A mesoscale approach for dislocation density motion using a Runge-Kutta discontinuous Galerkin method

Katrin Schulz | Lydia Wagner | Christian Wieners
Length scales in plasticity

- **Microscopic (nm)**: defects in atomic lattice
- **Mesoscopic (μm)**: dislocations as line objects, ensembles of dislocations
- **Macroscopic (mm)**: polycrystalline aggregate, material as continuum
Outline

Basic framework in single crystal plasticity
We recall quasi-static single crystal plasticity and a mesoscale evolution model for dislocation densities.

Transport systems for dislocation densities
We recall analytic and numerical properties of linear conservation laws applied to dislocation densities.
We introduce a stable splitting scheme for dislocation densities and curvature.
The method is evaluated by a series of numerical experiments.

Coupling dislocation evolution with elasticity
We consider the fully coupled model combining static elasticity and the evolution of dislocation densities.

FOR 1650
DFG Research Group

Small Strain Single Crystal Plasticity

Let $B \subset \mathbb{R}^3$ be a bounded Lipschitz domain with Dirichlet and Neumann boundary $\partial_D B \cup \partial_N B = \partial B$. The infinitesimal strain ε is given by

$$\varepsilon = \varepsilon(u) = \text{sym}(D u)$$

and the distortion tensor is decomposed additively into elastic and plastic parts

$$D u = \beta^e + \beta^p.$$
Small Strain Single Crystal Plasticity

Let $B \subset \mathbb{R}^3$ be a bounded Lipschitz domain with Dirichlet and Neumann boundary $\partial_D B \cup \partial_N B = \partial B$. The infinitesimal strain ε is given by

$$\varepsilon = \varepsilon(u) = \text{sym}(Du)$$

and the distortion tensor is decomposed additively into elastic and plastic parts

$$Du = \beta^\text{el} + \beta^\text{pl}.$$

Plastic slip is assumed to take place on N slip systems with local ONB $\{d_s, l_s, m_s\}$, where $d_s = \frac{1}{b_s} b_s$ is slip direction, b_s is the Burgers vector of length $b_s = |b_s|$, m_s the slip unit normal, and $l_s = m_s \times d_s$.

The plastic shear strain in the slip system s is denoted by γ_s. We assume

$$\beta^\text{pl} = \sum_s \gamma_s d_s \otimes m_s.$$

The plastic strain depends on the plastic shear strains $\gamma = (\gamma_1, \ldots, \gamma_N)^\top$ by

$$\varepsilon^\text{pl} = \varepsilon^\text{pl}(\gamma) = \text{sym}(\beta^\text{pl}) = \sum_s \gamma_s \text{sym}(d_s \otimes m_s).$$

This defines the elastic strain

$$\varepsilon^\text{el} = \varepsilon^\text{el}(u, \gamma) = \varepsilon(u) - \varepsilon^\text{pl}(\gamma).$$
Small Strain Single Crystal Plasticity

The macroscopic equilibrium equation is given by

\[- \text{div} \sigma = f_B \quad \text{in} \quad B,\]

with the body force f_B and the constitutive relation for the Cauchy stress tensor

$$\sigma = C[\varepsilon^\text{el}] = C[\varepsilon - \varepsilon^\text{pl}]$$

depending on the elasticity tensor C. The macroscopic boundary conditions are

$$u = u_D \quad \text{on} \quad \partial_D B, \quad \sigma n = t_N \quad \text{on} \quad \partial_N B,$$

where u_D is a prescribed boundary displacement and t_N is an applied traction.
Small Strain Single Crystal Plasticity

The macroscopic equilibrium equation is given by

\[- \text{div } \sigma = f_B \text{ in } B,\]

with the body force f_B and the constitutive relation for the Cauchy stress tensor

$$\sigma = C[\varepsilon^{\text{el}}] = C[\varepsilon - \varepsilon^{\text{pl}}]$$

depending on the elasticity tensor C. The macroscopic boundary conditions are

$$u = u_D \text{ on } \partial_D B, \quad \sigma n = t_N \text{ on } \partial_N B,$$

where u_D is a prescribed boundary displacement and t_N is an applied traction.

Let $U = \{ u \in H^1(B, \mathbb{R}^3) : u = 0 \text{ on } \partial_D B \}$, and assume that u_D extends to B.

Then, for given $\varepsilon^{\text{pl}} = \varepsilon^{\text{pl}}(\gamma)$, we have in weak form: find $u \in u_D + U$ such that

$$\int_B C[\varepsilon(u^n) - \varepsilon^{\text{pl}}] \cdot \varepsilon(\delta u) \, dx = \int_B f_B \cdot \delta u \, dx + \int_{\partial_N B} t_N \cdot \delta u \, da, \quad \delta u \in U.$$

Depending on γ, this equation holds for every time $t \in [0, T]$.

The system is closed by determining the evolution of the plastic shear strains γ_s.
Dislocation-based Plasticity

We assume that the plastic shear strain is determined by Orowan’s relation

$$\partial_t \gamma_s = b_s \rho_s \nu_s$$

depending on the dislocation density ρ_s and the dislocation velocity ν_s.

The dislocation density tensor (the so-called Kröner-Nye tensor)

$$\alpha = \nabla \times \beta^\text{pl} = \sum_s \rho_s,\rightharpoonup \mathbf{l}_s \otimes \mathbf{d}_s + \rho_s,\rightharpoonup \mathbf{d}_s \otimes \mathbf{d}_s$$

is determined by the edge and screw dislocation densities

$$\rho_s,\rightharpoonup = -\mathbf{d}_s \cdot \nabla \gamma_s, \quad \rho_s,\rightharpoonup = \mathbf{l}_s \cdot \nabla \gamma_s.$$
Dislocation-based Plasticity

We assume that the plastic shear strain is determined by Orowan’s relation

$$\partial_t \gamma_s = b_s \rho_s \nu_s$$

depending on the dislocation density ρ_s and the dislocation velocity ν_s.

The dislocation density tensor (the so-called Kröner-Nye tensor)

$$\alpha = \nabla \times \beta^\text{pl} = \sum_s \rho_{s,\parallel} l_s \otimes d_s + \rho_{s,\perp} d_s \otimes d_s$$

is determined by the edge and screw dislocation densities

$$\rho_{s,\parallel} = -d_s \cdot \nabla \gamma_s, \quad \rho_{s,\perp} = l_s \cdot \nabla \gamma_s.$$

Defining the dislocation density vectors

$$\kappa_s = -m_s \times \nabla \gamma_s = \frac{1}{b_s} \left(\rho_{s,\parallel} l_s + \rho_{s,\perp} d_s \right), \quad \kappa_s^\perp = -m_s \times \kappa_s$$

yields $\alpha = \sum_s \kappa_s \otimes b_s$. By Orowan’s relation, the evolution of $\kappa_s = m_s \times \kappa_s^\perp$ is

$$\partial_t \kappa_s = \nabla \times \left(\rho_s \nu_s m_s \right).$$
Averaged Continuum Dislocation Dynamics

Following Hochrainer et al., we consider the system

\[
\begin{align*}
\partial_t \rho_s &= -\nabla \cdot \left(v_s \kappa_s^\perp \right) + v_s q_s , \\
\partial_t \kappa_s &= \nabla \times \left(\rho_s v_s m_s \right) , \\
\partial_t q_s &= -\nabla \cdot f_s(\rho_s, \kappa_s, q_s) ,
\end{align*}
\]

where \(q_s \) is the dislocation curvature density, and the curvature density flux is

\[
f_s(\rho_s, \kappa_s, q_s) = \frac{q_s}{\rho_s} \kappa_s^\perp v_s + \frac{1}{2|\kappa_s|^2} \left((\rho_s + |\kappa_s|) \kappa_s \otimes \kappa_s - (\rho_s - |\kappa_s|) \kappa_s^\perp \otimes \kappa_s^\perp \right) \nabla v_s .
\]

The system is closed by a constitutive law \(v_s = v_s(\tau_s, \rho) \) for the dislocation velocity, where \(\tau_s = \sigma d_s \cdot m_s \) is the resolved stress and \(\rho = (\rho_1, \ldots, \rho_N)^T \).
Averaged Continuum Dislocation Dynamics

Following Hochrainer et al., we consider the system

\[
\begin{align*}
\partial_t \rho_s &= -\nabla \cdot \left(v_s \kappa_s^\perp \right) + v_s q_s , \\
\partial_t \kappa_s &= \nabla \times (\rho_s v_s m_s) , \\
\partial_t q_s &= -\nabla \cdot f_s(\rho_s, \kappa_s, q_s) ,
\end{align*}
\]

where \(q_s \) is the dislocation curvature density, and the curvature density flux is

\[
f_s(\rho_s, \kappa_s, q_s) = \frac{q_s}{\rho_s} \kappa_s^\perp v_s + \frac{1}{2|\kappa_s|^2} \left((\rho_s + |\kappa_s|) \kappa_s \otimes \kappa_s - (\rho_s - |\kappa_s|) \kappa_s^\perp \otimes \kappa_s^\perp \right) \nabla v_s .
\]

The system is closed by a constitutive law \(v_s = v_s(\tau_s, \rho) \) for the dislocation velocity, where \(\tau_s = \sigma d_s \cdot m_s \) is the resolved stress and \(\rho = (\rho_1, \ldots, \rho_N)^\top \).

Definition

\((\rho_s, \kappa_s, q_s) \in L_1((0, T) \times B; \mathbb{R} \times \mathbb{R}^3 \times \mathbb{R})\) is weak solution of the above system, if

\[
0 = \int_{(0, T) \times B} \left(\rho_s \partial_t \delta \rho_s + \kappa_s \cdot \partial_t \delta \kappa_s + q_s \partial_t \delta q_s \\
- v_s \kappa_s^\perp \cdot \nabla \delta \rho_s - v_s q_s \delta \rho_s - \rho_s v_s m_s \cdot \nabla \times \delta \kappa_s - f_s(\rho_s, \kappa_s, q_s) \cdot \nabla \delta q_s \right) \, dt \, dx
\]

for all smooth test functions \((\delta \rho_s, \delta \kappa_s, \delta q_s)\) with compact support in \((0, T) \times B\).
The Dislocation Velocity

The CDD system is closed by a constitutive law for the dislocation velocity

\[v_s(\tau^{\text{eff}}_s, \rho_1, \ldots, \rho_S) = \frac{b_s}{B} \text{sgn}(\tau^{\text{eff}}_s) \max \left\{ 0, |\tau^{\text{eff}}_s| - \tau^y_s(\rho_1, \ldots, \rho_S) \right\} \]

depending on the effective stress \(\tau^{\text{eff}}_s\) in the slip system \(s\), a drag coefficient \(B > 0\), and a yield stress \(\tau^y_s\).

The effective stress is given as \(\tau^{\text{eff}}_s = \tau_s - \tau^b_s\) and is computed from the resolved shear stress \(\tau_s = \sigma \cdot \mathbf{M}_s\) including the dislocation eigenstresses and a back stress

\[\tau^b_s = \frac{D\mu b_s}{\rho_s} \nabla \cdot \kappa^\perp_s \]

accounting for short-range dislocation interaction depending on a material parameter \(D\) that acts as a back stress parameter.

The back stress can be evaluated from the plastic shear strain by

\[\tau^b_s = \frac{D\mu}{\rho_s} \nabla \cdot \left(\mathbf{m}_s \times (\mathbf{m}_s \times \nabla \gamma_s) \right) = \frac{D\mu}{\rho_s} \nabla_s \cdot \nabla_s \gamma_s \]

with the projected gradient \(\nabla_s = \mathbf{d}_s (\mathbf{d}_s \cdot \nabla) + \mathbf{l}_s (\mathbf{l}_s \cdot \nabla)\).

Including material dependent interaction coefficients \(a_{sn}\), the yield stress is given by

\[\tau^y_s(\rho_1, \ldots, \rho_S) = \mu b_s \sqrt{\sum_n a_{sn}\rho_n} \]
Analytic Properties of Linear Conservation Laws

We consider the case $\nu \equiv \text{const.}$ and $q \equiv 0$. Define $w = (\rho, \kappa)$ and the flux function F with $\nabla \cdot F(w) = \begin{pmatrix} \nabla \cdot (\nu \kappa) \\ -\nabla \times (\rho \nu \mathbf{m}) \end{pmatrix}$.

For the equation $\partial_t w + \nabla \cdot F(w) = b$ holds:

- The matrix $\mathbf{n} \cdot F$ is symmetric for all \mathbf{n} with eigenvalues 0 and $\pm \nu |\mathbf{m} \times \mathbf{n}|$. Thus, the system is hyperbolic and solutions propagate with speed ν.
Analytic Properties of Linear Conservation Laws

We consider the case \(v \equiv \text{const.} \) and \(q \equiv 0 \).

Define \(w = (\rho, \kappa) \) and the flux function \(F \) with \(\nabla \cdot F(w) = \left(\frac{\nabla \cdot (v \kappa^\perp)}{-\nabla \times (\rho v \mathbf{m})} \right) \).

For the equation \(\partial_t w + \nabla \cdot F(w) = b \) holds:

- The matrix \(n \cdot F \) is symmetric for all \(n \) with eigenvalues 0 and \(\pm v |m \times n| \). Thus, the system is hyperbolic and solutions propagate with speed \(v \).

- Conservative for \(b \equiv 0 \): \(\int w(t) \, dx \equiv \text{const.} \) \(\int |w(t)|^2 \, dx \equiv \text{const.} \).
Analytic Properties of Linear Conservation Laws

We consider the case $v \equiv \text{const.}$ and $q \equiv 0$.

Define $w = (\rho, \kappa)$ and the flux function F with $\nabla \cdot F(w) = \begin{pmatrix} \nabla \cdot (v\kappa^\perp) \\ -\nabla \times (\rho v m) \end{pmatrix}$.

For the equation $\partial_t w + \nabla \cdot F(w) = b$ holds:

- The matrix $n \cdot F$ is symmetric for all n with eigenvalues 0 and $\pm v|m \times n|$. Thus, the system is hyperbolic and solutions propagate with speed v.

- Conservative for $b \equiv 0$: $\int w(t) \, dx \equiv \text{const.}$ \quad $\int |w(t)|^2 \, dx \equiv \text{const.}$

- The operator $Sw = \nabla \cdot F(w)$ generates a semigroup depending on the domain of the operator $\mathcal{D}(S) \subset L_2(\mathbb{R}^3, \mathbb{R} \times \mathbb{R}^3)$.

 This extends to the case that v is sufficiently smooth.
Analytic Properties of Linear Conservation Laws

We consider the case \(v \equiv \text{const.} \) and \(q \equiv 0 \).

Define \(w = (\rho, \kappa) \) and the flux function \(F \) with \(\nabla \cdot F(w) = \begin{pmatrix} \nabla \cdot (v\kappa) \\ -\nabla \times (\rho v m) \end{pmatrix} \).

For the equation \(\partial_t w + \nabla \cdot F(w) = b \) holds:

- The matrix \(n \cdot F \) is symmetric for all \(n \) with eigenvalues 0 and \(\pm v |m \times n| \). Thus, the system is hyperbolic and solutions propagate with speed \(v \).

- Conservative for \(b \equiv 0 \): \(\int w(t) \, dx \equiv \text{const.} \) \(\int |w(t)|^2 \, dx \equiv \text{const.} \)

- The operator \(Sw = \nabla \cdot F(w) \) generates a semigroup depending on the domain of the operator \(D(S) \subset L_2(\mathbb{R}^3, \mathbb{R} \times \mathbb{R}^3) \).
 This extends to the case that \(v \) is sufficiently smooth.

- If the initial value \(w(0) \) and the right-hand side \(b \) are sufficiently smooth, a unique solution of the linear PDE exists. This solution is obtained by adding viscosity, i.e., \(\partial_t w^\varepsilon + \nabla \cdot F(w^\varepsilon) = b + \varepsilon \Delta w^\varepsilon \), and passing to the limit \(\varepsilon \to 0 \).
Analytic Properties of Linear Conservation Laws

We consider the case \(\nu \equiv \text{const.} \) and \(q \equiv 0 \).

Define \(w = (\rho, \kappa) \) and the flux function \(F \) with \(\nabla \cdot F(w) = \left(\nabla \cdot (\nu \kappa^\perp) \right) - \nabla \times (\rho \nu \mathbf{m}) \).

For the equation \(\partial_t w + \nabla \cdot F(w) = b \) holds:

- The matrix \(\mathbf{n} \cdot F \) is symmetric for all \(\mathbf{n} \) with eigenvalues 0 and \(\pm \nu |\mathbf{m} \times \mathbf{n}| \).
 Thus, the system is hyperbolic and solutions propagate with speed \(\nu \).

- Conservative for \(b \equiv 0 \): \(\int w(t) \, d\mathbf{x} \equiv \text{const.} \quad \int |w(t)|^2 \, d\mathbf{x} \equiv \text{const.} \)

- The operator \(Sw = \nabla \cdot F(w) \) generates a semigroup depending on the domain of the operator \(\mathcal{D}(S) \subset L^2(\mathbb{R}^3, \mathbb{R} \times \mathbb{R}^3) \).
 This extends to the case that \(\nu \) is sufficiently smooth.

- If the initial value \(w(0) \) and the right-hand side \(b \) are sufficiently smooth, a unique solution of the linear PDE exists. This solution is obtained by adding viscosity, i.e., \(\partial_t w^\varepsilon + \nabla \cdot F(w^\varepsilon) = b + \varepsilon \Delta w^\varepsilon \), and passing to the limit \(\varepsilon \to 0 \).

- If \(w(0) \in BV(\mathbb{R}^3, \mathbb{R} \times \mathbb{R}^3) \) and \(b \in L^1(\mathbb{R}^3, \mathbb{R} \times \mathbb{R}^3) \), a weak solution in \(BV((0, T) \times \mathbb{R}^3, \mathbb{R} \times \mathbb{R}^3) \) exists.
Riemann Solutions of the Dislocation System

We consider $v_s \equiv \text{const.}$ and straight dislocation densities with $q_s \equiv 0$ of the form

$$\rho_s(t, x) = A_s(\lambda t - x \cdot n)$$

corresponding to a Riemann solution traveling in the direction n with speed λ and amplitude $A_s(\cdot)$.
Riemann Solutions of the Dislocation System

We consider $\nu_s \equiv \text{const.}$ and straight dislocation densities with $q_s \equiv 0$ of the form

$$\rho_s(t, x) = A_s(\lambda t - x \cdot n)$$

traveling in direction n with speed λ and amplitude $A_s(\cdot)$.

Then, $\partial_t \rho_s = \lambda A'_s$, and $\nabla \rho_s = -A'_s n$ yields

$$\partial_t \kappa_s = \nabla \times (\rho_s \nu_s m_s) = -\nu_s m_s \times \nabla \rho_s = -\nu_s A'_s m_s \times n.$$

Thus, with

$$\kappa_s(t, x) = \frac{1}{\lambda} A_s(\lambda t - x \cdot n) m_s \times n, \quad \lambda = \nu_s |m_s \times n|$$

we obtain a solution of the dislocation system.
Riemann Solutions of the Dislocation System

We consider $v_s \equiv \text{const.}$ and straight dislocation densities with $q_s \equiv 0$ of the form

$$\rho_s(t, \mathbf{x}) = A_s(\lambda t - \mathbf{x} \cdot \mathbf{n})$$

traveling in direction \mathbf{n} with speed λ and amplitude $A_s(\cdot)$.

Then, $\partial_t \rho_s = \lambda A'_s$, and $\nabla \rho_s = -A'_s \mathbf{n}$ yields

$$\partial_t \kappa_s = \nabla \times (\rho_s v_s \mathbf{m}_s) = -v_s \mathbf{m}_s \times \nabla \rho_s = -v_s A'_s \mathbf{m}_s \times \mathbf{n}.$$

Thus, with

$$\kappa_s(t, \mathbf{x}) = \frac{1}{\lambda} A_s(\lambda t - \mathbf{x} \cdot \mathbf{n}) \mathbf{m}_s \times \mathbf{n}, \quad \lambda = v_s |\mathbf{m}_s \times \mathbf{n}|$$

we obtain a solution of the dislocation system.

If $A_s(\cdot)$ is discontinuous, this is a weak solution of the dislocation system.
Riemann Solutions of the Dislocation System

We consider $v_s \equiv \text{const.}$ and straight dislocation densities with $q_s \equiv 0$ of the form

$$
\rho_s(t, x) = A_s(\lambda t - x \cdot n)
$$

traveling in direction n with speed λ and amplitude $A_s(\cdot)$.

Then, $\partial_t \rho_s = \lambda A'_s$, and $\nabla \rho_s = -A'_s n$ yields

$$
\partial_t \kappa_s = \nabla \times (\rho_s v_s m_s) = -v_s m_s \times \nabla \rho_s = -v_s A'_s m_s \times n
$$

Thus, with

$$
\kappa_s(t, x) = \frac{1}{\lambda} A_s(\lambda t - x \cdot n) m_s \times n, \quad \lambda = v_s \left| m_s \times n \right|
$$

we obtain a solution of the dislocation system.

If $A_s(\cdot)$ is discontinuous, this is a weak solution of the dislocation system.

A linear combination of discontinuous Riemann solutions with $\rho_s(0) \in \mathbb{Z}$ a.e. in \mathbb{R}^3 results in $\rho_s(t) \in \mathbb{Z}$ a.e. in \mathbb{R}^3, and the boundary of $\rho_s^{-1}(n)$ for $n \in \mathbb{Z}$ in every slip plane $\Gamma_{s,d} = \{x \in \mathbb{R}^3 : x \cdot m_s = d\}$ has finite length in every compact region.
We set $n = l_s + 2d_s$ and $A_s(z) = \begin{cases} 1 & z > 0, \\ -1 & z < 0. \end{cases}$
A Riemann Solution for the Dislocation System

We set \(n = l_s + 2d_s \) and \(A_s(z) = \begin{cases}
1 & z > 0 , \\
-1 & z < 0 .
\end{cases} \)

Note that phase field models for dislocations with energy contribution \(\frac{1}{\varepsilon} \text{dist}(\rho_s, \mathbb{Z})^2 \)
for \(\varepsilon \rightarrow 0 \) also result into solutions in \(BV(\mathbb{R}^3, \mathbb{Z}) \), cf. Conti-Garroni-Müller 2011.
A Riemann Solution for the Dislocation System

We set \(n = l_s + 2d_s \) and \(A_s(z) = \begin{cases} 1 & z > 0, \\ -1 & z < 0. \end{cases} \)
A Riemann Solution for the Dislocation System

We set $n = l_s + 2d_s$ and $A_s(z) = \begin{cases} 1 & z > 0, \\ -1 & z < 0. \end{cases}$

General Observation
Monotone schemes are diffusive and of low order, high order schemes oscillate.
A BV Solution for the Dislocation System

We start with $\rho_s(0) \in BV(\mathbb{R}^3, \mathbb{Z})$.

finite volume (P_0) discontinuous Galerkin (P_2)
Numerical Approximation of Linear Conservation Laws

Let $\mathcal{B} = \bigcup K$ be a decomposition into tetrahedral elements K with faces $f \subset \partial K$. In every slip system s, we consider discontinuous approximations in

$$V_h = \left\{ w_h \in L_2(\mathcal{B}, \mathbb{R} \times \mathbb{R}^3) : w_h \in P_k(K, \mathbb{R} \times \mathbb{R}^3) \right\}.$$

- The central flux $n_f \cdot F^c(w_h) = \frac{1}{2} \left(n_f \cdot F(w_K) + n_f \cdot F(w_K^f) \right)$ converges with

$$\| w - w_h \| = O(h^k).$$
Numerical Approximation of Linear Conservation Laws

Let $\mathcal{B} = \bigcup K$ be a decomposition into tetrahedral elements K with faces $f \subset \partial K$. In every slip system s, we consider discontinuous approximations in

$$V_h = \left\{ w_h \in L^2(\mathcal{B}, \mathbb{R} \times \mathbb{R}^3) : w_h \in P_k(K, \mathbb{R} \times \mathbb{R}^3) \right\}.$$

- The central flux $n_f \cdot F^c(w_h) = \frac{1}{2} \left(n_f \cdot F(w_K) + n_f \cdot F(w_{K_f}) \right)$ converges with

 $$\|w - w_h\| = O(h^k).$$

- The upwind flux $n_f \cdot F^{\text{up}}(w_h)$ obtained by solving the Riemann problem yields

 $$\|w - w_h\| = O(h^{k+1/2}).$$
Numerical Approximation of Linear Conservation Laws

Let $\mathcal{B} = \bigcup K$ be a decomposition into tetrahedral elements K with faces $f \subset \partial K$. In every slip system s, we consider discontinuous approximations in

$$V_h = \{ w_h \in L_2(\mathcal{B}, \mathbb{R} \times \mathbb{R}^3) : w_h \in P_k(K, \mathbb{R} \times \mathbb{R}^3) \}.$$

- The central flux $n_f \cdot F^c(w_h) = \frac{1}{2} \left(n_f \cdot F(w_K) + n_f \cdot F(w_{K_f}) \right)$ converges with
 $$\|w - w_h\| = O(h^k).$$

- The upwind flux $n_f \cdot F^{up}(w_h)$ obtained by solving the Riemann problem yields
 $$\|w - w_h\| = O(h^{k+1/2}).$$

- Explicit time stepping schemes require $\Delta t \leq h/\nu$ (CFL condition).
Numerical Approximation of Linear Conservation Laws

Let $\mathcal{B} = \bigcup K$ be a decomposition into tetrahedral elements K with faces $f \subset \partial K$. In every slip system s, we consider discontinuous approximations in

$$V_h = \{ w_h \in L_2(\mathcal{B}, \mathbb{R} \times \mathbb{R}^3) : w_h \in P_k(K, \mathbb{R} \times \mathbb{R}^3) \}.$$

- The central flux $n_f \cdot F^c(w_h) = \frac{1}{2} \left(n_f \cdot F(w_K) + n_f \cdot F(w_{K_f}) \right)$ converges with
 $$\| w - w_h \| = O(h^k).$$

- The upwind flux $n_f \cdot F^{up}(w_h)$ obtained by solving the Riemann problem yields
 $$\| w - w_h \| = O(h^{k+1/2}).$$

- Explicit time stepping schemes require $\Delta t \leq h/v$ (CFL condition).

- Stable implicit Runge-Kutta schemes require no time step limitation.
Numerical Approximation of Linear Conservation Laws

Let $\mathcal{B} = \bigcup K$ be a decomposition into tetrahedral elements K with faces $f \subset \partial K$. In every slip system s, we consider discontinuous approximations in

$$V_h = \{w_h \in L_2(\mathcal{B}, \mathbb{R} \times \mathbb{R}^3): w_h \in P_k(K, \mathbb{R} \times \mathbb{R}^3)\}.$$

- The central flux $n_f \cdot F^c(w_h) = \frac{1}{2} \left(n_f \cdot F(w_K) + n_f \cdot F(w_{K_f}) \right)$ converges with

$$\|w - w_h\| = O(h^k).$$

- The upwind flux $n_f \cdot F^{up}(w_h)$ obtained by solving the Riemann problem yields

$$\|w - w_h\| = O(h^{k+1/2}).$$

- Explicit time stepping schemes require $\Delta t \leq h/v$ (CFL condition).

- Stable implicit Runge-Kutta schemes require no time step limitation.

- Reversible Runge-Kutta schemes with central flux are energy conserving.
Numerical Approximation of Linear Conservation Laws

Let \(B = \bigcup K \) be a decomposition into tetrahedral elements \(K \) with faces \(f \subset \partial K \). In every slip system \(s \), we consider discontinuous approximations in

\[
V_h = \{ w_h \in L_2(B, \mathbb{R} \times \mathbb{R}^3) : w_h \in P_k(K, \mathbb{R} \times \mathbb{R}^3) \}.
\]

- The central flux \(n_f \cdot F^c(w_h) = \frac{1}{2} \left(n_f \cdot F(w_K) + n_f \cdot F(w_{K_f}) \right) \) converges with

\[
\| w - w_h \| = O(h^k).
\]

- The upwind flux \(n_f \cdot F^{up}(w_h) \) obtained by solving the Riemann problem yields

\[
\| w - w_h \| = O(h^{k+1/2}).
\]

- Explicit time stepping schemes require \(\Delta t \leq h/v \) (CFL condition).

- Stable implicit Runge-Kutta schemes require no time step limitation.

- Reversible Runge-Kutta schemes with central flux are energy conserving.

- Runge-Kutta schemes with upwind flux are monotone (for \(k = 0 \)).
A DG Scheme for the Dislocation System

Strategy (in every slip system s)

- upwind flux for monotone schemes
- explicit splitting in (ρ, κ) and q
- implicit midpoint rule in both systems
 (a stable implicit reversible Runge-Kutta scheme)
A DG Scheme for the Dislocation System

Strategy (in every slip system s)
- upwind flux for monotone schemes
- explicit splitting in (ρ, κ) and q
- implicit midpoint rule in both systems
 (a stable implicit reversible Runge-Kutta scheme)

Time integration for dislocation densities

Weak solutions $\mathbf{w} = (\rho, \kappa)$ satisfying

$$(\partial_t \mathbf{w}, \delta \mathbf{w})_K - (\mathbf{F}(\mathbf{w}), \nabla \delta \mathbf{w})_K + \sum_{f \subset \partial K} (\mathbf{n}_f \cdot \mathbf{F}(\mathbf{w}), \delta \mathbf{w})_f = (\nu q, \delta \mathbf{w})_K$$

are approximated at t_n by $\mathbf{w}_h^n \in V_h$ for given ν_{h-1}^n and q_{h-1}^n by

$$\frac{1}{t_n - t_{n-1}} (\mathbf{w}_h^n - \mathbf{w}_{h-1}^n, \delta \mathbf{w}_h)_K - (\mathbf{F}(\mathbf{w}_h^{n-1/2}), \nabla \delta \mathbf{w}_h)_K$$

$$+ \sum_{f \subset \partial K} (\mathbf{n}_f \cdot \mathbf{F}^{\text{up}}(\mathbf{w}_h^{n-1/2}), \delta \mathbf{w}_h)_f = (\nu_{h-1}^n q_{h-1}^n, \delta \mathbf{w}_h)_K$$

for all $\delta \mathbf{w}_h \in V_h$, where $\mathbf{w}_h^{n-1/2} = \frac{1}{2} (\mathbf{w}_h^n + \mathbf{w}_h^{n-1})$.
A DG Scheme for the Dislocation System

Time integration for the curvature density

Weak solutions q with

$$(\partial_t q, \delta q)_K - (f(\rho, \kappa, q), \nabla \delta q)_K + \sum_{f \subset \partial K} (n_f \cdot f(\rho, \kappa, q), \delta q)_f$$

$$= (g(\rho, \kappa), \nabla \delta q)_K - \sum_{f \subset \partial K} (n_f \cdot g(\rho, \kappa), \delta q)_f,$$

$$f(\rho, \kappa, q) = \frac{v}{\rho} \kappa^\perp, \quad g(\rho, \kappa) = \frac{1}{2|\kappa|^2} \left((\rho + |\kappa|) \kappa \otimes \kappa - (\rho - |\kappa|) \kappa^\perp \otimes \kappa^\perp \right) \nabla v$$

are approximated at t_n by $q^n_h \in V^q_h$ for given v^{n-1}_h and (ρ^n_h, κ^n_h) by

$$\frac{1}{t_n - t_{n-1}} (q^n_h - q^{n-1}_h, \delta q^n_h)_K - (f_{n,h}(q^{n-1/2}_h), \nabla \delta q^n_h)_K + \sum_{f \subset \partial K} (n_f \cdot f_{n,h}^{up}(q^{n-1/2}_h), \delta q^n_h)_f$$

$$= (g_{n,h}, \nabla \delta q^n_h)_K - \sum_{f \subset \partial K} (n_f \cdot g_{n,h}, \delta q^n_h)_f,$$

$$f_{n,h}(q_h) = f(K_h * \rho^n_h, K_h * \kappa^n_h, q_h), \quad g_{n,h} = g(K_h * \rho^n_h, K_h * \kappa^n_h),$$

for all $\delta q^n_h \in V^q_h$ using continuous approximations of $\rho^n_h, \kappa^n_h,$ and $K_h * v^{n-1}_h,$ obtained by convolution with a kernel function $K_h(\cdot, \cdot)$ with small support of size $h.$
A Radial Solution for Constant Velocity

Let \mathbf{r} be the projection of $\mathbf{x} \in \Omega$ on to $\Gamma = \text{span}\{\mathbf{d}, \mathbf{l}\}$ and $z = \mathbf{x} \cdot \mathbf{m}$. Then,

$$
\rho(t, \mathbf{x}) = \frac{1}{2\pi s_r s_z} \exp \left(-\frac{1}{2s_r^2} (|\mathbf{r}| - R(t))^2 - \frac{1}{2s_z^2} z^2 \right)
$$

$$
\kappa(t, \mathbf{x}) = \rho(t, \mathbf{x}) \mathbf{m} \times \frac{\mathbf{r}}{|\mathbf{r}|}
$$

$$
q(t, \mathbf{x}) = \frac{1}{|\mathbf{r}|} \rho(t, \mathbf{x})
$$

solves the CDD system for constant velocity v and radius $R(t) = R_0 + vt$.
A Radial Solution for Constant Velocity

Let \mathbf{r} be the projection of $\mathbf{x} \in \Omega$ on to $\Gamma = \text{span}\{\mathbf{d}, \mathbf{l}\}$ and $z = \mathbf{x} \cdot \mathbf{m}$. Then,

$$
\rho(t, \mathbf{x}) = \frac{1}{2\pi s_r s_z} \exp \left(-\frac{1}{2s_r^2}(|\mathbf{r}| - R(t))^2 - \frac{1}{2s_z^2}z^2 \right)
$$

$$
\kappa(t, \mathbf{x}) = \rho(t, \mathbf{x}) \mathbf{m} \times \frac{\mathbf{r}}{|\mathbf{r}|}
$$

$$
q(t, \mathbf{x}) = \frac{1}{|\mathbf{r}|} \rho(t, \mathbf{x})
$$

solves the CDD system for constant velocity v and radius $R(t) = R_0 + vt$.

![Images of ρ, $\kappa \cdot \mathbf{d}$, $\kappa \cdot \mathbf{l}$, and q.]
A Radial 3d-Solution with Open Boundary

We set $\nu \equiv 1$, and we start with $(\rho_s, \kappa_s, q_s)(0, x) = A_s(0, r_s, z_s) \left(1, \frac{1}{r_s} m_s \times r_s, \frac{1}{r_s}\right)$.

\begin{align*}
\rho(0) & \\
\rho(T) &
\end{align*}
Convergenc (3d) for Different Polynomial Degrees

\[\| \rho - \rho_h \|_2 \quad \| q - q_h \|_2 \]

\[O(n^{-0.5}) \quad O(n^{-2.5}) \]

degrees of freedom \(n \) for \((\rho, \kappa)\) in \(d\)-direction

degrees of freedom \(n \) for \(q\) in \(d\)-direction
Algorithm for the Fully Coupled Model

[A0] Set initial values for $\gamma^0_s, w_s = (\rho^0_s, \kappa^0_s)$ and q^0_s for $s = 1, \ldots, N$. Set $n = 0$ and $t_0 = 0$.

[A1] Set $\varepsilon^{pl,n} = \varepsilon^{pl}(\gamma^n)$ and compute u^n with $u^n(x) = u_D(t_n, x)$ and
\[
\int_B C[\varepsilon(u^n) - \varepsilon^{pl,n}] \cdot \varepsilon(\delta u) \, dx = \int_B f_B(t_n) \cdot \delta u \, dx + \int_{\Gamma_N} t_N(t_n) \cdot \delta u \, da.
\]
Set $\sigma^n = C[\varepsilon(u^n) - \varepsilon^{pl,n}], \tau^n_s = \sigma^n d_s \cdot m_s$, and $v^n_s = v_s(\tau^n_s, \rho^n_s)$.
Algorithm for the Fully Coupled Model

[A0] Set initial values for $\gamma_0^s, w_s = (\rho_0^s, \kappa_0^s)$ and q_0^s for $s = 1, \ldots, N$. Set $n = 0$ and $t_0 = 0$.

[A1] Set $\varepsilon^{pl,n} = \varepsilon^{pl}(\gamma^n)$ and compute u^n with $u^n(x) = u_D(t_n, x)$ and
\[
\int_B C[\varepsilon(u^n) - \varepsilon^{pl,n}] \cdot \varepsilon(\delta u) \, dx = \int_B f_B(t_n) \cdot \delta u \, dx + \int_{\Gamma_N} t_N(t_n) \cdot \delta u \, da.
\]
Set $\sigma^n = C[\varepsilon(u^n) - \varepsilon^{pl,n}]$, $\tau^n_s = \sigma^n d_s \cdot m_s$, and $v^n_s = v_s(\tau^n_s, \rho^n_s)$.

[A2] Choose $M \in \mathbb{N}$. For $m = 1, \ldots, M$ and $s = 1, \ldots, N$ compute $w_{s}^{n+m/M}$ with
\[
\frac{M}{\Delta t_n} (w_{s}^{n+m/M} - w_{s}^{n+(m-1)/M}, \delta w)_K - (F_s(w_{s}^{n-(m-1/2)/M}), \nabla \delta w)_K
+ \sum_{f \subset \partial K} (n_f \cdot F_{s,up}(w_{s}^{n-(m-1/2)/M}), \delta w)_f = (v_{s}^{n+(m-1)/M}q_{s}^{n+(m-1)/M}, \delta w)_K
\]
and then $q_{s}^{n+m/M}$ with
\[
\frac{M}{\Delta t_n} (q_{s}^{n+m/M} - q_{s}^{n+(m-1)/M}, \delta q)_K - (f_{s,n+m/M}(q_{s}^{n+(m-1/2)/M}), \nabla \delta q)_K
+ \sum_{f \subset \partial K} (n_f \cdot f_{s,up,n+m/M}(q_{s}^{n+(m-1/2)/M}), \delta q)_f = (g_{s,n+m/M}, \nabla \delta q)_K - \sum_{f \subset \partial K} (n_f \cdot g_{s,n+m/M}, \delta q)_f
\]
set $v_{s}^{n+m/M} = v_s(\tau^n, \rho^{n+m/M})$, and $\gamma_{s}^{n+m/M} = \gamma_{s}^{n+(m-1)/M} + \frac{M}{\Delta t_n} b_s \rho_{s}^{n+m/M} v_{s}^{n+m/M}$.

19
Algorithm for the Fully Coupled Model

[A0] Set initial values for $\gamma_s^0, w_s = (\rho_s^0, \kappa_s^0)$ and q_s^0 for $s = 1, \ldots, N$. Set $n = 0$ and $t_0 = 0$.

[A1] Set $\varepsilon^{pl,n} = \varepsilon^{pl}(\gamma^n)$ and compute u^n with $u^n(x) = u_D(t_n, x)$ and

$$\int_B [C(\varepsilon(u^n) - \varepsilon^{pl,n}) \cdot \varepsilon(\delta u) \, dx] = \int_B f_B(t_n) \cdot \delta u \, dx + \int_{\Gamma_N(t_n)} t_N(t_n) \cdot \delta u \, d\mathbf{a}.$$

Set $\sigma^n = C(\varepsilon(u^n) - \varepsilon^{pl,n})$, $\tau^n_s = \sigma^n d_s \cdot m_s$, and $v^n_s = v_s(\tau^n_s, \rho^n_s)$.

[A2] Choose $M \in \mathbb{N}$. For $m = 1, \ldots, M$ and $s = 1, \ldots, N$ compute $w_s^{n+m/M}$ with

$$\frac{M}{\Delta t_n} (w_s^{n+m/M} - w_s^{n+(m-1)/M}, \delta w)_K - (F_s(w_s^{n-(m-1)/M}), \nabla \delta w)_K$$

$$+ \sum_{f \subset \partial K} (n_f \cdot F_{up}^s(w_s^{n-(m-1)/M}), \delta w)_f = (v_s^{n+(m-1)/M} q_s^{n+(m-1)/M}, \delta w)_K$$

and then $q_s^{n+m/M}$ with

$$\frac{M}{\Delta t_n} (q_s^{n+m/M} - q_s^{n+(m-1)/M}, \delta q)_K - (f_{s,n+m/M}(q_s^{n+(m-1)/M}), \nabla \delta q)_K$$

$$+ \sum_{f \subset \partial K} (n_f \cdot f_{up}^s(q_s^{n+(m-1)/M}), \delta q)_f = (g_{s,n+m/M}, \nabla \delta q)_K - \sum_{f \subset \partial K} (n_f \cdot g_{s,n+m/M}, \delta q)_f$$

set $v_s^{n+m/M} = v_s(\tau^n, \rho^{n+m/M})$, and $\gamma_s^{n+m/M} = \gamma_s^{n+(m-1)/M} + \frac{M}{\Delta t_n} b_s \rho_s^{n+m/M} v_s^{n+m/M}$.

[A3] If $t_n < t_{\text{max}}$, select $\Delta t_n > 0$, set $t_n = t_{n-1} + \Delta t_n$, $n := n + 1$, and go to [A1].
A Tricrystall Experiment

We consider three cubic single-crystalline grains for the comparison of DDD simulations and a gradient plasticity model presented in Bayerschen et al. 2015.

Each grain is assumed to be face-centered cubic with \(N = 12 \) slip systems where the \(\langle 100 \rangle \)-axis corresponds to the \(x_1 \)-axis. For \(B_1 \) and \(B_2 \), the \(\langle 010 \rangle \)- and \(\langle 001 \rangle \)-axis are oriented in \(x_2 \)- and \(x_3 \)-direction. The central grain \(B_2 \) is rotated by an angle \(\alpha \) around the \(x_1 \)-axis.

In each slip system \(s = 1, \ldots, 12 \), a constant initial dislocation and curvature density is chosen. We assume that there are no GNDs in the beginning. In \(x_1 \)-direction, a uni-axial loading is applied on the left boundary and homogeneous Neumann boundary on the other boundaries. We choose the back stress parameter \(D = 0.255 \). The length of the Burgers vector is \(b_s = 2.56 \cdot 10^{-4} \) \(\mu m \), and we use the interaction parameters given by Kubin et al. 2008.
Tricristall – Results

Stress-strain curve for $\alpha = 5^\circ, 35^\circ$ using 8640 cells, local degree $k = 2$ in V_h and $\Delta t = 0.5 \text{ ns}$ compared with DDD results (gray) from Bayerschen et al. 2015.
Tricristall – Results

Distribution of the screw part of the dislocation density.

\[\kappa_{\pm} \cdot d_{\pm} \]

For different angles \(\alpha = 5^\circ \) and \(\alpha = 35^\circ \):

- \(\kappa_{+} \) and \(\kappa_{-} \) for various strains:
 - \(\varepsilon_{11}^{\text{pl}} = 0.001 \)
 - \(\varepsilon_{11}^{\text{pl}} = 0.002 \)
 - \(\varepsilon_{11}^{\text{pl}} = 0.003 \)
Tricristall – Results

Distribution of the plastic strain along x_1 (averaged in (x_2, x_3))

$\alpha = 5^\circ$

$\alpha = 35^\circ$

$\varepsilon_{11}^{pl} = 0.1\%$
$\varepsilon_{11}^{pl} = 0.2\%$
$\varepsilon_{11}^{pl} = 0.3\%$
Tricristall – Results

Distribution of the plastic strain along x_1 (averaged in (x_2, x_3))

$\alpha = 5^\circ$

$\alpha = 35^\circ$

$\varepsilon_{11}^{pl} = 0.1\%$
$\varepsilon_{11}^{pl} = 0.2\%$
$\varepsilon_{11}^{pl} = 0.3\%$

Reference data (grey): Bayerschen et al. 2015
Summary and Outlook

Combining a finite element method for elasto-plasticity with an implicit Runge-Kutta discontinuous Galerkin scheme for the dislocation microstructure allows for the efficient approximation of a 3d dislocation based continuum model.

The next steps are:
- Numerical analysis of the approximation scheme.
- Convergence to / comparison with gradient plasticity.
- Interface modeling and polycrystal simulations with more grains.