the FT with the help of Cauchy’s residue theorem (details
are given in Section 4), for G > 0 this leads to

?̃(G, B) = 1
U
B−1+1/U exp

(
−G B1/U

)
=

1
U
ℎ̃(G, B) (2.12)

for the Laplace transform (LT) ?̃(G, B) =
∫ ∞

0 4−BC ?(G, C) 3C as shown in [19], where
ℎ̃ is the LT of the inverse 1

U
-stable subordinator (see Remark 2.3) with 1

U
∈ ( 1

2 , 1)
and density

ℎ(G, C) = UC G−1−U6
(
C G−U; 1

U
, 1,

���cos
(

1
U
c
2

)���U , 0) (2.13)

for G > 0; see [31] or equation (4.47) in [32]. Combining (2.10), (2.12) and (2.13) di-
rectly leads to Zolotarev’s duality result relating negatively skewed U-stable densities
for U ∈ (1, 2) with positively skewed 1

U
-stable densities:

Theorem 2.1 ([50], Theorem 1). For U ∈ (1, 2) and stable densities 6 parametrized
as in (1.4) we have for all G > 0 and C > 0

6

(
G;U,−1,

(��cos
(
U c2

) �� C)1/U
, 0

)
= C G−1−U6

(
C G−U; 1

U
, 1,

���cos
(

1
U
c
2

)���U , 0) .
Note that Zolotarev uses a different parametrization which can be transferred to the
above parametrization (1.4) as described in [1]. Zolotarev proved this result in [50]
by transforming the FT of the U-stable density using complex contour integrals; cf.
also Theorem 2.3.1 in [51]. Lukacs [27, Theorem 3.3] gave a different proof using a
series representation of stable densities independently obtained by Bergström [3] and
Feller [10]. In this work of Feller the U-stable density is also shown to be a solution
to a fractional diffusion equation with a fractional integral operator of negative order
−U. It is worth mentioning that Zolotarev duality also holds for arbitrary values
of the skewness parameter V, but then the below interpretation as a solution of a
time-fractional pde fails. Zolotarev’s result further holds for U = 2 which leads to
a closed form expression of a positively skewed 1

2 -stable density, the only closed
form expression known besides the Gaussian and the Cauchy density. This density
is frequently called Lévy density due to its appearance in [26], but according to
section 3.7 in [9] it was already observed by Heavyside in 1871. The fractional pde
connection for the case U = 2 can be found in [2].

Coming back to duality, we now want to show that (2.13) is related to a time-
fractional pde. Therefore, applying FT for G > 0 to (2.12) yields ℎ̄(:, B) = B−1+1/U

B1/U−8:
which leads to the equation
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B1/U ℎ̄(:, B) − B−1+1/U = 8: ℎ̄(:, B).

Inverting the FT on both sides gives

B1/U ℎ̃(G, B) − B−1+1/UX(G) = − m
mG
ℎ̃(G, B). (2.14)

For suitable functions 5 and C ≥ 0 denote by ( m
mC
)W 5 (C) the Caputo fractional

derivative of order W ∈ (0, 1)which is the unique functionwithLT BW 5̃ (B)−BW−1 5 (0),
whereas the Riemann-Liouville fractional derivative mW

mCW
of order W ∈ (0, 1) is the

unique function with LT BW 5̃ (B). Then Laplace inversion on both sides of (2.14)
yields (

m

mC

)1/U
ℎ(G, C) = − m

mG
ℎ(G, C) (2.15)

for G > 0 and C > 0. Since ?(G, C) = U−1ℎ(G, C) by (2.12), the originalU-stable density
? also solves the time-fractional pde (2.15) under point source initial condition
?(G, 0) = X(G) leading directly to space-time duality for fractional diffusions:

Theorem 2.2 ([1, 19]). For G > 0 and C > 0 the point source solutions ?(G, C) of
the fractional diffusion equation (2.9) of order U ∈ (1, 2) and ℎ(G, C) of the time-
fractional pde (2.15) of order 1

U
∈ ( 1

2 , 1) are equivalent, i.e. they are proportional
to each other: ?(G, C) = U−1ℎ(G, C) for all G > 0 and C > 0.

The proof in [1] directly uses Zolotarev duality, whereas the above arguments from
[19] only use FLT techniques and gives the partial result on Zolotarev duality stated
in Theorem 2.1 as a byproduct. In the semistable setup corresponding duality results
are not known in the literature and the above FLT method is our preferable choice in
Section 3 to derive a corresponding semistable duality result.

To illustrate Theorem 2.2 we plotted numerical solutions ?(G, C) of the fractional
diffusion equation (2.9) and ℎ(G, C) of the time-fractional pde (2.15) for fixed C0 = 3.5
and U = 1.5 in Figure 3. For the stable density ?(G, C0) in (2.10) we use a Fourier
inversion technique together with the representation (1.4), whereas ℎ(G, C0) was
approximated from (2.15) by a finite difference method [33] involving Grünwald-
Letnikov differences for the time-fractional derivative. Note that in Figure 1 the ratio
ℎ(G, C0)/?(G, C0) decreases from the true value U = 1.5 at G = 0 almost linearly to 1.2
at G = 4 which is an effect of the rather weak approximation by Grünwald-Letnikov
differences for which the error increases with the distance from the origin.

Remark 2.3. The time-fractional equation (2.15) has the following probabilistic in-
terpretation. If (�C )C≥0 is a 1

U
-stable subordinator, i.e. a 1

U
-stable Lévy process

with almost surely strictly increasing sample paths, then its hitting-time process
(�C := inf{D > 0 : �D > C})C≥0 which is also called an inverse stable subordinator,
has a smooth probability density G ↦→ ℎ(G, C) which solves (2.15) with initial point
source condition; see [31, 32] for details. The space-time duality in Theorem 2.2
does not cover the full range 1

U
∈ (0, 1) for 1

U
-stable subordinators. Extending The-

orem 2.2 for 1
U
∈ (0, 1

2 ) would lead to an equivalent space-fractional pde of order
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Fig. 3 Solutions ? (G, C0) (dashed line) of the fractional diffusion equation (2.9) and ℎ (G, C0) (solid
line) of the time-fractional pde (2.15) for fixed C0 = 3.5 and U = 1.5

U > 2 for which in its full generality no meaningful stochastic solution exists. A first
result towards this direction is given in [20] for 1

U
∈ ( 1

3 ,
1
2 ) leading to a probabilistic

interpretation of a space-fractional pde of order U ∈ (2, 3) by means of an inverse
1
U
-stable subordinator. This stochastic solution is much stronger than the higher order

approach in [5].

3 Duality for Semi-Fractional Diffusions

We now turn to a negatively skewed semistable distribution for U ∈ (1, 2) with a
Lévy measure q as in (1.7) concentrated on the negative axis

q(−∞,−G) = G−U\ (log G) , G > 0.

Here \ is an admissable function, i.e. \ is a positive, log(21/U)-periodic function for
some 2 > 1 and G ↦→ G−U\ (log G) is non-increasing. We will further assume that
\ is smooth, i.e. \ is continuous and piecewise continuously differentiable, hence
representable by a Fourier series
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\ (G) =
∑
=∈Z

2= 4
8=2̃G with 2̃ =

2cU
log 2

.

In the special case of constant \ ≡ 20 =
U−1

Γ(2−U) and ` =
∫ 0
−∞ (

G

1+G2 − G) 3q(G) in
(1.2) this reduces to the stable distribution corresponding to the fractional diffusion
equation (2.9). For the more general semistable distribution with the same drift
parameter ` the corresponding semi-fractional diffusion equation is given by

m

mC
?(G, C) = mU

m2, \ (−G)U
?(G, C). (3.16)

Here, for suitable functions 5 the negative semi-fractional derivative of order U ∈
(1, 2) was recently introduced in [14] by its generator form

mU

m2, \ (−G)U
5 (G) = ! 5 (G) =

∫ 0

−∞
( 5 (G − H) − 5 (G) + H 5 ′(G)) 3q(H)

=

∫ ∞

0
( 5 ′(G + H) − 5 ′(G)) H−U\ (log H) 3H,

(3.17)

where the last equality follows from reflection and integration by parts. As shown
in [14], with this definition the negatively skewed semistable densities G ↦→ ?(G, C)
are a solution to (3.16). Moreover, it was shown in [14] that the corresponding
log-characteristic function admits the series representation

k(:) = −
∑
=∈Z

2= Γ(8=2̃ − U + 1) (8:)U−8=2̃ (3.18)

which for the stable case \ ≡ 20 =
U−1

Γ(2−U) = −
1

Γ(1−U) reduces to k(:) = (8:)
U and

gives back the negative Riemann-Liouville fractional derivative of order U ∈ (1, 2).
Applying the FLT on both sides of (3.16) again yields ?̄(:, B) = 1

B−k (:) as in (2.11)
for the corresponding semistable densities, but now with k from (3.18). We will
show in Lemma 4.1 that the FLT ?̄ has again a single pole at some : = −8b (B) on the
negative imaginary axis which enables us to invert the FT with the help of Cauchy’s
residue theorem to come to:

Theorem 3.1. For U ∈ (1, 2) the LT with respect to time of the semistable densities
corresponding to the the semi-fractional diffusion equation (3.16) takes the form

?̃(G, B) = 1
U

B1/U6(log B) exp
(
−G B1/U6(log B)

)
B + 5 (B) =:

1
U
ℎ̃(G, B), (3.19)

where 6 is a continuously differentiable, log(2)-periodic function and 5 is some
specific function such that B + 5 (B) > 0. Moreover, 5 and 6 only depend on 2 > 1,
U ∈ (1, 2) and the admissible function \.

The proof of Theorem 3.1 is given in Section 4. As in Section 2 we now calculate
the FT of ℎ̃ on the right-hand side of (3.19) and then apply FLT inversion which
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also justifies the LT notation ℎ̃(G, B) in Theorem 3.1. Writing b (B) = B1/U6(log B) to
simplify notation (it turns out that this is indeed the location of the pole of ?̄(:, B) on
the negative imaginary axis stated above) and applying FT for G > 0 to (3.19) yields

ℎ̄(:, B) = b (B)
B + 5 (B)

∫ ∞

0
exp (−G (b (B) − 8:)) 3G

=
b (B)

B + 5 (B)
1

b (B) − 8: =
(

1
B
− 1
B

5 (B)
B + 5 (B)

)
b (B)

b (B) − 8: ,

which leads to the equation

b (B) ℎ̄(:, B) − B−1b (B) − 8: ℎ̄(:, B) = −1
B

5 (B)
B + 5 (B) b (B) =:

1
B
B1/UW(log B).

Inverting the FT on both sides gives

b (B) ℎ̃(G, B) − B−1b (B)X(G) + m

mG
ℎ̃(G, B) = 1

B
B1/UW(log B)X(G). (3.20)

We will show in Lemma 4.3 that W is a smooth log(2)-periodic function and thus W
and 6 from Theorem 3.1 both admit a Fourier series representation

6(G) =
∑
=∈Z

3= 4
−8=3̃G and W(G) =

∑
=∈Z

ℎ= 4
−8=3̃G (3.21)

with 3̃ = 2c
log 2 =

2c 1
U

log 3 for 3 = 21/U > 1. Let us define the functions

g(G) =
∑
=∈Z

3=

Γ(8=3̃ − 1
U
+ 1)

48=3̃G and d(G) =
∑
=∈Z

ℎ=

Γ(8=3̃ − 1
U
+ 1)

48=3̃G

(3.22)
which clearly are log(3U)-periodic functions. Note that formally g(− log B) and
d(− log B) are related to b (B) = B1/U6(log B) and B1/UW(log B) in the same manner
than \ (− log(8:)) is related to −k(:) in (3.18), simply by multiplying the Fourier
coefficients with appropriate values of the gamma function depending on the ad-
missability parameters. We conjecture that g and d are admissable with respect to
the parameters 3 > 1 and 1

U
∈ ( 1

2 , 1). If so, then for suitable functions 5 and C ≥ 0
we may formally introduce the Riemann-Liouville and the Caputo semi-fractional
derivative by LT inversion in analogy to time-fractional derivatives:

m1/U

m3,g C
1/U 5 (C) = A (C) ⇐⇒ Ã (B) = b (B) 5̃ (B),(

m

m3,g C

)1/U
5 (C) = A (C) ⇐⇒ Ã (B) = b (B) 5̃ (B) − B−1b (B) 5 (0).
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Remark 3.2. It is worth mentioning that this formal introduction of semi-fractional
derivatives for functions on the positive real line can be strengthened from a proba-
bilistic perspective. In fact the densities ℎ(G, C) of an inverse 1

U
-semistable subordi-

nator with a log(3U)-periodic admissable function g in the positive tail of the Lévy
measure solve the semi-fractional pde(

m

m3,g C

)1/U
ℎ(G, C) = − m

mG
ℎ(G, C)

in analogy to (2.15) for the densities of an inverse 1
U
-stable subordinator. This fact

is outside the scope of this article and will be published elsewhere.

Finally, since 1
B
=

∫ ∞
0 4−BC 3C is the LT of the function 1(0,∞) (C), we may now rewrite

(3.20) as (
m

m3,g C

)1/U
ℎ(G, C) + m

mG
ℎ(G, C) = X(G) m1/U

m3,d C
1/U 1(0,∞) (C). (3.23)

Similar to (3.17), for suitable functions 5 the semi-fractional Caputo derivative of
order 1

U
∈ (0, 1) (here we have 1

U
∈ ( 1

2 , 1)) with respect to 3 > 1 and the admissable
function d is given in [14] by(

m

m3,dC

)1/U
5 (C) =

∫ ∞

0
5 ′(C − B)B−1/Ud(log B) 3B (3.24)

and the corresponding Riemann-Liouville derivative is obtained by interchanging
differentiation and integration on the right-hand side of (3.24). Hence, on the right-
hand side of (3.23) we get

m1/U

m3,d C
1/U 1(0,∞) (C) =

3

3C

∫ ∞

0
1(0,∞) (C − B) B−1/Ud(log B) 3B

=
3

3C

∫ C

0
B−1/Ud(log B) 3B = C−1/Ud(log C)

which yields (
m

m3,g C

)1/U
ℎ(G, C) + m

mG
ℎ(G, C) = X(G) C−1/Ud(log C). (3.25)

Thus we have shown space-time duality for semi-fractional diffusions:

Theorem 3.3. Assume that g and d in (3.22) are admissable functions with respect
to the parameters 3 = 21/U > 1 and 1

U
∈ ( 1

2 , 1). Then for G > 0 and C > 0 the point
source solutions ?(G, C) of the semi-fractional diffusion equation (3.16) of order
U ∈ (1, 2) in space and ℎ(G, C) of the semi-fractional pde (3.25) of order 1

U
∈ ( 1

2 , 1)
in time are equivalent, i.e. ?(G, C) = U−1ℎ(G, C) for all G > 0 and C > 0.
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Note that with 5 and 6 also g and d do only depend on 2 > 1, U ∈ (1, 2) and the
admissable function \ of the underlying semistable distribution.

4 Proofs for Section 3

For simplicity, we write l= = −2=Γ(8=2̃ − U + 1) for the coefficients in (3.18).
Extending k for I ∈ C shows that

k(I) =
∑
=∈Z

l= (8I)U−8=2̃ = (8I)U
∑
=∈Z

l=4
−8=2̃ log(8I) (4.26)

is an analytic function in the lower half plane, where the series in (4.26) is absolutely
convergent by Theorem 3.1 in [14], and k admits the representation

k(I) =
∫ 0

−∞

(
48IG − 1 − 8IG

)
3q(G). (4.27)

Moreover, since l−= = l= for = ∈ Z, the function

k(−8:) = :U
∑
=∈Z

l=4
−8=2̃ log(:) =: :U<(log :) (4.28)

for : > 0 is a real function such that < is log(21/U)-periodic.

Lemma 4.1. For any B > 0 there is a unique I = I(B) in the lower half plane such
that B = k(I(B)). Moreover, I(B) = −8 b (B) with b (B) > 0 lies on the negative
imaginary axis.

Proof. From (4.27) it can be deduced that for I in the lower half plane k(I) ∈ R iff
I = −8: with : > 0. If we consider the real mapping B(:) = k(−8:) for : > 0 then
by (4.27)

B′(:) =
∫ 0

−∞
G

(
4:G − 1

)
3q(G) > 0

and thus : ↦→ B(:) is a continuously differentiable and strictly increasing function
with lim:↓0 B(:) = 0 and lim:→∞ B(:) = ∞. Hence, for B > 0 there is a unique
b (B) > 0 with B = k(−8 b (B)).

Lemma 4.2. The function b from Lemma 4.1 is continuously differentiable and for
B > 0 we have b (B) = B1/U6(log B) for some log(2)-periodic function 6.

Proof. Since b is the inverse of the function : ↦→ B(:) = k(−8:) appearing in the
proof of Lemma 4.1, it is itself continuously differentiable and strictly increasing.
By (4.28) we get
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k

(
−8 21/Ub (B)

)
= 2 b (B)U<

(
log(21/U) + log b (B)

)
= 2 b (B)U< (log b (B)) = 2 k(−8 b (B))
= 2B = k(−8 b (2B))

and thus we have 21/Ub (B) = b (2B). Defining 6(G) = 4−G/Ub (4G) we get

6(G + log 2) = 4−G/U2−1/Ub (2 4G) = 4−G/Ub (4G) = 6(G).

Proof (of Theorem 3.1). Using equation (4.8.18) in [35], an inversion of the FT of
?̄(:, B) = (B − k(:))−1 for fixed B > 0 gives

?̃(G, B) = 1
2c

lim
)→∞

∫ ) −8 b0

−) −8 b0

4−8:G

B − k(:) 3:, (4.29)

where we choose b0 ∈ (0, b (B)). For large ) > 0 consider the cut semicircle�) +!)
in the lower half plane as in the picture.

)−)

�)

!)−8 b0

−8 b (B)•

Letting : = ) 4−8i we get����∫
�)

4−8:G

B − k(:) 3:
���� ≤ ∫ c

0

) exp(−)G sin i)
|B − k() 4−8i) | 3i→ 0

as) →∞ by dominated convergence, since we can easily derive Rek() 4−8i) → ∞
for i ∈ (0, c). By Lemma 4.1 and Cauchy’s residue theorem we get from (4.29)
with the function B(:) from the proof of Lemma 4.1

?̃(G, B) = −8 Res(−8 b (B)) = 8 4−G b (B)

k ′(−8 b (B)) =
4−G b (B)

B′(b (B))

=
4−G b (B)

b (B)U−1 (U <(log b (B)) + <′(log b (B)))

=
1
U

b (B)4−G b (B)

k(−8 b (B)) + 1
U
b (B)U<′(log b (B))

=
1
U

b (B)4−G b (B)
B + 5 (B) ,

where 5 (B) = 1
U
b (B)U<′(log b (B)). Hence we have shown (3.19) and the denomi-

nator is strictly positive, since B + 5 (B) = U−1b (B) B′(b (B)) > 0. Note that due to the
above approach 5 and 6 only depend on the parameters 2, U and \ of the semistable
distribution.
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Lemma 4.3. Let 5 (B) = 1
U
b (B)U<′(log b (B)) as above. Then we can write

− 5 (B)
B + 5 (B) b (B) = B

1/UW(log B)

for some log(2)-periodic and smooth function W.

Proof. Write

− 5 (B)
B + 5 (B) b (B) =

−6(log B)U<′(log b (B))
U + 6(log B)U<′(log b (B)) B

1/U6(log B) = B1/UW(log B).

Since 6 is log(2)-periodic, < is log(21/U)-periodic and b (2B) = 21/Ub (B), the
assertion follows easily.

Remark 4.4. Note that in the stable case we have k(:) = (8:)U and thus < ≡ 1 in
(4.28) and 6 ≡ 1 in Lemma 4.2 are constant. Thus 5 ≡ 0 in the above proof of
Theorem 3.1 and (3.19) coincides with (2.12).
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From fractals in external DLA to internal DLA
on fractals

Ecaterina Sava-Huss

Abstract We present an unified approach on the behavior of two random growth
models (external DLA and internal DLA) on infinite graphs, the second one being
an internal counterpart of the first one. Even though the two models look pretty
similar, their behavior is completely different: while external DLA tends to build
irregularities and fractal-like structures, internal DLA tends to fill up gaps and to
produce regular clusters. We will also consider the aforementioned models on fractal
graphs like Sierpinski gasket and carpet, and present some recent results and possible
questions to investigate.

Key words: random walks, harmonic measure, cluster models, Sierpinski gasket,
integer lattices, trees, hyperbolic plane, fractal graphs
Mathematics Subject Classifications (2010). Primary: 60J10, 28A80; Secondary:
31A15, 05C81.

1 Introduction

We consider two aggregation models initially introduced in physics in [51] and
[43], and rigorously studied in mathematics over the last three decades, models for
which we present a survey on the existing results and state several open problems.
The models under consideration are external diffusion limited aggregation (shortly
external DLA) and internal diffusion limited aggregation (shortly internal DLA). In
the mathematical community, these two models started to gain interest only a couple
of years after being introduced, with the first results on external DLA in [30, 32],
and on internal DLA in [36]. Only recently, these models became interesting in
the fractals community: few recent results concerning external DLA on the <-
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dimensional pre-Sierpinski carpet as defined in [44], for< ≥ 3 are available. For the
internal DLA on the Sierpinski gasket graph, there are also some limit shape results,
but other than these two examples, there is not much known about the two growth
models on other fractal graphs where, according to simulations which we present
towards to end of the paper, interesting behavior may be observed. With the current
overview, we would like to draw the attention on the beauty of these models.

For the rest of the paper,Gwill be an infinite and locally finite graph, the reference
state space, which will be replaced with concrete examples of graphs as needed. We
denote by > ∈ G a fixed vertex, the origin of the graph G.

External DLA was initially introduced in physics by Witten and Sander [51]
as an example to create ordering out of chaos due to a simple rule. Mathematically,
this ordering is far away from being understood, and new methods and ideas are
needed in order to move forward in this direction. External DLA is a model of
random fractal growth which exhibits self-organized criticality and complex-pattern
formation, and which produces scale-invariant objects whose Hausdorff dimension
is independent of short-range details. Moreover external DLA has no upper critical
dimension as shown in [51]; it is a model which builds a sequence of random
growing sets (E=)=≥0, starting with one particle E0 = {>} at the origin of G. At
each time step, a new particle starts a simple random walk from "infinity" (far away)
and walks until it hits the outer boundary of the existing cluster, where it stops and
settles. In this way, one builds a family (E=)=≥0 of growing clusters; the set E=
consists of exactly = + 1 particles and it is called external DLA cluster. In spite
of these very simple growth rules, only a few rigorous mathematical results about
external DLA are available, results which will be surveyed below. A typical structure
produced on a two-dimensional lattice is shown in Figure 1. External DLAwas found
to well represent growth processes in nature such as growth of bacterial colonies,
electrodeposition, or crystal growth.

Internal DLA is an attempt of a model which eliminates irregularities and fills
gaps, as opposed to external DLA. It was proposed by Meakin and Deutch [43]
as a model of industrial chemical processes such as electropolishing, corrosion and
etching. Diaconis and Fulton in [19] identified internal DLA as a special case of
a “smash sum” operation on subsets of Z2. Internal DLA is a random growth model
which builds a sequence of random growing clusters (I=)=≥0 based on particles
performing random walks, where all the particles start from the same fixed point >.
Typically, one starts with I0 = {>}, and for each =, we let I=+1 be I= plus the first
point where a random walk started at > exits I=. There are several modifications
of this model, where one can start the random walks uniformly at random in the
already existing cluster, or one can start with an initial configuration of particles
on the state space G. As in external DLA, understanding the shape of the limiting
cluster I=, the internal DLA cluster with = + 1 particles, is the main question in this
model. Also, of fundamental significance as mentioned in the initial paper [43], is
to know how smooth a surface formed by internal DLA (processes) may be. These
problems are well understood mathematically on many state spaces, and there are
very precise results available. On the one hand, the limiting object formed from
internal DLA does not show any fractal structure. On the other hand, when running
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Fig. 1 : External DLA cluster
on Z2 with center initially
occupied.

internal DLA on a fractal graph, we have partial results that indicate the absence of
fractal structure, though there remain many more fractal state spaces to be explored.
The crucial difference between the above two models is that the dynamics of the
external model roughens the cluster, whereas the dynamics of the internal model
makes the cluster smoother.

Structure of the paper. After fixing the notation and the basic notions in Sec-
tion 2, we focus on the external DLA model in Section 3, in which we survey the
available results on the growth of arms in this model, number of holes, and variations
of the standard model. The results will not be stated in the chronological order of
publication, but according to the state space they evolve on. Finally, in Section 4 we
survey the results for the limit shapes of the internal DLA cluster, and we include
several questions through the whole paper.

2 Preliminaries

Graphs. Let G be an infinite, locally finite graph (i.e. every vertex has finite degree
denoted by deg(G)). The neighborhood relation will be denoted by ” ∼ ”, and by
G ∼ H we mean that (G, H) is an edge in G. Let > ∈ G be a fixed distinguished
vertex, which will be called the origin or the root. For G, H ∈ G, the distance 3 (G, H)
represents the minimal number of edges on the path connecting G with H. For a
subgraph � of G, we denote by m� the outer boundary of �:

m� = {H ∈ G : H ∉ �, ∃G ∈ � : G ∼ H}.
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For G ∈ G and = ≥ 0, we write B= (G) = {H ∈ G : 3 (G, H) ≤ =} for the ball of radius
= and center G in G. If the center of the ball is >, we write only B=.

Random Walks. Let ((=)=≥0 be a random walk on G, and denote by PG the
probability measure of the random walk started at G. We do not fix yet the transition
probabilities for the random walk, since those will change from case to case, and we
will mention them as needed. For a subset � ⊂ G, let ) (�) be the hitting time of �,
defined as

) (�) = min{= ≥ 0 : (= ∈ �}.

For a set {G} consisting of a single vertex, we write ) (G) instead of ) ({G}). The heat
kernel of the random walk ((=) is defined to be

?= (G, H) = PG [(= = H],

and the Green function � (G, H) is defined as

� (G, H) =
∑
=≥0

?= (G, H),

which is well defined and finite precisely when the random walk is transient. For a
subset � ⊂ G, the killed or the stopped Green function ��(G, H) is defined as

��(G, H) =
∑
=≥0

PG [(= = H, ) (�) > =] .

The hitting distribution ��(G, H) is then

��(G, H) = PG [() (�) = H], for H ∈ �

and () (�) is the hitting position of �. If the random walk ((=) starts at >, we write

ℎ�(H) = P> [() (�) = H], for H ∈ � (2.1)

for the probability of the random walk starting at > to first hit � in H, that is ℎ� is
the harmonic measure (from >) of the set �, and

∑
H∈� ℎ�(H) = 1.

3 External DLA

We define here formally the external DLAmodel, by first explaining what it means to
release a particle at infinity. Several variants of external DLA have been considered,
but we refer here to the original, simplest model, which can be defined on any space
where the notion of randomwalk or diffusion exists. If the Poisson boundary consists
of one point and the randomwalk is recurrent (for instance the case of simple random
walk on Z and Z2), external DLA can be defined so that the law of the location of a
new particle is the harmonic measure of the existing aggregate with pole at infinity.
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If the random walk is transient (such as the case of simple random walk on Z3 , with
3 ≥ 3, or on regular trees T3 of degree 3 ≥ 2, =-dimensional Sierpinski carpet
graph, for = ≥ 3), one can consider the harmonic measure with a pole far away
from the aggregate, let the pole go to infinity and take limits (i.e., conditioning the
random walk coming from infinity to hit the cluster). That is, in defining rigorously
external DLA, we have to distinguish the cases when the random walk ((=) on the
infinite graph G is recurrent or transient; the Poisson boundary of the random walk
also plays a role in this case. We recall that the Poisson boundary of a random walk
is a measure space that describes the stochastically significant behavior of the walk
at infinity. It provides an integral representation of the bounded harmonic functions
of the random walk.

During thewhole paper, whenwe speak about the =-dimensional Sierpinski carpet
graph, we shall also use the notion pre-Sierpinski carpet, and we have in mind the
construction introduced in [44].

We shall write `�(H) for the harmonic measure from infinity, that is, for the
probability to start a random walk at infinity and to hit the finite subset � ⊂ G at the
point H. Depending on whether the graph G is transient or recurrent, this measure
can take different forms, and we cannot define it globally on any general graph here.
This will be made precise in the concrete cases below.

Definition 3.1. Let G be an infinite graph, and ((=) a discrete time random walk
on it. External DLA on G is a Markov chain (E=)=≥0 on finite subsets of G, which
evolves in time in the followingway. Start with a single vertex > ∈ G, that is E0 = {>}.
Given the state E= of the chain at time =, let H=+1 be a random vertex in mE= chosen
according to the harmonic measure (from infinity) of mE=. That is,

P[H=+1 = H |E=] = `mE= (H), for H ∈ mE=,

and we set E=+1 = E= ∪ {H=+1}.

Definition 3.2. The cluster at infinity E∞ for the external DLA process (E=) on G is
defined as

E∞ =
∞⋃
==1
E=.

It is immediate that the external DLA cluster E= at time = contains exactly = + 1
vertices. This model is hard to study. The difficulty comes from the fact that the
dynamics is neither monotone nor local (meaning that if big tentacles surround a
vertex G, then G will never be added to the cluster). By non-monotonicity we mean
that there is no coupling between the external DLA starting from a cluster � and
another from a cluster � ⊂ � such that, at each step, the inclusion of the clusters
remains valid almost surely. Understanding the shape of E= as = → ∞ and the
fractal nature of this object, are problems one would be typically interested in. While
mathematically this is out of reach for the time being, there are other partial results
concerning the growth of arms and the number of holes in external DLA.
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3.1 Integer lattices Zd

In this subsection the state space for the external DLA process is G = Z3 , 3 ≥ 1.
Even for Z3 , there are no results that prove the fractal nature of the limiting object,
or results that prove the zero density in the long run. The first rigorous results go
back to Kesten [30, 32], who gives estimates on the growth of arms in external DLA.
Since for 3 = 1, the behavior of standard external DLA is trivial, we consider 3 ≥ 2,
and let ((=)=≥0 be a simple random walk on Z3 .

For 3 = 2, for any finite nonempty subset � ⊂ Z2, we have ) (�) < ∞ with
probability one, and we define the harmonic measure (from infinity) of �

`�(H) = lim
|G |→∞

��(G, H), (3.2)

where |G | denotes the Euclidean norm of G. The limit lim |G |→∞ corresponds to
"releasing the particle at infinity". In this case, ((=) is recurrent, so that by [50,
Theorem 14.1] the limit in (3.2) exists and

∑
H∈� `�(H) = 1.

For 3 ≥ 3, since the randomwalk ((=) is transient, the limit lim |G |→∞ ��(G, H) in
(3.2) is identically zero (cf [50, Proposition 25.3]). So in order to obtain a nontrivial
limit similar to the one in (3.2), we have to condition on ) (�) being finite. This
conditioning gives the factor of the capacity of the set � in the denominator. In the
case 3 ≥ 3, we define the harmonic measure (from infinity) of a finite subset � ⊂ Z3
as

`�(H) = lim
3 (>,G)→∞

��(G, H)∑
I∈���(G, I)

= lim
3 (>,G)→∞

PG [() (�) = H |) (�) < ∞], for H ∈ �,
(3.3)

which is proportional to the so-called equilibrium measure associated to the set �.
The limit in (3.3) exists again by [50, Proposition 26.2] for 3 = 3 (the same proof
works also for 3 > 3) and satisfies

∑
H∈� `�(H) = 1. Therefore, we have a valid

definition for external DLA, and we let A (E=) to be the radius of E=, defined as

A (E=) = max{|G | : G ∈ E=}, (3.4)

Theorem 3.3. ([31, Theorem] and [30, Corollary]) There exist constants � (3) < ∞
such that with probability 1

lim sup
=→∞

=−2/3A (E=) ≤ � (2), if 3 = 2

lim sup
=→∞

=−2/3A (E=) ≤ � (3), if 3 ≥ 3.

The proof uses classical estimates for the harmonicmeasure (from infinity) as defined
in (3.2) and (3.3) and for the hitting probabilities. Simulations actually indicate that
for 3 = 2, E[A (E=)] ≈ =10/17 but as far as the lower bound is concerned, nothing
has been proven beyond

√
= in the 35 years since the model has been introduced. It

would be very interesting to prove even a logarithmic correction, i.e. to prove that
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E[A (E=)] ≥
√
= log(=). On Z3 , a lower bound on the number # (=) of vertices in B=

which are occupied by the cluster �∞ is known.

Theorem 3.4. [32, Theorem 2] There exist constants � (3) < ∞ such that with
probability 1

# (=) ≥ � (3)=3−1, for infinitely many =.

Another non-trivial result on Z2 concerns the number of holes H= in the external
DLA cluster E=. A hole of E= is a finite connected component of Z2 \ E=.

Theorem 3.5. [21] For any finite connected subset 4 of Z2 we have

P[H= converges to infinity as =→∞|E0 = 4] = 1.

Theorem 3.3 has been improved in [13], where upper bounds on the growth rate of
arms in external DLA cluster are given on a big class of transient graphs with proper-
ties such as: transitive graphs of polynomial growth of degree ≥ 4; transitive graphs
of exponential growth; Z3; non-amenable graphs; =-dimensional pre-Sierpinski gas-
ket graphs (= ≥ 3) as introduced in [44]. In particular, on Z3 the factor =−2/3 from
Theorem 3.3 has been improved to =−1/2/log(=). On the class of transient graphs G
considered in [13], the harmonic measure (from infinity) `� of a set � is defined as
in (3.3).

A directed version of external DLA has been recently introduced on Z2 in [42].
In a series of three papers [2, 3, 1], a one-dimensional external DLAmodel based on
random walks with long jumps (that depend on a parameter U) is proposed, which
tries to capture the fractal nature of the standard DLA. Depending on the values of
U, the random walk ((=) with long jumps on Z may be recurrent or transient, and
for the precise definition of harmonic measure from infinity we refer to those three
papers. The main results of [2, 3] can be summarized into the following theorem.

Theorem 3.6. Let ((=) be a symmetric random walk on Z that satisfies P[|(1−(0 | =
:] ∼ 2:−1−U. Let 3 (E=) be the diameter of the external DLA cluster E=. Then almost
surely:

(a) If U > 3, then = − 1 ≤ 3 (E=) ≤ �= + >(=), where � depends only on U.
(b) If 2 < U ≤ 3, then 3 (E=) = =V+> (1) , where V = 2

U−1 .
(c) If 1 < U < 2, then 3 (E=) = =2+> (1) .
(d) If 1

3 < U < 1, then =V+> (1) ≤ 3 (E=) ≤ =V
′+> (1) , where V = max(2, U−1) and

V′ = 2
U(2−U) .

(e) If 0 < U < 1
3 , then 3 (E=) = =

V+> (1) , where V = U−1.

The last one [1] from the series of three papers mentioned above deals with the
cluster at infinity �∞, and it is shown that for random walks ((=) whose step size has
finite third moment, �∞ has a renewal structure and positive density. In contrast, for
random walks whose step size has finite variance, the renewal structure no longer
exists and �∞ has zero density.
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Theorem 3.7. [1, Theorem 1] Assume that the step distribution b of the random walk
((=) on Z satisfies P[b > =] ≤ �=−U for any = and some U > 3. There exists some
� > 0 such that a.s. E∞ has density �. Further, � is the limit density of E=:

� = lim
<1→∞,<2→∞

|E∞ ∩ [−<1, <2] |
<1 + <2

= lim
=→∞

=

3 (E=)
.

Theorem 3.8. [1, Theorem 2] Assume that there exist 2 < U < 3 and constants
21, 22 > 0 so that b satisfies 21=

−U ≤ P[b > =] ≤ 22=
−U for all = then a.s.

|E∞ ∩ [−=, =] | = =
U−1

2 +> (1) .

In particular, E∞ has zero density in the sense that lim=→∞
|E∞∩[−=,=] |

=
= 0.

The results mentioned above are the only ones available for external DLA on Z3 ,
and the limit shape and the density problem for 3 ≥ 2 still resist a mathematical
proof. There are many open problems and questions in this direction; see [13] for
more details.

Conjecture 3.9. On Z3 , the rate of growth of the radius of the external DLA cluster
E= started at E0 = {0} is of order =1/3:

lim sup
=→∞

=−1/3E[A (E=)] = 0.

Question 3.10. What is the distribution of the number of ends of the cluster at infinity
E∞ on Z3?

Concerning recent progress on external DLA in a wedge of Z3 , we refer to [45].
Furthermore, the reach of Kesten’s idea is extended to non-transitive graphs in [48],
where the (horizontally) translation invariant stationary harmonic measure on the
upper half plane with absorbing boundary condition is defined and it is shown that
the growth of such stationary harmonic measure in a connected subset intersecting
x-axis is sub-linear with respect to the height; see also [47, 46] where the stationary
harmonic measure as a natural growth measure for external DLA model in the upper
planar lattice is investigated.

3.2 Trees Td

One reason that makes the lattice case Z3 hard to investigate is that there is no
simple way to describe the harmonic measure (from infinity) for the boundary of
an external DLA cluster on Z3 . On other state spaces, such as trees, which have no
loops, the model is more tractable and the harmonic measure (from infinity) can
be understood. In [10], an adjusted version of external DLA on 3-regular trees T3 ,
where the fingering phenomenon occurs, was introduced. The dynamics of their
model is as follows: the initial cluster E0 contains only the root. Vertices are then
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added one by one from among those neighboring the current subtree. The choice
of which vertices to add is random, with vertices in generation = (i.e. distance =
from the root) chosen with probabilities proportional to U−= where U > 0 is a fixed
parameter. Then E= is the subtree at step = and let A (E=) = max{3 (>, G) : G ∈ E=}
denote the maximum height of a vertex in E=, which is similar to the radius in (3.4).
For this model, for a finite subtree � ⊂ T3 with boundary m�, its harmonic measure
`U
m�

(from infinity) on m�, with parameter U > 0 can be computed as

`U
m�
(H) = U−3 (>,H)∑

G∈m� U−3 (>,G)
, for H ∈ m�,

see Definition on page 4 in [10]. In the latter paper, the case U < 1 is studied. The
external DLA cluster E= is the position at time = of the Markov chain defined in
Definition 3.1, where E=+1 is obtained from E= by adding a new vertex according to
the harmonic measure defined in the previous equation. For U ≥ 1 it is easy to see
that E∞ is almost surely the entire tree. For U = 1, one has the uniform measure `1

m�

on mE= (this corresponds to the Eden model). From the external DLA perspective,
the case U < 1 is the interesting one, where one obtains the so-called fingering
phenomenon. For this external DLA model, [10] obtained a strong law and a central
limit theorem for the height A (E=) of the DLA cluster.

Theorem 3.11. Let T3 be a d-regular tree and 0 < U < 1. There exist constants
A0 (U, 3) ∈ (0, 1) and f2 = f2 (U, 3) > 0 such that

(a) lim=→∞
A (E=)
=

= A0 (U, 3) a.s.

(b) A (E=)−=A0 (U,3)√
=

D−−→ # (0, f2), as =→∞.

The model considered here can be also interpreted as a model of first passage
percolation on T3 .

3.3 Hyperbolic plane H2

In [22], external DLA on the hyperbolic plane H2 is considered, and it is shown
that the cluster at infinity �∞ almost surely admits a positive upper density. For
completeness, we recall the definition of the upper density of a set, as used in [22].
In a metric measure space - whose diameter is infinite, we say that a locally finite
set � ⊂ - has an upper density greater or equal to 2 if there exist a point ? ∈ - and
a sequence '1 < '2 < · · · such that '8 →∞ as 8 →∞, such that

#
(
� ∩ B'8 (?)

)
≥ 2`(B'8 (?)), ∀8 ∈ N,

where BA (?) is a metric ball centered at ? with radius A and ` is the measure
defined on - . On the hyperbolic plane, one can use this definition with the standard
hyperbolic distance as a metric and the standard Riemannian volume of a set as
a measure. In the hyperbolic setting the behavior of the aggregate is simpler to
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analyze than the Euclidean one; the rate of decay of the hyperbolic potential plays
an important role in understanding the external DLA.

See Figure 2 for a picture of external DLA model with 1000 particles, viewed on
the Poincaré disc model. In his construction, particles are metric balls of radius 1,

Fig. 2 (by Ronen Eldan):
External DLA with 1000
particles, viewed on the
Poincaré disc model.

E0 = {?0}, where ?0 is a fixed point in H2, and recursively E=+1 = E= ∪ {H=+1},
where {H=+1} is added to the aggregate E= according to a (harmonic) measure
`mE= (H) with pole at infinity that has to be carefully constructed on H2, such that
external DLA makes sense in this setting. For details on this construction, we refer
to [22]; the main result of his paper reads as following.

Theorem 3.12. [22, Theorem 1.1] The external DLA cluster at infinity �∞ almost
surely has an upper density greater than 2, where 2 > 0 is an universal constant.

Wewould like to point out the fact that the behavior of externalDLAon the hyperbolic
plane and on the regular tree T3 as considered in [10] is completely different, even
though the hyperbolic plane has a tree-like structure.

3.4 Cylinder graphs

Other results on external DLA that are worth mentioning have been proven in [12] on
cylinder graphs G×N. Let us first fix the notation for the graphs we consider below.
LetG be a finite, connected graph. The cylinder graphwith baseG, denoted byG×N,
is defined as: the vertex set of G × N is + (G) × N = {(E, :) : E ∈ + (G), : ∈ N},
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where + (G) represents the vertex set of G. The edge set is defined by the following
relations: for all D, E ∈ + (G) and all <, : ∈ N, (D, <) ∼ (E, :), that is between
vertices (D, <) and (E, :) there is an edge in G × N, if and only if < = : and D ∼ E
in G, or |< − : | = 1 and D = E. Equivalently, the cylinder with base G is obtained
by just placing infinitely many copies of G one over the other, and connecting each
vertex in a copy to its corresponding vertices in the adjacent copies.

On G × N, particles perform simple random walks ((=) from infinity. Since G is
finite, such random walks are recurrent on G × N, and the harmonic measure from
infinity can be defined similar to the one on Z2, as in (3.2). That is, vertices are
added to the existing cluster E= according to the measure in (3.2). Denote by G< the
induced subgraph on the vertices of G × {<}, for all < ∈ N, and call G< the <-th
level of the cylinder graph G × N. One of the results proven in [12] is that external
DLA on G × N grows arms if the base graph G mixes fast. Recall that the mixing
time Cmix (G) of the simple random walk on G is the time it takes for the random walk
to come close in total-variation distance to the stationary distribution.

Theorem 3.13. [12, Theorem 2.1] Let 2 ≤ 3 ∈ N. There exists =0 = =0 (3), such that
the following holds for all = > =0: let G be a 3-regular graph of size =, and mixing

time Cmix (G) ≤
log2 =

(log log =)5
. Let (EC ) be the external DLA process on G × N with

E0 = G0, and for < ∈ N, let )< be the first time the DLA cluster reaches G<. Then,

for all <, E[)<] <
4<=

log log =
.

This phenomenon is often referred to as the aggregate grows arms, i.e. grows faster
than order |G| particles per layer. As mentioned in [12], the result above is believed
not to be optimal, and a stronger result is conjectured.

Conjecture 3.14. [12, Conjecture 2.2] Let (G=)=≥0 be a family of 3-regular graphs
such that lim=→∞ |G= | = ∞. There exists 0 < W < 1 and =0 such that for all = > =0
the following holds: consider the cylinder graph G= × N with base G= and let (EC )
be the external DLA process on G= ×N with E0 being the zero layer of the cylinder
graph, and )< be the first time the external DLA cluster reaches level < on the
cylinder graph G= × N. Then, for all <, E[)<] ≤ < |G= |W .

Concerning the density of the limit cluster at infinity E∞, for cylinder graphs G ×N
with base G, in the same paper there are two results. To state them, let us define the
empirical density of particles in the finite cylinder G × {1, . . . , <} as

� (<) = 1
<=

<∑
8=1
|E∞ ∩ G8 |

and the density at infinity as � = �∞ = lim<→∞ � (<). Using standard arguments
from ergodic theory one can show that the above limit exists, and is constant almost
surely. The next result relates the density at infinity to the average growth rate.

Theorem 3.15. [12, Theorem 4.2] For the external DLA process on G × N, where
G is a 3-regular graph of size =, we have
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� = lim
<→∞

1
<=

E[)<] .

In [12, Theorem 4.6] the previous result has been improved to � ≤ 2
3 for the case

when the base graph G is a vertex transitive graph. Finally, for a family of base
graphs with small mixing time, the following holds.

Theorem 3.16. [12, Theorem 4.8] Let (G=)=≥0 be a family of 3-regular graphs
(3 ≥ 2) such that lim=→∞ |G= | = ∞, and for all =,

Cmix (G=) ≤
log2 |G= |

(log log |G= |)5
.

Let � (=) be the density at infinity of the external DLA process on G= × N. Then
lim=→∞ � (=) = 0.

We refer to the last section of [12] for several open questions and problems concerning
external DLA on cylinder graphs. Many of the bounds from the previous three results
can be improved, with some careful technicalities and assumptions on the base graph
G.

3.5 Fractal graphs

The appearance of fractal-like structures in DLAmodels (both internal and external)
and their behavior on fractal graphs is the main theme of this paper, and we would
like at this point to introduce two fractal graphs: the Sierpinski gasket graph and the
Sierpinski carpet graph (called also pre-Sierpinski carpet).

Sierpinski gasket graph SG is a pre-fractal associated with the Sierpinski gasket,
defined as follows. We consider in R2 the sets +0 = {(0, 0), (1, 0), (1/2,

√
3/2)} and

�0 =
{(
(0, 0), (1, 0)

)
,
(
(0, 0), (1/2,

√
3/2)

)
,
(
(1, 0), (1/2,

√
3/2)

)}
.

Now recursively define (+1, �1), (+2, �2), . . . by

+=+1 = += ∪
{(

2=, 0
)
++=

} ⋃ {(
2=−1, 2=−1√3

)
++=

}
and

�=+1 = �= ∪ {(2=, 0) + �=}
⋃ {(

2=−1, 2=−1√3
)
+ �=

}
,

where (G, H) + ( := {(G, H) + B : B ∈ (}. Let +∞ = ∪∞
==0+=, �∞ = ∪∞

==0�=,
+ = +∞ ∪ {−+∞} and � = �∞ ∪ {−�∞}. Then the doubly infinite Sierpinski gasket
graph SG is the graph with vertex set + and edge set � . See Figure 3 for a graphical
representation of SG. Set the origin > = (0, 0). External DLA on SG seems to be
an approachable problem, due to the fact that SG is a post-critically finite fractal,
and the existence of cut points simplifies the understanding of the harmonic measure
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from infinity, which can be defined again as in (3.2), since simple random walk on
SG is recurrent. We refer the reader to [8] and [33] for more details on analysis and
diffusion on fractals.

>

Fig. 3 The doubly-infinite Sierpinski gasket graph SG.

Sierpinski carpet graph SC<, called also <-dimensional pre-Sierpinski carpet,
is an infinite graph derived from the Sierpinski carpet. SC2 is constructed from the
unit square in R2 by dividing it into 9 equal squares and deleting the one in the
center. The same procedure is then repeated recursively to the remaining 8 squares.
Asmentioned in the introduction, we use the construction of the pre-Sierpinski carpet
as in [44]. Recall that in this construction, the length scale factor is 3 and the mass
scale factor is 3< − 1. For random walks on such graphs see [9] and the references
therein. See Figure 4 for a finite piece of Sierpinski carpet graph in dimension 2.

For < ≥ 3, simple random walk on SC< is transient, and the harmonic measure
from infinity `�(H) for a finite subset � ⊂ SC< is defined by using the capacity of �
and the equilibrium measure of �, similar to (3.3). More details on the construction
can be found in [13], where upper bounds for the arms A (E=) of external DLA on
a large class of transient graphs, including SC<, < ≥ 3, are proved. Their proofs
are based on good control of heat-kernel estimates. The bounds for SC< read as
following.

Theorem 3.17. [13, Theorem 5.5] Let SC< be the <-dimensional Sierpinski carpet
graph, and (E=)=≥0 the external DLA process on SC< started at E0 = {>} (> is
some fixed origin). Then almost surely,

lim sup
=→∞

=−VA (E=) < ∞

where
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Fig. 4 Sierpinski carpet
graph SC2.

V =

{
log2 (13)−2

3 = 0.5568, if < = 3,
1
2 , if < = 4.

When < ≥ 5, we have almost surely,

lim sup
=→∞

(log =)−1=−
2

3 (<)−2 A (E=) < ∞,

where 3 (<) = log(3< − 1)
log(3< − 1) − log(3<−1 − 1)

.

We would like to conclude the section on external DLA with a couple of prob-
lems/questions.

Question 3.18. Can one find an upper bound for the growth of arms in external DLA
on SG and on SC2 (the random walk is strongly recurrent on these two graphs)? Can
one extend the method Kesten used to upper bound the growth of arms in external
DLA on Z2?

Question 3.19. Dowe have zero density at infinity of the cluster E∞ on the Sierpinski
gasket graph SG?

Question 3.20. Does the external DLA cluster on the Sierpinski gasket graph and on
the Sierpinski carpet graph have infinitely many holes, with probability one, as in
the case of Z2 as proven in [21]?

Other than SG and SC< there is a variety of other fractal graphs one can look at,
and investigate the behavior of external DLA, which can be easier than Z3 .
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Question 3.21. Assuming that the Poisson boundary of the randomwalk on the graph
G is non trivial, is there a characterization of the Poisson boundary in terms of the
number of ends of the external DLA cluster at infinity E∞ on G?

4 Internal DLA

Internal DLA can be defined on any infinite graph G; fix as above a vertex > of G and
call it the origin. The internal DLA cluster is built up one site at a time, by letting the
=-th particle perform a random walk until it exits the set of sites already occupied
by the previous = − 1 particles, the walk of the =-th particle being independent of
the past. Similarly to external DLA, internal DLA is also a Markov chain on finite
subsets of G.

Definition 4.1. Let G be an infinite graph, and ((=) a simple random walk on G
starting at >. Internal DLA on G is a Markov chain (I=)=≥0 on finite connected
subsets of G, which evolves in time in the following way. Start with a single vertex
> ∈ G and set I0 = {>}. Given the state I= of the chain at time =, let H=+1 be a
random vertex in mI= chosen according to the harmonic measure (from >) of mI=, as
defined in (2.1). That is, H=+1 is the first exist location from I= of the simple random
walk ((=) starting from >, independent of the past:

P[H=+1 = H |I=] = ℎmI= (H), for H ∈ mI=,

and we set I=+1 = I= ∪ {H=+1}.

The set I= is called the internal DLA cluster at time =, and it contains = + 1 sites. As
=→∞, we are interested in the asymptotic shape of internal DLA clusterI=, and the
fluctuations of the cluster around the limiting shape. Due to the fact that the harmonic
measure for "nice subsets" (for example balls) of G, when G is an Euclidean lattice,
or a regular tree, is easier to understand than the harmonic measure from infinity as
in the external DLA case, for the internal DLAmodel we have very precise estimates
on many state spaces. Moreover, several variations of the classical internal DLA
have been introduced.

4.1 Integer lattices Zd

The first result concerning the internal DLA goes back to [36], where it is shown
that the limit shape of internal DLA cluster is a ball, in the following sense. Let
l3 be the volume of the 3-dimensional Euclidean ball of radius 1, and B= be the
3-dimensional "lattice ball" of radius =, that is, B= = {G ∈ Z3 : |G | ≤ =}, where |G |
denotes the Euclidean norm of G.
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Theorem 4.2. [36, Theorem 1] At time bl3=3c, internal DLA cluster occupies a set
of sites close to a 3-dimensional ball of radius =. More precisely, for any n > 0, with
probability 1

B=(1−n ) ⊂ Ibl3=3 c ⊂ B=(1+n ) , for n large.

In this first paper, a basic open question on fluctuations (deviation of I= from the
Euclidean ball) was asked: are the fluctuations of order

√
=, of order =X for some

X ∈ (0, 1
2 ), or even smaller? Lawler [35] proved that for 3 ≥ 2, the fluctuations

are subdiffusive and they are of order at most =1/3. While it was conjectured that
the fluctuations are at most logarithmic in the radius, this resisted a mathematical
proof for about 20 years. Two independent groups Jerison, Levine, and Sheffield
[26, 27, 28] and Asselah and Gaudillière [6, 4, 5], and by different methods have
shown that indeed, for 3 = 2 there are log(=) fluctuations, and for 3 ≥ 3, there are√

log(=) fluctuations in the radius. A summary of their results reads as following.

Theorem 4.3. If 3 = 2, there is an absolute constant 2, such that with probability 1,

B=−2 log = ⊂ Ibc=2 c ⊂ B=+2 log =, for all sufficiently large =.

If 3 ≥ 3, there is an absolute constant �, such that with probability 1,

B
=−�
√

log = ⊂ Ibl3=3 c ⊂ B=+�√log =, for all sufficiently large =.

A generalization of the classical internal DLA on Z3 was treated in [39], where
instead of running all particles from the origin, the authors run the process from an
arbitrary starting configuration of particles (initial density of particles) on finer and
finer lattices, all particles still performing simple random walks. They then show
that, as the lattice spacing tends to zero, the internal DLA has a deterministic scaling
limit which can be described as the solution to a certain PDE free boundary problem
in R3 . We do not state here the rigorous result, which requires more notation and
definition, but refer to the lengthy and complex paper [39]. In order to study this
general model, a new model called divisible sandpile was introduced in [38], which
uses a continuous amount of mass instead of discrete particles.

The divisible sandpile model can be briefly described as following: start with an
initial mass ` at the origin >. A vertex is called full if it has mass at least 1. Any
full site can topple by keeping mass 1 for itself and distributing the excess mass
equally among its neighbors. At each time step, one chooses a full site and topples
it. As time goes to infinity, provided each full site is eventually toppled, the mass
approaches a limiting distribution in which each site has mass ≤ 1; this is proved in
[38]. Individual topplings do not commute, but the divisible sandpile is abelian in the
sense that any sequence of topplings produces the same limiting mass distribution;
this is proved in [39, Lemma 3.1]. The set of sites with limit mass distribution equal
to 1 is denoted by S= and is called the divisible sandpile cluster. The asymptotic
shape of the divisible sandpile cluster S= is proven to be the same as the one of the
internal DLA cluster on Z3 in [38], on regular trees in [37], on comb lattices in [24],
and on Sierpinski gasket graphs in [25].
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Random walks with drift on Z3 . If one lets the particles which build up the
internal DLA cluster I= perform drifted randomwalk instead of simple randomwalk
as in the classical model, one can again ask about the shape of the limit cluster on
any state space. On Z3 , this was open for several years, and the cluster was believed
to be represented by the level sets of the Green function for the drifted random walk.
This fact has been disproved, and with the help of the divisible sandpile model, in
[41] it was proven that the internal DLA cluster is a true heat ball, because it gives
rise to a mean-value property for caloric functions. The author introduced there the
unfair divisible sandpile, where the mass is not distributed equally to the neighbors,
but according to the one-step transition probabilities of the drifted random walk; the
limit shape for the unfair divisible sandpile on Z3 was also described there. The main
result for the limit shape for drifted internal DLA can be found in [41, Theorem 1.1],
and for the limit shape of the unfair divisible sandpile cluster in [41, Theorem 3.3].

Uniform starting points. To my knowledge, the most recent result for internal
DLA on Z3 , concerns the limit shape for the cluster when the particles do not all start
from the same vertex >. Instead the starting position is chosen uniformly at random
in the existing cluster. Formally, one can define the internal DLA as in Definition
4.1, starting with I0 = {0}, and given the process at time =, let H=+1 be the first exit
location from I= of the simple random walk (-== starting at -=, where -= is a point
chosen uniformly on I=, independent of the past. Set I=+1 = I=∪{H=+1}. It turns out,
as shown in [11], that this additional source of randomness arising from the choice
of the initial position of the random walk, does not change the limit shape of the
process, as the result below shows. Let 1= := |B= |.

Theorem 4.4. [11, Theorem 1.1] Let 3 ≥ 2. There exist constants 21, 22, �1 and
�2 depending only on the dimension 3 such that, almost surely, the internal DLA
cluster I= on Z3 with uniform starting points satisfies

B=(1−�1=
−21 ) ⊆ I1= ⊆ B=(1+�2=

−22 ) , for = large enough.

Question 4.5. What can we say about the fluctuations of the internal DLA cluster on
Z3 with uniform starting points around the limit shape? Are they bigger (smaller)
that the fluctuations for internal DLAwhen all particles start their randomwalk from
the same vertex >?

Supercritical percolation cluster on Z3: In [49], the underlying state space for
the internal DLA model is the supercritical bond percolation cluster on Z3 , with the
origin conditioned to be in the infinite cluster. It is shown in [49, Theorem 1.1] that
an inner bound for the internal DLA cluster is a ball in the graph metric. The picture
for the outer bound was completed in [20, Theorem 1.1], where the authors show
that also in this case the limit shape is a ball. The results in their paper hold in a
more general setting: given the existence of a "good" inner bound for internal DLA,
one can also prove a matching outer bound by using their methods. An interesting
problem in the context of internal DLA model on a random graph is to understand
the fluctuations.
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4.2 Comb lattices C2

The 2-dimensional comb lattice C2 is the spanning tree of Z2 obtained by removing
all horizontal edges except the ones on the G-axis. While C2 is a simple graph, see
Figure 5 (left), it has some remarkable properties in what concerns the behavior of
random walks: no form of the so-called Einstein relation for exponents associated
with random walks hold on C2, see [14]. Peres and Krishnapur [34] showed that
on C2 two independent simple random walks meet only finitely often. The comb C2
is an example where the limit shape of internal DLA is not a ball in the graph metric
or in another standard metric. Indeed, the diameter of the internal DLA cluster with
= particles grows like =2/3 in the H-direction, and like =1/3 in the G-direction. See
Figure 5 (right) for a picture of the internal DLA cluster with 100, 500, and 1000
particles, respectively.

>

Fig. 5 The comb C2 (left) and internal DLA clusters on C2 (right).

Let

D= =
{
(G, H) ∈ C2 :

|G |
:
+

(
|H |
;

)1/2
≤ =1/3

}
(4.5)

where the constants : and ; are given by

: =

(
3
2

)2/3
, ; =

1
2

(
3
2

)1/3
.
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The inner bound for the limit shape of internal DLA cluster on C2 was proven in
[24, Theorem 4.2], while the outer bound together with the fluctuations was proven
in [7].

Theorem 4.6. [7, Theorem 1.2] There is a positive constant 0 such that with proba-
bility 1, and = large enough

D
=−0
√

log = ⊂ I= ⊂ D=+0√log =.

Remark that this result does not mean that the fluctuations are sub-logarithmic, but
rather Gaussian; see [7, Theorem 1.2] and the comments afterwards. In [24, Theorem
3.5] we also prove that the limit shape for the divisible sandpile cluster on C2 is given
by the set D=.

4.3 Trees Td

Internal DLA on discrete groups with exponential growth has been studied in [16].
The homogeneous tree T3 is a particular case (as a Cayley graph of a free group) of
these state spaces, for which the authors have proven that the limit shape of internal
DLA cluster is a ball in the graph metric, and they give lower bounds for the inner
and outer error. The more general result is the following.

Theorem 4.7. [16, Theorem 3.1] Let G be a finitely generated group of exponential
growth, and consider the internal DLA model (I=) on G, built up with symmetric
random walks with finitely supported increments, starting at the identity > of G.
Then, for any constants �$ > 2 and �� > 3/ ,

P
[
∃=0 B.C. ∀= > =0 : B=−�� ln = ⊂ I|B= | ⊂ B=+�$√=

]
= 1,

where  is a constant that ensures that the ball B= contains the boundary mB=−1,
and B= is the ball of radius = centered at the identity in the word metric on G.

An extension of this result to non-amenable graphs for a wide class of Markov chains
was considered in [23]. On discrete groups with polynomial growth, internal DLA
has been considered in [15].

4.4 Cylinder graphs

Like in Section 3.4, we consider here cylinder graphs G × Z, and we let G to be
the cycle graph Z# on # vertices. Internal DLA on cylinder graphs Z# × Z was
investigated in [29], for the following initial setting. For : ∈ Z, the set Z# × {:}
is called the :-th level of the cylinder, and ': = {(G, H) ∈ Z# × N : H ≤ :} the
rectangle of height : . Let I0 = '0, and given the cluster I= at time =, let H=+1 be
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the first exit location from I= of a random walk that starts uniformly at random on
level zero of the cylinder, independent on the past, that is, the starting location is
chosen with equal probability among the # sites (G, 0), for G ∈ Z# . We then set
I=+1 = I= ∪ {H=+1}. It has been proven in [29, Theorem 2] that the limit shape of
internal DLA clusters on Z# ×Z is logarithmically close to rectangles, result that we
do not state in complete form here, but instead we state a more recent result due to
Levine and Silvestri [40, Theorem 1.1] which generalizes the previous one [29]
(here the fluctuations are described in terms of the Gaussian Free Field exactly).
Remark that in the cylinder setting, there are two parameters, the size # of the cycle
base graph, and the time =.

Theorem 4.8. [40, Theorem 1.1] Let (I=)=≥0 be the internal DLA process on Z# ×Z
starting from I0 = '0. For any W > 0, < ∈ N there exist a constant � = � (W, <)
such that

P[' =
#
−� log # ⊆ I= ⊆ ' =

#
+� log # , = ≤ #<] ≥ 1 − #−W , for N large enough.

For other results concerning the fluctuations and the behavior of internal DLA
clusters on Z# × Z, we refer to [40].

4.5 Fractal graphs

We would like to conclude the section about internal DLA with the behavior of the
model on Sierpinski gasket graphs SG. Recall the definition of the Sierpinski gasket
graph SG and of the Sierpinski carpet graph SC2, as given in Section 3.5. Due to the
symmetry of SG, it is clear that the limit shape of the internal DLA cluster on SG is
a ball in the graph metric, a result proved in [17].

Theorem 4.9. [17, Theorem 1.1] On SG, the internal DLA cluster of |B= | particles
occupies a set of sites close to a ball of radius =. That is, for all n > 0, we have

B=(1−n ) ⊂ I|B= | ⊂ B=(1+n ) , for all n sufficiently large

with probability 1.

A limit shape for the divisible sandpile on SG was described in [25]. Concerning the
fluctuations for internal DLA, it is conjectured that they are sub-logarithmic.

Conjecture 4.10. [18, Conjecture 4.1] There exists � > 0 such that

B
=−�
√

log = ⊂ I|B= | ⊂ B=+�√log =.

Many other questions concerning internal DLA on fractal graphs can be found in the
final section of [18].
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Fig. 6 Internal DLA clusters on SC2 for 10000 up to 150000 particles. Simulations by W.Huss

Question 4.11. Is the limit shape for the internal DLA model with uniform starting
points on SG, again a ball in the graph metric? What about the fluctuations in this
case?

A reason why SG is easier to work with is because 1) it is a finitely ramified fractal
graph, and 2) we have a precise characterization of the divisible sandpile model on
SG, thanks to the finite ramification and the symmetries it possesses. In contrast,
SC2 is infinitely ramified, and characterizing the harmonic measure thereon is a
challenging open question in the study of analysis on fractals. So at the moment it
is very difficult to analyze growth models on SC2. See Figure 6 for the behavior of
internal DLA on SC2.

Question 4.12. Does the internal DLA cluster on the 2-dimensional Sierpinski carpet
graph SC2 have a (unique) scaling limit? What can one say about the boundary of
the limit shape, which according to simulations appears to be of fractal nature?
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Question 4.13. What is the limit shape of internal DLA on fractal graphs, other that
SG (which is understood) and SC2 (which seems hard to investigate)?

Since in most cases, the limit shape for internal DLA is a ball (in the graph metric,
or Euclidean metric, or word metric), a more general question to ask is about the
state space for the process.

Question 4.14. What properties should the state space G and the random walk on it
have, in order for the internal DLA cluster on G to have a ball as limit shape?

Wewould like to conclude this survey with the remark that fractals provide a class
of state spaces with intriguing properties, both for the behavior of the external and
internal DLA model, respectively. This behavior is definitely not fully understood
on such graphs, and we hope to attract more people from the fractal community into
the beauty of these topics.

Acknowledgements I am very grateful to the anonymous referee for a very careful reading of the
manuscript and for several useful comments that improved the paper substantially.
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