Classes
For the current plan for the master courses given in English language within Department of Mathematics at KIT in the current summer semester 2024, please visit here.
For a complete list of the mathematical courses given in English/Germany language in the summer semester 2024, please visit CoursesSS24.
WINTER SEMESTER 2023-24 PLAN
Please see the schedule of classes here
Course descriptions are available here
Geometric Group Theory II (Llosa Isenrich)
Numerical Methods in Mathematical Finance (Jahnke)
Graph Theory (Axenovich)
Space and time discretization of nonlinear wave equations (Dörich, Hochbruck)
Mathematical Modelling and Simulation (Thaeter)
Spacial Stochastics (Hug)
Evolution equations (Schnaubelt)
Dynamical Systems (de Rijk)
Functional Data Analysis (Ebner)
Statistical Forecasting (Gneiting)
Stochastic Simulation (Krumscheid)
Statistical Aspects of Machine Learning (Trabs)
Ergodic Theory (Link)
Introduction to Convex Integration (Zillinger)
Classical Methods for Partial Differential Equations (TBA)
Introduction to Kinetic Theory (Frank)
SUMMER SEMESTER 2023 PLAN
Course descriptions are available here
Differential Geometry (Tuschmann)
Stochastic Geometry (Hug)
Geometric Group Theory (Llosa Isenrich)
Harmonic Analysis of Fractals (Bilz)
Topics in Numerical Linear Algebra (Grimm)
Spectral theory (Schnaubelt)
Uncertainty Quantification (Frank)
Numerical Methods for Time-dependent PDEs (Hochbruck)
Statistical Learning (Trabs)
Introduction to Fluid Mechanics (Liao)
Analytic and algebraic aspects of group rings (Sauer)
Forecasting: Theory and Practice II (Gneiting)
WINTER SEMESTER 2022-23 PLAN
Course descriptions are available here
Stochastic Simulation (Krumscheid)
Algebraic Topology (Krannich)
Forecasting: Theory and Practice (Part I) (Gneiting)
Functional Analysis (Liao)
Random Graphs and Networks (Hug)
Introduction to Stochastic Differential Equations (Janak)
Introduction to Convex Integration (Zillinger)
Bifurcation Theory (Mandel)
Traveling waves (de Rijk)
Mathematical Modelling and Simulation (Thaeter)
Finite Element Methods (Jahnke)
Computational Group Theory (Kaluba)
Extremal Graph Theory (Clemen)
Introduction to Kinetic Theory (Frank)
Mathematical Methods in Quantum Mechanics I (Hundertmark)
SUMMER SEMESTER 2022 PLAN
Course descriptions are available here
Differential Geometry (Tuschmann)
Combinatorics (Axenovich)
Stochastic Geometry (Winter)
Boundary and Eigenvalue Problems (Lamm)
Splitting Methods for Evolution Equations (Jahnke)
Time Series Analysis (Gneiting)
Dispersive Equations (Liao)
Lie Groups and Homogeneous Spaces (Hartnick)
Functions of Matrices (Grimm)
Uncertainty Quantification (Frank)
WINTER SEMESTER 2021-22 PLAN
Course descriptions are available here
Graph Theory (Axenovich)
Classical Methods for PDE's (Lamm)
Lie algebras (Hartnick)
Fourier Analysis and its Applications to PDEs (Liao)
Introduction to Microlocal Analysis (Sun)
Numerical Analysis of Helmholtz Problems (Verfuerth)
Exponential Integrators (Doerich, Leibold)
Mathematical Modelling and Simulation (Thaeter)
Finite Element Methods (Doerfler)
Asymptotic Stochastics (Fasen-Hartmann)
Mathematical Methods in Quantum Mechanics I (Hundertmark)
SUMMER SEMESTER 2021 PLAN
Course descriptions are available here
Differential Geometry (Leuzinger)
Sobolev Spaces (Mandel)
Numerical Linear Algebra for Scientific High Performance Computing (Anzt)
Convex Geometry (Hug)
Geometric Group Theory (Llosa Isenrich)
Harmonic Analysis (Frey)
Spectral Theory (Hundertmark)
Uncertainty Quantification (Kusch)
Applications of Topological Data Analysis (Ott)
Analytical and numerical homogenization (Goffi and Verfuerth)
Time Integration of PDEs (Hochbruck)
Forecasting: Theory and Practice II (Gneiting)
WINTER SEMESTER 2020-21 PLAN
Course descriptions are available here
Courses:
Functional Analysis (Hundertmark)
Nonlinear boundary value problems (Plum)
Finite Element Methods (Hochbruck)
Introduction to Kinetic Theory (Frank)
Numerical methods in mathematical finance (Jahnke)
Wave propagation in periodic structures (Zhang)
Numerical simulations in molecular dynamics II (Grimm)
Forecasting: Theory and Praxis (Gneiting)
Asymptotic Stochastic (Fasen-Hartmann)
Topology II (Sauer)
Structural Graph Theory (Snyder)
Seminars:
Microstructure in materials and fluid dynamics (Liao, Zillinger)
Computational Science and Mathematical Methods (Frank)
Extremal Problems in Combinatorics (Axenovich, Snyder)
SUMMER SEMESTER 2020 PLAN
Course descriptions are available here
0110650 Numerical Linear Algebra for Scientific High Performance Computing
Dr. Hartwig Anzt
Lecture: Mon 8:00-9:30
0150300 Combinatorics
Prof. Maria Axenovich
Lecture: Tu 9:45-11:15 Fri 11:30-13:00
Problem class: Mon 11:30-13:00
0152600 Stochastic Geometry
PD Dr. Steffen Winter
Lecture: Mon 14:00-15:30, Th 11:30-13:00
Problem classl: Fri 14:00-15:30
0156400 Evolution Equations
Prof. Roland Schnaubelt
Lecture: Mon 9:45-11:15, Wed 8:00-9:30
Problem class: Fri 9:45-11:15
0156500 Nonlinear Wave Equations
Dr. Birgit Schörkhuber
Lecture: Fri 11:30-13:00
Problem class: Th 15:45-17:15
0157400 Algebraic Topology
Prof. Roman Sauer
Lecture: Th 14:00-15:30 Fri 9:45-11:15
Problem class: Wed 9:45-11:15
0157500 Boundary and Eigenvalue Problems
Prof. Plum
Lecture: Tu 14:00-15:30, Th 11:30-13:00
Problem class: Wed 15:45-17:15
0160000 Probability Theory and Combinatorial Optimization
Prof. Dr. Daniel Hug
Lectures: Wed 11:30-13:00, Th 09:45-11:15
Problem class: Wed 09:45-11:15, Mon 15:45-17:15 (reserved for additional lectures)
0160800 Splitting methods for evolution equations
Prof. Dr. Tobias Jahnke
Lecture: Mon 11:30-13:00, Fri 11:30-13:00 (every 2nd week)
Problem class: Fri 11:30-13:00 (every 2nd week)
0161100 Time Series Analysis
Prof. Gneiting
Lecture: Tu 14:00-15:30
Problem class: Mon 8:00-9:30
0164400 Uncertainty Quantification
Prof. Martin Frank
Lecture: Th 8:00-9:30
Problem class: Th 15:45-17:15
0178100 Mathematical Methods in Quantum Mechanics Part II'
Dr. Ioannis Anapolitanos
Lecture: Tu 11:30-13:00, Fri 14:00-15:30
Problem class: Wed 14:00-15:30
0178200 Numerical Simulations in Molecular Dynamics
Instructor: Volker Grimm
Lecture: Tu 08:00-09:30, Wed 11:30-13:00
Problem class: Mon 15:45-17:15
WINTER SEMESTER 2019-20 PLAN
Course descriptions are available here
0102650 Statistical Forecasting and Classification (seminar)
Sem Tu 14:00-15:30
Prof. Gneiting
0104500 Graph Theory
Lecture Mo 9:45-11:15, Fr 14:00-15:30
Tutorial Wed 11:30-13:00
Prof. Axenovich
0105200 Introduction to ergodic theory and homogeneous dynamics
Lecture, Tutorial Wed. 14:00-15:30, Th. 11:30-13:00
Dr. Igor Karasik
0105300 Classical Methods for Partial Differential Equations
Lecture Di, Do 11:30-13:00
Tutorial Wed 14:00-15:30
Prof. Plum
0105360 Nonlinear Maxwell Equations
Lecture Tu, Th 9:45-11:15
Tutorial Wed 8:00-9:30
Prof. Schnaubelt
0109400 Mathematical Modeling and Simulation
Lecture Mon 9:45-11:15
Tutorial Tu 15:45-17:15
PD Dr. Thaeter
0111500 Algebraic Topology II
Lecture Mo 11:30-13:00, Th 14:00-15:30
Tutorial Wed 15:45-17:15
Dr. Campagnolo
0115800 Functions of Matrices
Lecture Mo 8:00-9:30, Fr 9:45-11:15
Tutorial Wed 11:30-13:00
PD Dr. Grimm
0121300 Extremal set theory (seminar)
Sem Mon 14:00-15:30
Prof. Axenovich
0155450 Introduction to Kinetic Theory
Lecture Th 8:00-9:30
Tutorial Th 15:45-17:15
Prof. Frank
0163500 Mathematical Methods in Quantum Mechanics I
Lecture Wed 9:45-11:15, Fr 8:00-9:30
Tutorial Mon 15:45-17:15
PD Dr. Anapolitanos
SUMMER SEMESTER 2019 PLAN
Course descriptions are available here
01576 Fourier Analysis and its applications to PDEs
Lecture Mon 8:00-9:30
Tutorial Tu 15:45-17:15
JProf. Liao
0157400 Algebraic Topology
Lecture Mo 9:45-11:15, Fr 14:00-15:30
Tutorial Wed 9:45-11:15
Dr. Campagnolo
0160800 Numerical Methods for Hyperbolic Equations
Lecture Mo 11:30-13:00
Tutorial Wed 14:00-15:30
Prof. Doerfler
0160800 Numerical Methods in Fluid Mechanics
Lecture Th 11:30-13:00
Tutorial Fr 11:30-13:00
Prof. Doerfler
0172100 Seminar: Algebraic Methods in Combinatorics
Sem Mo 14:00-15:30
Prof. Axenovich
0163700 Spectral Theory
Lecture Tu 11:30-13:00, Th 9:45-11:15
Tutorial Mo 15:45-17:15
Dr. PD Kunstmann
0160400 Topics in Numerical Linear Algebra
Lecture Tu 9:45-11:15, Wed 11:30-13:00
Tutorial Fr 8:00-9:45
Dr. PD Neher
0161110 Time Series Analysis
Lecture Wed 8:00-9:45
Tutorial Tu 14:00-15:30, Fr 14:00-15:30
Dr. PD Klar
0164400 Uncertainty Qualifications
Lecture Th 8:00-9:45
Tutorial Th 15:45-17:15
Prof. Frank
0175400 Seminar: Numerical Methods for Differential Equations
Fr 9:45-11:15
Prof. Wieners
0100310 Differential Geometry
Lecture Wed 11:30-13:00, Th 11:30-13:00
Tutorial Wed 15:45
Prof. Tuschmann
WINTER SEMESTER 2018/2019 PLAN (subject to change)
Course descriptions are available here
010480 Functional Analysis
8 credit points
Lecture Mon 11:30-13:00, Th 9:45-11:15
Tutorial We 15:45-17:15
PD Dr. Kunstmann
0105100 Inverse Problems
8 credit points
Lecture Wed 9:45-11:15, Fr 8:00-9:30
Tutorial Mon 15:45-17:15
Prof. Griesmaier
(the course will run in English provided there is a sufficient number of interested students)
01053400 Dispersive equations
Lecture Fri 11:30-13:00, Wed 11:30-13:00 (every 2nd week)
Tutorial Wed 11:30-13:00 (every 2nd week)
Dr. Xian Liao
0106300 Comparison of numerical integrators for nonlinear dispersive equations
4 credit points
Lecture Wed 15:45-17:15
Tutorial Mon 8:00-9:30
JProf. Schratz
0107800 Numerical methods in mathematical finance
8 credit points
Lecture Tu 8:00-9:30, Fr 8:00-9:30
Tutorial Mon 15:45-17:15
Prof. Jahnke
0108000 CAT(0) cubical complexes
THIS COURSE WILL NOT TAKE PLACE AND IS REPLACED BY "Lie groups and Lie algebras"
8 credit points
Lecture Mon 9:45-11:15, Th 11:30-13:00
Tutorial Th 15:45-17:15
JProf. Schwer
0106000 Lie groups and Lie algebras
8 credit points
Lecture Wed 9:45-11:15, Th 8:00-9:30
Tutorial Fr 11:30-13:00
Prof. Leuzinger
0109400 Mathematical modeling and simulation in practice
4 credit points
Lecture Wed 8:00-9:30
Tutorial Tu 15:45-17:15
PD Dr. Thaeter
0110650 Numerical Linear Algebra for Scientific High Performance Computing
2 credit points
Lecture Wed 14:00-15:30
Dr. Anzt
0123100 Forecasting: Theory and Practice
4 credit points
Lecture Tu 14:00-15:30
Tutorial Th 11:30-13:00
Prof. Gneiting
0155450 Introduction to Kinetic Theory
4 credit points
Lecture Th 8:00-9:30
Tutorial Th 15:45-17:15
Prof. Frank
Selected Topics in Harmonic Analysis
2 credit points
Lecture Mon 14:00-15:30
Dr. Pattakos
SUMMER SEMESTER 2018 PLAN (subject to change)
Course descriptions are available here
0102700 Mathematical Topics in Kinetic theory
4 credit points
Lecture Wed 14:00-15:30
Tutorial Mon 11:30-13:00
Dr. Ried
0150400 Extremal Graph Theory
8 credit points
Lecture Mon 14:00-15:30
Lecture Wed 9:45-11:15
Tutorial Mon 17:30-19:00
Dr. Yuditsky
0157500 Boundary and Eigenvalue Problems
8 credit points
Lecture Mon 08:00-9:30, Fr 08:00-09:30
Tutorial Fr 14:00-15:30
Dr. Mandel
0159810 Commutative Algebra
8 credit points
Lecture Tu 15:45-17:15, Wed 11:30-13:00
Tutorial Mon 8:00-9:30
Dr. Januszewski
0161300 Numerical Analysis of Highly Oscillatory Problems
4 credit points
Lecture Th 09:45-11:15
Tutorial Fr 11:30-13:00
JProf. Schratz
0161600/0161610 Numerical Methods in Fluid Mechanics
4 credit points
Lecture Th 11:30-13:00
Tutorial Fr 11:30-13:00 (every second week)
Prof. Dörfler
0164400 Uncertainty Quantification
4 credit points
Lecture Th 15:45-17:15
Tutorial Th 8:00-9:30
Prof. Frank
0164500 Numerical Methods for Time-dependent PDEs
8 credit points
Lecture Mon 15:45-17:15, Tu 9:45-11:15, Fr 9:45-11:15
Prof. Hochbruck
0167000/0167010 Numerical Methods in Computational Electrodynamics
6 credit points
Lecture Mo 11:30-13:00
Lecture Wed 09:45-11:15 (every second week)
Tutorial Wed 9:45-11:15 (every second week)
Prof. Dörfler
0178000 Time Series Analysis
4 credit points
Lecture Tu 14:00-15:30
Tutorial Th 11:30-13:00
Prof. Gneiting
WINTER SEMESTER 2016/2017 (15 weeks)
Abstracts and course descriptions available here
0109400 Mathematical Modelling and Simulation
Lecture: 2 h, 4 credit points
Fri 9:45-11:15, 30.41, HS III
Tutorial: 1 h (a project which translates into about 45 min per week (during term))
Dr. Gudrun Thäter
0106200 Splitting Methods
Lecture: 2 h, 4 credit points
Tue 11:30-13:00, 20.30, SR 3.68
Tutorial: 2 h; Thu 15:45-17:15, 20.30, SR 2.67
JProf. Katharina Schratz
0118000 Asymptotic Stochastics
Lecture: 4 h, 8 credit points
Tue 8:00-9:30, 20.30, SR 1.067, Thu 11:30-13:00, 20.40, HS 9
Tutorial: 2 h; Fri 9:45-11:15, 20.30, SR 0.014
Prof. Norbert Henze
0107800 Numerical Methods in Mathematical Finance
Lecture: 4 h, 8 credit points
Mon 8:00-9:30, 20.30, SR 0.014; Thu 8:00-9:30, 20.30, SR 0.014
Tutorial: 2 h; Wed 14:00-15:30, 20.30, SR 3.69
Prof. Tobias Jahnke
0103650 Statistical Forecasting I
Lecture: 2 h, 4 credit points
Tue 14:00-15:30, 20.30, SR 2.58
Prof. Tilmann Gneiting
0111500 Algebraic Topology II
Lecture: 4 h, 8 credit points
Mon 11:30-13:00, 20.30, -1.012; Wed 11:30-13:00, 20.30, -1.011
Tutorial: 2 h; Thu 14:00-15:30, 20.30, SR 3.69
Dr. Caterina Campagnolo
0110300 Finite Element Methods
Lecture: 4 h, 8 credit points
Wed 8:00-9:30, 20.30, SR 0.014; Fri 8:00-9:30, 20.30, SR 1.067
Tutorial: 2 h; Mon 11:30-13:00, 20.30, SR 3.61
Prof. Tobias Jahnke
0104800 Functional Analysis
Lecture: 4 h, 8 credit points
Mon 9:45-11:15, 20.30, SR 1.067; Thu 9:45-11:15, 20.30, SR 1.067
Tutorial: 2 h; Fri 14:00-15:30, 20.40, Eiermann
Prof. Tobias Lamm
0109200 Numerical Methods for Maxwell's Equations
Lecture: 2 h, 6 credit points
Wed 9:45-11:15, 20.30, SR 3.01; Thu 9:45-11:15, 20.30, SR 3.61
(one of them will become the regular date for the lecture, the other an alternative date, this will be discussed in the first class on Wed, Oct 19)
Tutorial: 2 h; Mon 15:45-17:15, 20.30, SR 3.61
(this slot might also be used for the lecture, if necessary)
Prof. Marlis Hochbruck
0150300 Combinatorics in the Plane
Lecture: 3 h, 7 credit points
Tue 11:30-13:00, 20.30, SR 3.61
Tutorial: 2 h; Wed 14:00-15:30, 20.30, SR 2.59
Dr. Torsten Ueckerdt
0104600 Nonlinear Boundary Value Problems
Lecture: 4 h, 8 credit points
Tue 15:45-17:15, 20.30, SR 3.68; Fri 11:30-13:00, 20.30, SR 3.68
Tutorial: 2 h; Wed 15:45-17:15, 20.30, SR 3.68
Prof. Michael Plum
SUMMER SEMESTER 2016 (14 weeks)
Abstracts and course descriptions available here
0150400 Extremal Graph Theory
Lecture: 4 h, 8 credit points
Tue 11:30-13:00 20.30, SR 2.059, Fri 9:45-11:15 20.30, 2.059
Tutorial: 2 h Thu 14:00-15:30 20.30, SR 3.069
Prof. Axenovich
0152700 Poisson Process
Lecture: 2 h, 4 credit points
Mon 11:30-13:00 20.30, SR 2.58
Tutorial: 2 h Thu 11:30-13:00 20.30, SR 3.69
Prof. Last
0154100 Geometric Numerical Integration
Lecture: 3 h, 6 credit points
Thu 8:00-9:30 20.30, SR 3.061, Wed 8:00-9:30 20.30, 3.061 (every 2nd week)
Tutorial: 1 h Wed 8:00-9:30 20.30, SR -1.031 (every 2nd week)
Prof. Jahnke
0156500 Aspects of Nonlinear Wave Equations
Lecture: 4 h, 8 credit points
Mon 9:45-11:15 20.30, SR 3.068, Wed 11:30-13:00 20.30, SR 3.068
Tutorial: 2 h Wed 14:00-15:30 20.30, SR 3.068
Prof. Reichel
0157400 Algebraic topology
Lecture: 4 h, 8 credit points
Tue 11:30-13:00 20.30, SR 2.058, Thu 11:30-13:00 20.30, 0.014
Tutorial: 2 h Wed 17:30-19:00 20.30, SR 2.059
Dr. Kammeyer
0157500 Boundary and Eigenvalue problems
Lecture: 4 h, 8 credit points
Mon 8:00-9:30 20.30, SR 3.068, Tue 8:00-9:30 20.30, 3.038
Tutorial: 2 h Tue 14:00-15:30 20.30, SR 3.069
Dr. Anapolitanos
0161100 Time Series Analysis (Course Syllabus)
Lecture: 2 h, 4 credit points
Tue 14:00-15:30 20.30, SR 2.059
Tutorial: 1 h Wed 14:00-15:30 20.30, SR 2.058, Fri 14:00-15:30, SCC-PC-Pool L
Prof. Gneiting
0161700 Project-oriented Software Lab on Computational Fluid Mechanics
4 h, 4 credit points
Tue 9:45-11:15 20.30, SR -1.031, Fri 9:45-11:15 20.30, SR -1.031
Dr. Thaeter, Dr. Krause
0164500 Time Integration of PDEs
Lecture: 4 h, 8 credit points
Mon 15:45-17:15 20.30 (alternative date), SR 1.067, Tue + Thu 9:45-11:15 20.30, 1.067
Tutorial: 2 h Tue 15:45-17:15 20.30, SR 3.061 or Wed 9:45-11:15 20.30, SR 3.061 (date of the problem classes will be discussed in the first lecture)
Prof. Hochbruck
0164600 Homotopy Theory
Lecture: 4 h, 8 credit points
Tue 17:30-19:00 20.30, SR 2.59, Thu 15:45-17:15, 20.30, SR 2.059
Tutorial: 2 h Mon 14:00-15:30 20.30, SR 2.059
Prof. Sauer
WINTER SEMESTER 2015/2016 (15 weeks)
Abstracts and course descriptions available here
0123000 Advanced Inverse Problems: Nonlinearity and Banach Spaces
Lecture: 2 h, 4 credit points
Thu 8:00-9:30, 20.30, SR 3.61
Tutorial: 2 h, Mon 9:45-11:15, 20.30, SR 3.61
Prof. Andreas Rieder
0118000 Asymptotic Stochastics
Lecture: 4 h, 8 credit points
Wed 8:00-9:30, 20.30, SR 0.014; Thu 11:30-13:00, 20.30, SR 0.014
Tutorial: 2 h, Fri 9:45-11:15, 20.30, SR 0.014
Prof. Vicky Fasen
0104500 Graph Theory
Lecture: 4 h, 8 credit points
Tue 11:30-13:00, 20.30, SR 1. OG; Thu 9:45-11:15, 20.30, SR 1. OG (2.2.: 20.30, SR 2.58)
Tutorial: 2 h; Fri 8:00-9:30, 20.30, SR 1. OG
Prof. Maria Aksenovich
0105310 Classical Methods for Partial Differential Equations
Lecture: 4 h, 8 credit points
Mon 11:30-13:00, 20.30, SR 1. OG; Wed 11:30-13:00, 20.30, SR 1. OG
Tutorial: 2 h, Wed 14:00-15:30, 10.91, Redt.
Prof. Michael Plum
0105400 Travelling Waves
Lecture: 3 h, 6 credit points
Tue 15:45-17:15, 20.30, SR 3.68
Tutorial: 1 h, Thu 15:45-17:15, 20.30, SR 3.68
JProf. Rottmann-Matthes
bf 011500 Algebraic Topology II
Lecture: 4 h, 8 credit points
Mon 15:45-17:15, 20.30, -1.012; Tue 14:00-15:30, 20.30, -1.011
Tutorial: 2 h, Fri 14:00-15:30. 20.30, SR 3.69
Prof. Roman Sauer
0102300 L2-Invariants
Lecture: 2 h, 4 credit points
Thu 15:45-17:15, 20.30, SR 2.58
Tutorial: 2 h, Tue 9:45-11:15. 20.30, SR 2.58
Dr. Holger Kammeyer
0110300 Finite Element Methods
Lecture: 4 h, 8 credit points
Tue 9:45-11:15, 20.20, SR -1.025; Thu 14:00-15:30, 20.30, SR 1. OG
Tutorial: 2 h, Wed 9:45-11:15, 20.30, SR 3.61
Prof. Marlis Hochbruck
0124350 Seminar (Statistical Forecasting)
Tue 14:00-15:30, 20.30, SR 2.59
Prof. Tilmann Gneiting
0126400 Seminar (Aspects of Numerical Time Integration)
to be announced
JProf. Katharina Schratz
SUMMER SEMESTER 2015 (14 weeks)
Abstracts and course descriptions available here
0150300 Combinatorics
Lecture: 4 h, 8 credit points
Wed 9:45-11:15 20.40, NH, Thu 11:30-13:00, 20.40, NH
Tutorial: 2 h
Wed 14:00-15:30 20.40, HS 9
Dr. Ueckerdt
0157400 Algebraic Topology
Lecture: 4 h, 8 credit points
Mon 15:45-17:15 20.30 SR 3.68, Wed 17:30-19:00 20.30 SR 2.59
Tutorial: 2 h
Fri 11:30-13:00 20.30 SR 2.59
Prof. Sauer
0157000 Maxwell Equations
Lecture: 4 h, 8 credit points
Tue 11:30-13:00 20.30 SR 2.67, Wed 8:00-9:30 20.30 SR 2.67
Tutorial: 2 h
Wed 14:00-15:30 20.30 SR 2.67
Dr. Hettlich
0159610 Numerical methods in mathematical finance 2
Lecture: 4 h, 8 credit points
Thu 8:00-9:30 20.30 SR 3.60, Fri 8:00-9:30 20.30 SR 3.60
Tutorial: 2 h
Mon 14:00-15:30, 01.93 Seminarraum K1
Prof. Jahnke
0160000 Probability Theory and Combinatorial Optimization
Lecture: 4 h, 8 credit points
Mon 11:30-13:00 20.30 SR 2.58, Thu 9:45-11:15 20.30 SR 2.59
Tutorial: 2 h
Wed 15:45-17:15 20.30 SR 2.59
Dr. Hug
0161300 Aspects of Numerical Time Integration
Lecture: 2 h, 4 credit points
Thu 15:45-17:15, 20.30 SR 3.69
Tutorial: 2 h
Tue 15:45-17:15 20.30 SR 3.69
JProf. Schratz
0163700 Spectral Theory
Lecture: 4 h, 8 credit points
Mon 9:45-11:15 20.30 SR 2.66, Wed 11:30-13:00 20.30 SR 2.66
Tutorial: 2 h
Thu 15:45-17:15 20.30 SR 2.66
Prof. Schaubelt
0178000 Forecasting: Theory and Practice II
Lecture: 2 h, 4 credit points
Tue 14:00-15:30 20.30 SR 2.59
Tutorial: 2 h
Tue 17:30-19:00 20.30 SR 2.59
Prof. Gneiting
0167000 Numerical methods in computational electrodynamics
Lecture: 2 h, 6 credit points
Wed 11:30-13:00, 20.30 SR 3.61
Tutorial: 2 h
Tue 14:00-14:30 20.30 SR 3.61
Prof. Dörfler
0161700 Projektorientiertes Softwarepraktikum
4 h, 4 credit points
Tue 9:45-11:15, 01.93 Seminarraum K1, Fri 9.45-11:15, 01.93 Seminarraum K1
Dr. Thäter, Dr. Krause
WINTER SEMESTER 2014/2015 (15 weeks)
Abstracts and course descriptions available here
0109400 Mathematical Modelling and Simulation
Lecture: 2 h, 4 credit points
Fri 9:45-11:15 5.20, 1C-03
Tutorial: 2 h
Wed 11:30-13:00 1.85, Z1
Dr. Gudrun Thäter
0106200 Splitting Methods
Lecture: 2 h, 4 credit points
Thu 14:00-15:30 5.20, 1C-02
Tutorial: 2 h
Wed 15:45-17:15 5.20 1C-03
Dr. Katharina Schratz
0118000 Asymptotic Stochastics
Lecture: 4 h, 8 credit points
Tue 14:00-15:30 5.20, 1C-02, Thu 11:30-13:00 1.85, Z1
Tutorial: 2 h;
Mon 15:45-17:15 5.20, 1C-02
Prof. Norbert Henze
0107800 Numerical Methods in Mathematical Finance
Lecture: 4 h, 8 credit points
Thu 8:00-9:30 5.20, 1C-03, Fri 8:00-9:30 5.20 1C-03
Tutorial: 2 h
Mon 14:00-15:30 5.20, 1C-03
Prof. Tobias Jahnke
0104550 Fourier Analysis
Lecture: 4 h, 8 credit points
Mon 11:30-13:00 5.20, 1C-03, Wed 14:00-15:30 5.20 1C-03
Tutorial: 2 h
Tue 15:45-17:15 1.85, Z2
Prof. Maria Girardi
0104800 Functional Analysis
Lecture: 4 h, 8 credit points
Tue 9:45-11:15 Nusselt, Wed 11:30-13:00 Criegee
Tutorial: 2 h
Fri 14:00-15:30 Eiermann
Prof. Roland Schnaubelt
0102650 Forecasting: Theory and Practice I
Lecture: 2 h, 4 credit points
Tue 11:30-13:00 1.85 Z1
Prof. Tilmann Gneiting
0112000 Numerical Methods for Hyperbolic Equations
Lecture: 2 h, 4 credit points
Wed 11:30-13:00 5.20, 1C-02
Tutorial: 2 h
Tue 15:45-17:15 1C-1
Prof. Willy Dörfler
0112700 Particulate Flows
Lecture: 2 h, 4 credit points
Tue 11:30-13:00 5.20 1C-01
Prof. Willy Dörfler
0112700 Algebra
Lecture: 4 h, 8 credit points
Wed 9:45-11:15 AOC 201, Fri 11:30-13:00 NH
Tutorial: 2 h
Thu 9:45-11:15 Chemie-Hörsaal II
Prof. Frank Herrlich
0108000 Homogenization of partial differential equations
Lecture: 3 h, 6 credit points
Wed 15:45-17:15 1.93 K2 (every 2nd week, beg. Oct. 24), Fri 14:00-15:30 1.93 K2
Tutorial: 1 h
Thu 9:45-11:15 5.20 1C-04 (every 2nd week, beg. Nov. 5)
Dr. Andrii Khrabustovskyi
0121300 Seminar: Graph Colouring
2 h, 3 credit points
Wed 11:30-13:00 5.20, 1C-01
Prof. Maria Aksenovich
0124400 Seminar: Statistics
2 h, 3 credit points
Thu 14:00-15:30 05.20 1C-04
Prof. Norbert Henze
SUMMER SEMESTER 2014 (14 weeks)
Abstracts and course descriptions available here
0161300 Numerical Analysis of highly-oscillatory problems
Lecture: 2 h, 4 credit points
Fri 11:30-13:00, 01.85, Z1
Prof. Schratz
0154600 Partial Differential Equations II
Lecture: 4 h, 8 credit points
Thu 8:00-9:30 05.20, 1C-04, Fri 8:00-9:30, 05.20 1C-04
Tutorial: 2 h
Wed 14:00-15:30 01.85, Z2
Prof. Lamm
0153500 Global differential geometry
Lecture: 4 h, 8 credit points
Wed 9:45-11:15, 01.85, Z2, Thu 9:45-11:15 01.85, Z2
Tutorial: 2 h
Fri 14:00-15:30 01.85, Z2
Prof. Tuschmann
0155200 Travelling Waves
Lecture: 3 h, 6 credit points
Tue 15:45-17:15 01.85, Z2
Tutorial: 1 h
Thu 11:30-13:00, 01.85, Z2
Prof. Rottmann-Matthes
0154100 Geometric Numerical Integration
Lecture: 2 h, 4 credit points
Thu 15:45-17:15 01.85, Z2
Tutorial: 1 h
Wed 15:45-17:15 01.85, Z2
Prof. Jahnke
0155800 Numerical methods for Maxwell's equation
Lecture: 2 h, 4 credit points
Wed 8:00-9:30 01.85, Z2
Tutorial: 1 h
Mon 14:00-15:30 01.85, Z2
Prof. Jahnke
0155700 Extreme value theory
Lecture: 3 h, 6 credit points
Mon 11:30-13:00 05.20, 1C-02
Tutorial: 1 h
Thu 14:00-15:30 05.20, 1C-03
Prof. Vasen
WINTER SEMESTER 2013/2014 (15 weeks)
Abstracts and course descriptions available here
0109400 Mathematical Modelling and Simulation
Lecture: 2+1 h, 4 credit points
Fri 9:45-11:15 5.20, 1C-03
Dr. Gudrun Thäter
0106100 Introduction to the Homogenization Theory
Lecture: 2 h, 4 credit points
Tue 8:00-9:30 5.20, 1C-01
Dr. Andrei Khrabustovskyl
0123000 Wavelets
Lecture: 4 h, 8 credit points
Tue 9:45-11:15 5.20, 1C-04, Wed 11:30-13:00 5.20 1C-03
Tutorial: 2 h; Thu 15:45-17:15 1.85, Z2
Prof. Andreas Rieder
0106200 Splitting Methods
Lecture: 2 h, 4 credit points
Mon 11:30-13:00 1.85, Z2
Dr. Katharina Schratz
0105100 Inverse Problems
Lecture: 4 h, 8 credit points
Tue 14:00-15:30 1.85, Z2, Thu 14:00-15:30 1.85, Z2
Tutorial: 2 h; Mon 15:45-17:15 1.85, Z2
Dr. Frank Hettlich
0113100 p-adic Modular Forms
Lecture: 4 h, 8 credit points
Wed 9:45-11:15 5.20 1C-03, Thu 9:45-11:15 5.20 1C-03
Dr. Fabian Januszewski
0104500 Graph Theory
Lecture: 4 h, 8 credit points
Mon 9:45-11:15 5.20, 1C-03, Wed 8:00-9:30 05.20, 1C-03
Tutorial: 2 h; Fri 11:30-13:00 1.85, Z1
Prof. Maria Axenovich
0105300 Partial Differential Equations
Lecture: 4 h, 8 credit points
Thu 9:45-11:15 11.40, Tulla, Fri 8:00-9:30 10.81, HS 93
Tutorial: 2 h; Wed 14:00-15:30 10.91, Redt.
Prof. Tobias Lamm
0118000 Asymptotic Stochastics
Lecture: 4 h, 8 credit points
Tue 11:30-13:00 1.85, Z1, Thu 11:30-13:00 1.85, Z1
Tutorial: 2 h; Mon 14:00-15:30 1.85, Z1
Prof. Norbert Henze
0124400 Seminar: Statistical Forecasting 6. Sem.
2 h, 3 credit points
Fri 14:00-15:30 5.20, 1C-02
NN
0127100 Seminar: AG Mathematische Physik
2 h, 3 credit points
Mo 11:30-13:00 05.20 1C-01
Prof. Dirk Hundertmark
SUMMER SEMESTER 2013 (14 weeks)
Abstracts and course descriptions available here
Adaptive Finite Element Methods
Lecture: 2 h, 4 credit points, Thu 11:30-13:00 5.20 1C-03
Tutorial: 2 h, Wed 9:45-11:15 5.20 1C-01
Prof. Willy Dörfler
Combinatorics in the plane
Lecture: 2 h, 4 credit points, Mon 11:30-13:00 01.85 Z1
Tutorial: 2 h, Tue 8:00-9:30 01.85 Z1
Prof. Maria Axenovich, Dr. Torsten Ueckerdt
Convex Geometry
Lecture: 4 h, 8 credit points, Tue 14:00-15:30 5.20 1C-04, Wed 11:30-13:00 5.20 1C-04
Tutorial: 2 h, Mon 15:45-17:15 5.20 1C-04
Dr. Daniel Hug
Geometric Numerical Integration
Lecture: 2 h, 4 credit points, Tue 15:45-17:15 5.20 1C-04
Tutorial: 2 h, Fri 14:00-15:30 5.20 1C-04
Prof. Tobias Jahnke
Numerical methods in mathematical finance II
Lecture: 4 h, 8 credit points, Thu 8:00-9:30 5.20 1C-03, Fri 11:30-13:00 5.20 1C-03
Tutorial: 2 h, Mon 14:00-15:30 01.85 Z2
Prof. Tobias Jahnke
Spectral Theory
Lecture: 4 h, 8 credit points, Tue 9:45-11:15 5.20 1C-03, Fri 9:45-11:15 5.20 1C-03
Prof. Lutz Weis
Mathematical Physics
Lecture: 4 h, 8 credit points, Mon 9:45-11:15 40.32 RPH R. 045, Thu 14:00-15:30 20.40 NH
Tutorial: 2 h, Tue 15:45-17:15 10.23 Nusselt
Prof. Dirk Hundertmark
161300 Lévy Processes
Lecture: 2 h, 4 credit points, Wed 8:00-9:30 5.20 1C-02
Tutorial: 2 h, Fri 11:30-13:00 01.85 Z1
Dr. Vicky Fasen
Seminar: Engineering Mathematics and Computing
Thu 14:00-15:30, room to be announced
Prof. Vincent Heuveline, Dr. Gudrin Thäter
WINTER SEMESTER 2012/2013 (15 weeks)
Abstracts and course descriptions available here
Mathematical Modelling and Simulation
Lecture: 2 h, 4 credit points, Wed 9:45-11:15 01.85 Z2 (17.10.-7.2.)
Prof. Gudrun Thäter
Parallel computing and numerics
Lecture: 4 h, 8 credit points, Feb 11-15, 2013 - place and time to be announced
Dr. Jan-Philipp Weiß
Functional Analysis
Lecture: 4 h, 8 credit points, Tue 9:45-11:15 10.23 Nusselt (16.10.-5.2.), Thu 11:30-13:00 10.11 Hertz (18.10.-7.2.)
Tutorial: 2 h, Fri 14:00-15:30 20.40 Eiermann (19.10.-8.2.)
Prof. Dirk Hundertmark
Introduction into Maxwell's Equations
Lecture: 4 h, 8 credit points, Mon 11:30-13:00 05.20 1C-03 (15.10.-4.2.), Wed 11:30-13:00 05.20 1C-03 (17.10.-6.2.)
Tutorial: 2 h, Fri 11:30-13:00 01.85 Z2 (19.10.-8.2.)
Prof. Andreas Kirsch
Selected Topics in Geometric Group Theory: The mapping class group
Lecture: 4 h, 8 credit points, Tue 11:30-13:00 01.85 Z1, Wed 8:00-9:30 05.20 1C-03
Tutorial: 2 h; Wed 14:00-15:30 01.85 Z1 (17.10.-6.2.)
Prof. Gabriela Weitze-Schmithüsen
Brownian Motion
Lecture: 2 h, 4 credit points, Thu 9:45-11:15 5.20 1C-04 (18.10.-7.2.)
Tutorial: 1 h; Wed 15:45-17:15 01.85 Z2 (17.10.-6.2.)
Prof. Vicky Fasen
Numerical methods in mathematical finance
Lecture: 4 h, 8 credit points, Mon 14:00-15:30 5.20 1C-04 (15.10.-4.2.), Thu 8:00-9:30 05.20 1C-04 (18.10.-7.2.)
Tutorial: 2 h; Fri 11:30-11:15 05.20 1C-04 (19.10.-8.2.)
Prof. Tobias Jahnke
Iterative Methods for Sparse Linear Systems
Lecture: 2 h, 4 credit points, Tue 15:45-17:15 01.93 K2 (16.10.-5.2.)
Dr. Jan Mayer
SUMMER SEMESTER 2012 (14 weeks)
Abstracts and course descriptions available here
Numerical methods for hyperbolic equations (0160800)
Lecture: 2 h, 4 credit points; Wed 11:30-13:00 5.20 1C-04;
Prof. Willy Dörfler
Global Differential Geometry (0153500)
Lecture: 4 h, 8 credit points; Tue 14:00-15:40 01.85 Z1, Thu 11:30-13:00 01.85 Z1;
Tutorial: 2 h; Fri 14:00-15:30 01.85 Z1;
Prof. Wilderich Tuschmann
Boundary and Eigenvalue Problems (0157500)
Lecture: 4 h, 8 credit points; Mon 11:30-13:00 5.20 1C-04, Tue 9:45-11:15 5.20 1C-04;
Tutorial: 2 h; Wed 14:00-15:30 01.85 Z1;
Prof. Michael Plum
Computer Assisted Proofs for Partial Differential Equations (0156600)
Lecture: 4 h, 8 credit points; Mon 14:00-15:30 5.20 1C-04, Fri 9:45-11:15 5.20 1C-04;
Ass. Prof. Kaori Nagatou
Fourier Analysis (0164100)
Lecture: 4 h, 8 credit points; Wed 9:45-11:15 5.20 1C-03, Thu 14:00-15:30 30.32 RPH R. 045;
Prof. Maria Girardi
Integral Equations (0156900)
Lecture: 4 h, 8 credit points; Mon 9:45-11:15 01.85 Z1, Thu 9:45-11:15 01.85 Z1;
Tutorial: 2 h; Mon 15:45-17:15 01.85 Z1;
Dr. Frank Hettlich
Wave Equations (0154000)
Lecture: 4 h, 8 credit points; Tue 11:30-13:00 5.20 1C-04, Thu 8:00-9:30 5.20 1C-04;
Prof. Tobias Lamm
Markov Decision Processes (0159900)
Lecture: 2 h, 4 credit points; Mon 8:00-9:30 01.85 Z1;
Tutorial: 2 h; Fri 11:30-13:00 01.85 Z1;
Prof. Nicole Bäuerle
Geometric Numerical Integration (0154100)
Lecture: 2 h, 4 credit points; Tue 8:00-9:30 5.20 1C-03;
Tutorial: 2 h; Thu 15:45-17:15 5.20 1C-04;
Dr. David Cohen
Iterative Methods for Sparse Linear Systems (054300)
Lecture: 2 h, 4 credit points; Tue 15:45-17:15 01.85 Z2;
Dr. Jan Meyer\
Seminar: Engineering Mathematics and Computing
Thu 14:00-15:30
Prof. Vincent Heuveline, Dr. Gudrin Thäter
Seminar: Graph Theory
Wed 9:45-11:15 5.20 1C-01;
Prof. Maria Axenovich
WINTER SEMESTER 2011/2012 (15 weeks)
Abstracts and course descriptions available classesws1112.pdf|here
Algebra (0102200)
Lecture: 4 h, 8 credit points;
Thu 9:45-11:15 30.41 HS II (R005) (20.10.-9.2.), Fri 11:30-13:00 30.45 AOC201 (21.10.-10.2.);
Tutorial: 2 h; Wed 8:30-9:30 20.40 HS 9 (19.10.-8.2.);
Dr. Stefan Kühnlein
Partial Differential Equations (0104600)
Lecture: 4 h, 8 credit points;
Mon 8:00-9:30 10.11 Hertz (17.10.-6.2.), Tue 11:30-13:00 10:50 Kl. HS (18.10.-7.2.);
Tutorial: 2 h; Mon 15:45-17:15 10.11 Hertz (17.10.-6.2.);
Prof. Kaori Nagatou
Graph Theory (0103200)
Lecture: 4 h, 8 credit points;
Wed 9:45-11:15 5.20 1C-03 (19.10.-8.2.), Fri 8:00-9:30 5.20 1C-03 (21.10.-10.2.);
Tutorial: 2 h; Tue 9:45-11:15 5.20 1C-03 (18.10.-7.2.);
Prof. Maria Axenovich
Inverse Problems (0105100)
Lecture: 4 h, 8 credit points;
Wed 11:30-13:00 01.85 Z1 (19.10.-8.2.), Tue 15:45-17:15 01.85 Z2 (20.10.-9.2.);
Tutorial: 2 h; Fri 9:45-11:15 01.85 Z2 (21.10.-10.2.);
Dr. Roland Griesmaier
Percolation Theory (0108000)
Lecture: 2 h, 4 credit points;
Mon 11:30-13:00 01.85 Z2 (17.10.-6.2.);
Prof. Günter Last
Introduction to the Numerics of Partial Differential Equations (0112000)
Lecture: 2 h, 4 credit points;
Wed 14:00-15:30 01:85 Z1;
Tutorial: 2 h; Wed. 15:45-17:15, every other week, starting 26.10.; 20.40 HS 9;
Dr. Tomas Dohnal
Seminar: Engineering Mathematics and Computing (0125400)
Thu 14:00-15:30, Room will be announced (20.10.-9.2.);
Dr. Gudrun Thäter, Prof. Vincent Heuveline
Seminar: Numerical Functional Analysis 2 (0126800)
Tue 9:45-11:15, 5.20 1C-04 (18.10.-7.2.);
Prof. Marlis Hochbruck
GERMAN CLASSES
Optional German language classes are offered.
SUMMER SEMESTER 2011 (14 weeks)
Abstracts and course descriptions available here
Riemannian Geometry (0152200)
Lecture: 4 h, 8 credit points;
Tue 9:45-11:15 AOC 101 Geb. 30.45, Wed 11:30-13:00 1C-03 Geb.5.20;
Tutorial: 2 h, 2 credit points; Thu 15:45-17:15 1C-04 Geb 5.20;
Dr. Oliver Baues
Stochastic Geometry (0152600)
Lecture: 4 h, 8 credit points;
Mon 11:30-13:00 Z 2 Geb 1.85, Thu 11:30-13:00 Z 2 Geb. 1.85;
Tutorial: 2 h, 2 credit points; Wed 15:45-17:15 Z 2 Geb 1.85;
apl. Prof. Dr. Daniel Hug
Differential equations with periodic coefficients (0156200)
Lecture: 2 h, 4 credit points; Mon 14:00-15:30 1C-03 Geb 5.20;
Dr. Vu Hoang
Spectral Theory (0156400)
Lecture: 4 h, 8 credit points; Tue 11:30-13:00 1C-04 Geb. 5.20,
Fri 11:30-13:00 1C-04 Geb. 5.20;
Tutorial: 2 h, 2 credit points; Wed 15:45-17:15 Z 1 Geb. 1.85;
Dr. Peer Kunstmann
Numerical methods for Maxwell's equations (0160800)
Lecture: 2 h, 4 credit points; Thu 14:00-15:30 1C-02 Geb. 5.20;
Prof. Willy Dörfler
Mathematical modeling and numerical simulation in applications (0161600)
Lecture: 2 h, 4 credit points; Wed 9:45-11:15 Z 1 Geb 1.85;
Dr. Gudrun Thäter
Seminar: Numerical Functional Analysis (0175200)
Tue 08:00-09:30 1C-03 Geb. 5.20;
Prof. Marlis Hochbruck
Seminar: Engineering Mathematics and Computing (0174400)
For further information please contact Dr. Thäter.
Prof. Vincent Heuveline, Dr. Gudrun Thäter
GERMAN CLASSES
Optional German language classes are offered.
WINTER SEMESTER 2010/2011 (15 weeks)
Abstracts and course descriptions available here
Convex Geometry
Lecture: 4 h, 8 credit points; Mon 11:30-13:00 AOC 201 Geb 30.45,
Tue 11:30-13:00 1C-04 Geb 5.20;
Tutorial: 2 h, 2 credit points; Wed 14:00-15:30 1C-03 Geb 5.20;
apl. Prof. Dr. Daniel Hug, Dipl.-Math.~oec.~Sven Ebert
Functional Analysis
Lecture: 4 h, 8 credit points; Tue 9:45-11:15 Nusselt Geb 10.23,
Thu 11:30-13:00 Hertz Geb 10.11;
Tutorial: 2h, 2 credit points; Fri 14:00-15:30 Eiermann Geb 20.40;
Prof. NN
Nonlinear Schrödinger Equations - stationary aspects
Lecture: 2 h, 4 credit points; Thu 11:30-13:00 1C-04 Geb 5.20;
Prof. Wolfgang Reichel
Nonlinear Boundary Value Problems
Lecture: 4 h, 8 credit points; Mon 11:30-13:00 1C-01 Geb 5.20, Fri 9:45-11:15 Z 1 Geb 1.85;
Tutorial: 2 h, 2 credit points; Wed 15:45-17:15 1C-01 Geb 5.20;
Prof. Michael Plum
Evolution Equations
Lecture: 4 h, 8 credit points; Wed 8:00-9:30 1C-01 Geb 5.20, Thu 8:00-9:30 1C-01 Geb 5.20;
Tutorial: 2 h, 2 credit points; Mon 14:00-15:30 1C-04 Geb 5.20;
Prof. Roland Schnaubelt
Applied Bayesian Inference A
Lecture: 2 h, 4 credit points;
20.10.-15.12.2010: Wed 9:45-11:15 1C-04 Geb 5.20;;
21.10.-16.12.2010: Thu 9:45-11:15 1C-04 Geb 5.20;
Tutorial: 2 h, 2 credit points; 22.10.-17.12.2010: Fri 11:30-13:00 1C-04 Geb 5.20;
Prof. Renate Meyer
Exponential Integrators
Lecture: 2 h, 4 credit points; Wed 11:30-13:00 1C-03 Geb 05.20;
Tutorial: 1 h, 2 credit points; Thu 15:45-17:15, every two weeks, Z 1 Geb 1.85;
Prof. Marlies Hochbruck
Seminar: Boundary Value Problems
Wed 11:30-13:00 Z 2 Geb 1.85
Prof. Wolfgang Reichel
Seminar: Engineering Mathematics and Computing
Thu 14:00-15:30 R NN Geb NN
Prof. Vincent Heuveline, Dr. Rudi Klatte
GERMAN CLASSES
Optional German language classes are offered.
SUMMER SEMESTER 2010 (14 weeks)
Abstracts and course descriptions available here
Homogeneous and Symmetric Spaces
Lecture: 4 h, 8 credit points; Tue 09:45-11:15 AOC 101 Geb 30.45, Thu 08:00-09:30 Oberer HS Geb 10.91
Tutorial: 2 h, 2 credit points; Thu 15:45-17:15 HS 93 Geb 10.81
Prof. Enrico Leuzinger
Nonlinear Schroedinger Equations: Dynamical Aspects
Lecture: 2 h, 4 credit points; Mon 14:00-15:30 1C-03 Geb 5.20
Prof. Roland Schnaubelt
Spectral Theory
Lecture: 4 h, 8 credit points; Mon 08:00-09:30 NH Geb 20.40, Wed 09:45-11:15 Nusselt Geb 10.23
Tutorial: 2h, 2 credit points; Wed 15:45-17:15 SR 1 Geb 1.85
Prof. Roland Schnaubelt
Boundary and Eigenvalue Problems
Lecture: 4 h, 8 credit points; Mo 09:45-11:15 1C-04 Geb 5.20, Wed 14:00-15:30 1C-03 Geb 05.20
Tutorial: 2 h, 2 credit points; Thu 14:00-15:30 HS 102 Geb 10.50
Prof. Wolfgang Reichel
Computer-assisted Proofs for Partial Differential Equations
Lecture: 2 h, 4 credit points; Fr 11:30-13:00 SR 1 Geb 01.85
Tutorial: 1 h, 1 credit points; Fr 08:00-09:30 SR 1 Geb. 01.85 - fortnightly, from Apr 16
Prof. Michael Plum
Stochastic Processes
Lecture: 4 h, 8 credit points; Tue 08:00-09:30 HS II (R005) Geb 30.41, Wed 08:00-09:30 NH Geb 20.40
Tutorial: 2 h, 2 credit points; Fr 14:00-15:30 NH Geb 20.40
Prof. Nicole Bäuerle
Adaptive Finite Element Methods
Lecture: 2 h, 4 credit points; Mon 11:30-13:00 1C-04 Geb 05.20
Prof. Willy Dörfler
Numerical Methods for Maxwell's Equations
Lecture: 2 h, 4 credit points; Fr 09:45-11:15 1C-04 Geb 05.20
Prof. Tobias Jahnke
Seminar: Calculus of Variations
Tue 15:45-17:15 SR 2 Geb 01.85
Prof. Michael Plum and Prof. Wolfgang Reichel
Seminar: Partial Differential Equations
Thu 09:45-11:15 R 214 Geb 11.40
Prof. Matthias Kurzke
Seminar: Computational Fluid Dynamics
Wed 11:30-13:00 1C-04 Geb 05.20
Prof. Vincent Heuveline
Seminar: Engineering Mathematics and Computing
NN
Prof. Vincent Heuveline
GERMAN CLASSES
Optional German language classes are offered.
WINTER SEMESTER 2009/2010 (15 weeks)
Abstracts and course descriptions available here
Riemannian Geometry
Lecture: 4 h, 8 credit points; Wed 08:00-09:30 Kl. ETI Geb 11.10, Thu 08:00-09:30 AOC 101 Geb 30.45
Tutorial: 2 h, 2 credit points; Fr 08:00-09:30 1C-04 Geb 05.20
Prof. Enrico Leuzinger
Partial Differential Equations
Lecture: 4 h, 8 credit points; Tue 11:30-13:00 Kl. HS Geb 10.50, Wed 14:00-15:30 Eiermann
Tutorial: 2h, 2 credit points; Mo 15:45-17:15 Hertz
Dr. Matthias Kurzke
Functional Analysis
Lecture: 4 h, 8 credit points; Tue 09:45-11:15 Nusselt, Thu 11:30-13:00 Hertz
Tutorial: 2h, 2 credit points; Fr 09:45-11:15 NH Geb 20.40
Prof. Roland Schnaubelt
Variational Methods and Applications to PDEs
Lecture: 2 h, 4 credit points; Mo 14:00-15:30 S 33
Tutorial: 1 h, 1 credit points; Tue 15:45-17:15 S 33
Prof. Michael Plum & Prof. Wolfgang Reichel
Iterative Methods for Spare Linear Systems
Lecture: 2 h, 4 credit points; Fr 15:45-17:15 1C-03 Geb 05.20
Dr. Jan Mayer
Time Series Analysis
Lecture: 4 h, 8 credit points; Mo 09:45-11:15 HS 101 Geb 10.50, Wed 11:30-13:00 1C-04 Geb 05.20
Tutorial: 2 h, 2 credit points; Fr 11:30-13:00 HS 101 Geb 10.50
Prof. Claudia Kirch
High Dimensional Approximation
Lecture: 2 h, 4 credit points; Tue 08:00-09:30 1C-04 Geb 05.20
Prof. Tobias Jahnke
Seminar: Boundary and Eigenvalue Problems
Thu 14:00-15:30 1C-01 Geb 05.20
Prof. Michael Plum
Seminar: Engineering Mathematics & Computing
Thu 15:45-17:15
Prof. Vincent Heuveline
GERMAN CLASSES
Optional German language classes are offered.
SUMMER SEMESTER 2009 (14 weeks)
Abstracts and course descriptions available here
Algebra II
Lecture: 4 h, 8 credit points; Tue 09:45-11:15 S 34, Fr 09:45-11:15 S 11
Tutorial: 2 h, 2 credit points; Tue 15:45-17:15 S 12
Dr. Stefan Kühnlein
Mathematical Theory of Maxwell's Equations
Lecture: 4 h, 8 credit points; Mo 09:45-11:15 S 31, Wed 09:45-11:15 S 31
Prof. Andreas Kirsch
Sobolev Spaces
Lecture: 2 h, 4 credit points; Thu 08:00-09:30 S 31
Prof. Wolfgang Reichel
Boundary and Eigenvalue Problems
Lecture: 4 h, 8 credit points; Tue 11:30-13:00 S 31, Thu 11:30-13:00 S 31
Tutorial: 2 h, 2 credit points; Wed 15:45-17:15 S 31
Prof. Michael Plum
Applied Stochastic Models
Lecture: 4 h, 8 credit points; Mo 14:00-15:30 S 34, Wed 14:00-15:30 S 33
Tutorial: 2 h, 2 credit points; Tue 15:45-17:15 S 31
Prof. P.R. Parthasarathy
Geometric numerical integration
Lecture: 2 h, 4 credit points; Fr 11:30-13:00 S 34
Prof. Tobias Jahnke
Additionally: Seminars
GERMAN CLASSES
Optional German language classes are offered.
WINTER SEMESTER 2008/2009 (15 weeks)
Convex Geometry
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Dr. D. Hug
Partial Differential Equations
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Prof. M. Plum
Wavelets
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Prof. A. Rieder
Queues and Inventories
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Prof. P.R. Parthasaraty
Stochastic Reaction Kinetics
Lecture: 2 h, 4 credit points
Prof. T. Jahnke
Numerical Methods for Maxwell's Equations II
Lecture: 2 h, 4 credit points
Prof. Ch. Wieners
Numerical Linear Algebra
Lecture: 4 h, 8 credit points
Dr. M. Neher
SUMMER SEMESTER 2008 (14 weeks)
Algebra 2
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Prof. F. Herrlich
Spectral Theory
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Prof. L. Weis
Applied Stochastic Models
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Prof. P.R. Parthasarathy
Numerical Methods for Maxwell's Equations
Lecture: 2 h, 4 credit points
Prof. C. Wieners
Numerical Methods for Quantum Dynamics
Lecture: 2 h, 4 credit points
Prof. T. Jahnke
WINTER SEMESTER 2007/2008 (15 weeks)
Geometric Group Theory
Lecture: 4 h, 8 credit points
Dr. Gabriela Schmithüsen
Functional Analysis/Funktionalanalysis
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Prof. Lutz Weis
Stochastic Methods in Industry
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Prof. P.R. Parthasarathy
Mathematical Modelling in Mechanics
Lecture: 2 h, 4 credit points
Prof. Christian Wieners
Adaptive Finite Element Methods
Lecture 2 h, 4 credit points
Prof. Willy Dörfler
Numerical Linear Algebra
Lecture: 2 h, 4 credit points
Prof. W. Dörfler
SUMMER SEMESTER 2007 (14 weeks)
Stochastic and Integral Geometry II
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Prof. Wolfgang Weil
Boundary and Eigenvalue Problems
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Prof. Michael Plum
Advanced Topics in Numerical Analysis 2
Lecture: 4 h, 8 credit points; Lab Course: 3 h, 4 credit points
Prof. Rudolf Scherer
Numerical Methods fo the Maxwell Equations II
Lecture: 2 h, 2 credit points
WINTER SEMESTER 2006/2007 (15 weeks)
Modular Forms
Lecture: 4 h, 8 credit points
Dr. Stefan Kühnlein
Stochastic and Integral Geometry I
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Prof. Wolfgang Weil
Partial Differential Equations
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Dr. Peer Kunstmann
Advanced Topics in Numerical Analysis 1
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Prof. Rudolf Scherer
Numerical Methods for the Maxwell Equations
Lecture: 2 h, 4 credit points; Tutorial: 1 h, 1 credit point
Prof. Willy Dörfler
Fractional Differential Equations
Seminar: 2 h, 6 credit points
Prof. Lyubomir Boyadjiev
Prof. Rudolf Scherer
Additionally: Seminars and Lab courses.
Optional German language classes are offered.
SUMMER SEMESTER 2006 (14 weeks)
Riemannian Geometry II
Lecture: 2 h, 4 credit points
HDoz Dr. Baues
Seminar (Riemannian Geometry)
Seminar: 2 h, 6 credit points
HDoz Dr. Baues, Dr. Link
Harmonic Analysis
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Dr. Kaiser
Numerical methods for partial differential equations
Lecture: 4 h, 8 credit points; Lab Course. 2 h, 3-4 credit points
Prof. Dr. Dörfler
Spatial Statistics
Lecture: 4 h, 8 credit points
Prof. Dr. Last
Additionally: Seminars and Lab courses.
Optional German language classes are offered.
WINTER SEMESTER 2005/2006 (15 weeks)
Riemannian Geometry
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
HDoz Dr. Oliver Baues
Functional Analysis
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
HDoz Dr. Gerd Herzog
Numerical Methods in Signal and Image Processing
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 CP
Prof. Andreas Rieder
Measure and Probability (Stochastik II)
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Prof. Norbert Henze
The class is taught in German but with English summaries;
English textbooks are recommended for Reading Course.
Additionally: Seminars and Lab courses.
SUMMER SEMESTER 2005 (14 weeks)
Partial Differential Equations II
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Boundary and Eigenvalue Problems for Partial Differential Equations
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Algebraic Geometry II
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Multigrid Methods
Lecture: 2 h, 4 credit points
Stochastic Geometry
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Additionally: Seminars
GERMAN CLASSES
Optional German language classes are offered.
WINTER SEMESTER 2004/2005 (16 weeks)
Partial Differential Equations
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Algebraic Geometry I
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Inverse and Ill-posed Problems
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Convex Geometry
Lecture: 4 h, 8 credit points
Scientific Computing: Architecture and Use of
Shared and Distributed Memory Parallel Computers
Lecture: 2 h, 4 credit points; Tutorial: 2 h, 2 credit points
Additionally: Seminars
German Classes
Optional German language classes are offered.
SUMMER SEMESTER 2004 (14 weeks)
Harmonic Analysis
Lecture: 4 h, 8 credit points
Riemannian Geometry
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Advanced Topics in Numerical Analysis
Lecture: 4 h, 8 credit points; Lab course: 3 h, 4 credit points
Brownian Motion and Stochastic Analysis
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Additionally: Seminars
GERMAN CLASSES
Optional German language classes are offered.
WINTER SEMESTER 2003/2004 (16 weeks)
Functional Analysis
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Differential Geometry
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Numerical Solution of Linear and Nonlinear Equations
Lecture: 4 h, 8 credit points
Measure and Probability
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Additionally: Seminars
GERMAN CLASSES
Optional German language classes are offered.
SUMMER SEMESTER 2003 (13 weeks)
Boundary and Eigenvalue Problems for Partial Differential Equations
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Algebraic Geometry II
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Advanced Topics in Numerical Analysis II
Lecture: 4 h, 8 credit points; Lab course: 3 h, 4 credit points
Stochastic Geometry
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Additionally: Seminars
GERMAN CLASSES
Optional German language classes are offered.
WINTER SEMESTER 2002/2003 (16 weeks)
Partial Differential Equations
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Algebraic Geometry I
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Advanced Topics in Numerical Analysis I
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Convex Geometry
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Calculus of Variations
Lecture: 4 h, 8 credit points
Scientific Computing: Architecture and Use of
Shared and Distributed Memory Parallel Computers
Lecture: 2 h, 4 credit points; Tutorial: 2 h, 2 credit points
Additionally: Seminars
GERMAN CLASSES
Optional German language classes are offered.
SUMMER SEMESTER 2002 (14 weeks)
Fourier Analysis
Lecture: 4 h, 8 credit points; Tutorial: 2 h, 2 credit points
Advanced Topics in Numerical Analysis II
Lecture: 4 h, 8 credit points
Brownian Motion and Stochastic Analysis
Lectures: 4 h, 8 credit points
Scientific Computing: Architecture and Use of
Shared and Distributed Memory Parallel Computers
Lecture: 2 h, 4 credit points; Tutorial: 2 h, 2 credit points
Additionally: Seminars
GERMAN CLASSES
Optional German language classes are offered.
WINTER SEMESTER 2001/2002 (16 weeks)
Functional Analysis
Lecture: 4 h, 8 credit points; Problem sessions: 2 h, 2 credit points
Number Theory
Lecture: 4 h, 8 credit points; Problem sessions: 2 h, 2 credit points
Topics in Numerical Analysis
Lecture: 4 h, 8 credit points; Problem sessions: 2 h, 2 credit points
Measure and Probability
Lecture: 4 h, 8 credit points; Problem sessions: 2 h, 2 credit points
Additionally: Seminars
GERMAN CLASSES
Optional German language classes are offered.